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Abstract

Let G be a Lie group and H a connected Lie subgroup of G. Given
any discontinuous subgroup I' for the homogeneous space .# = G/H
and a discrete subgroup I’ of G isomorphic to I, the action of I'” may fail
to be properly discontinuous on .# (for instance, in the case where H is
not compact). To understand this issue, we consider the set Z(I', G, H)
of deformation parameters consisting of all injective homomorphisms
of T in G, which transform I" to a discontinuous subgroup of .Z, so
that the related Clifford-Klein forms become manifolds. The group G
acts on Z(I', G, H) by conjugation and the subsequent quotient space
J(I,G,H) is called the deformation space of the action of ' on .Z.
The study of these spaces from topological and geometrical points of
view, raises many problems of different nature. The main hurdles is to
understand the structures of these spaces and some of their topological
features. This note aims to record some recent results in the setup of
solvable Lie groups and present some open problems in this framework.

Keywords: Ezponential Lie groups, discontinuous subgroups, deformation
space, rigidity, stability.

1 Introduction

Let G be a Lie group, H a closed subgroup of G and I' a finitely generated
discrete subgroup of G. The group I' does not in general act properly dis-
continuously on G/H when H is not compact. The problem of deformation



116 Ali Baklouti and Imed Kedim

consists in seeking how to deform I' by means of homomorphisms from I' to
G (thus to consider the set Hom(I', G) of all these homomorphisms) in a way
such that the deformed discrete subgroup acts properly on G/H. The problem
of describing deformations was first advocated by T. Kobayashi in [21] for the
general non-Riemannian setting and precisely determines as proposed in [5],
the set of deformation parameters that allow I' to deform in a way to guarantee
the proper discontinuity on GG/H. The following parameter space

¢ is injective, ¢(T") discrete and
Z(1',G,H) =< ¢ € Hom(I',G) | acts properly and fixed point (1)
freely on G/H

(endowed with the point wise convergence topology), rather than Hom(T', G),
plays a crucial role in these problems. In order to be precise on parameters,
our main goal is to investigate the deformation space 7 (I',G, H) which is
merely the quotient space of the parameters space given above through the
equivalence relation arising inner automorphisms.

Getting comprehensive information about the structure of the deformation
space helps to understand the local geometric structures as many examples
reveal:

1. Let M, be a Reimann surface of genus ¢ > 2. For G = PSLy(R),
H = SOy and ' = m(M,), G/H is the Poincaré disk, M, = I''G/H and
T (I',G, H) is the Teichmiiller space of M.

2. When K = R or C, G = SLy(K) x SLy(K), H = diag(G), I' is a
lattice in SLy(K), 7 (I',G, H) is identified to the deformation space of the
Lorentz structures in the real case and to the deformation space of the complex
structures on a 3-dimensional manifolds otherwise.

We refer the reader to the following expository papers ([13, 22, 26] and to
some references therein) where many settings have been considered. We also
focus attention on the study of the concepts of stability and local rigidity of
discontinuous groups for homogeneous spaces. These concepts, which basically
repose on the topological features of the deformation spaces, provide accurate
information on the geometric nature of the subsequent Clifford-Klein forms.
The study of rigidity problems started by a result of Selberg and Weil [29](and
generalized later by T. Kobayashi) proving that for an irreducible Riemannian
symmetric space G/H of dimension > 3 with a compact subgroup H and I" a
uniform lattice of G/H, there does not exist any essential deformation of T'.
This result claims that the deformation space is discrete in this context and
can be regarded as the original model for various kinds of rigidity theorems in
Riemannian geometry. An analogous result in the framework of exponential
Lie groups (the non-Riemannian case) is also obtained in [3] stating that there
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is no essential deformation outside the setup of the group ax + b of affine
transformations of the real line.

Many other results on rigidity will be recorded in section 4, and some
related problems are posed, namely the rigidity conjecture posed in [6] in the
setting of nilpotent Lie groups.

The notion of stability is introduced in [23] and discusses the fact that the
properness of the action of ¢(I') on G/H is preserved in a small neighborhood
of pin Z(I', G, H). Stability is studied in many cases by now, and the notion
of stable subgroups is introduced. Some related open problems are therefore
presented. A new purely geometric motivation to the study of deformation is
also studied. This is subject of section 5.

The next section is devoted to fix some notation, to define different kinds
of group actions and give some links between them. Section 3 aims to present
the deformation space of (G, H)—structures and to relate it to the deformation
space 7 (I', G, H). Some open problems are also exposed.

2 Discontinuous actions

We begin this section with fixing some notation, terminologies and recording
some basic facts about deformations. The readers could consult the references
[17, 18, 20, 21, 22] and some references therein for broader information about
the subject. Concerning the entire subject, we strongly recommend the papers
[17] and [22].

Let X be a locally compact space and K a locally compact topological
group. The continuous action of the group K on X is said:

(1) To be proper if, for each compact subset S C X the set Kg = {k € K :
k-SnNS+#0}is compact.

(2) To be fized point free (or free) if, for each x € X, the isotropy group
K,={ke K: k-z =z} is trivial.

(3) To be properly discontinuous if, K is discrete and the action of K on
X is proper and free.

(4) To satisfy the compact intersection property (CI for abbreviation), if for
every € X the isotropy group K, = {k € K : k- = x} is compact.

We focus attention in the setup where G is a locally compact group and
H and K are closed subgroups of G. Then K acts on the homogeneous space
X = G/H by aleft multiplication. In this case, it is well known that the action
of K on X is proper if and only if SHS™'NK is compact for any compact set S
in G. Likewise the action of K on X is free if for every g € G, KNgHg™' = {e}.
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In this context, the subgroup K is said to be a discontinuous group for the
homogeneous space X, if the action of K is properly discontinuous.

Both proper and free actions induce the (CI) property and if K has no
non-trivial compact subgroups then the (CT) property is equivalent to the fact
that the action is free. It is also clear that if K is compact the action is always
(CI) and proper, and if H is compact, then the action of K is proper. In the
situation where the triple (K, G, H) is reductive, Kobayashi [20] proved that
K acts properly on G/H if and only if the triple (K,G, H) is (CI). In [24]
Lipsmann conjectured that if G is nilpotent, connected and simply connected,
then the proper action of K on G/H is equivalent to the (CI) property. In
the setup of solvable Lie groups, such an equivalence was shown to hold in the
following situations:

1. If G is a nilpotent Lie group of step N < 3 an affirmative answer to
this conjecture was given separately by Nasrine [25] (for N = 2), Baklouti and
Khlif [11] (N < 3) and Yoshino [31], (N = 3).

2. When G is a connected simply connected solvable Lie group, H and K
are connected Lie subgroups of GG such that one of them is normal or maximal
(cf. [11]).

3. When G is a special connected simply connected solvable Lie group,
which means that G admits an abelian normal subgroup of codimension one

(cf. [11)).

In [30], Yoshino presented a counter example for a family of nilpotent Lie
groups where N = 4. In a recent work, Nasrine constructed a family of nilpo-
tent triples (K, G, H) for which, the (CI) property is equivalent to the proper
action.

We now pose the following questions:

Question 2.1 (T. Kobayashi). Characterize the triples (K, G, H) in a con-
nected solvable Lie group, for which the proper action is equivalent to the (CI)

property.

Question 2.2 Give a simple criterion for the action of K on G/H to be
proper in the context of solvable Lie groups.

When the action of K on G/H is proper, the double cosets space K\G/H is a
Hausdorff space. A good motivation to investigate these questions is the study
of Clifford-Klein forms. For a given discontinuous subgroup I" for the homoge-
neous space X = G/H, the quotient space I'\ X is said to be a Clifford-Klein
form for the homogeneous space X. Any Clifford-Klein form is endowed with a
smooth manifold structure for which the quotient map 7 : X — I'\ X turns out
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to be an open covering and particularly a local diffeomorphism. On the other
hand, any Clifford-Klein form I'\ X inherits any G-invariant local geometric
structure (e.g. complex structures, pseudo-Riemannian structures, conformal
structures, affine structures, symplectic structures,...) from the homogeneous
space X through the covering map 7. In fact, in many cases, a smooth man-
ifold endowed with a local structure turns out to be a Clifford-Klein form. A
standard reference for more details on this subject is [19].

In [10], the notion of weak and finite proper action was singled out. It has
been shown that these notions are equivalent to the fact that K acts freely on
G/H when G is solvable.

Definition 2.3 Let K be a locally compact group and X be a K-locally
compact space. We say that the action of K on X 1is:

(1) weakly proper if for every compact set S in X, the set K, s = {k € K :
k-x € S} is compact for every x € X,

(2) finitely proper if for every finite set S in X, the set Kg = {k € K :
k-SNS 0} is finite.

We now pose the following question:

Question 2.4 Give a simple criterion for the weak proper action of K on
G/H, for a given Lie group G.

In [10], the following result is obtained and gives a complete answer to
Question 2.4 in the solvable setting:

Theorem 2.5 Let G be a connected simply connected solvable Lie group,
H and K be closed connected subgroups of G. Then the following assertions
are equivalent

(i) The action of K on G/H is finitely proper.
(ii) The action of K on G/H is weakly proper.
(#ii) The action of K on G/H 1is free.

() The triple (G, H, K) has the (CI) property.

3 The Deformation space of a discontinuous
subgroup

Let I' be a discrete subgroup of a Lie group G and Z(I', G, H) the parameter
space of the discontinuous actions of I' on G/H defined as in (1). The Lie



120 Ali Baklouti and Imed Kedim

group G acts on Hom(I", G) by

(9-9)(7) =gp(v)g ' geGyel

and the parameter space is a G—stable subset. According to this definition and
as earlier, for each ¢ € Z(I',G, H), the space p(I')\G/H is a Clifford-Klein
form which is a Hausdorff topological space and even equipped with a structure
of a manifold for which, the quotient canonical map is an open covering. Let
now ¢ € Z(,G,H) and g € G, we consider the element ¢9 := g71 - - g
of Hom(T', G) defined by ¢9(v) = g 'p(v)g,v € I'. It is then clear that the
element p? € Z(I', G, H) and that the map:

p(O\G/H — ¢*(D\G/H, (D)xH = ¢*(T)g~ xH
is a natural diffeomorphism. We consider then the space of orbits:
JI,G,H)=21,G,H)/G

instead of Z(I',G, H) in order to avoid the unessential part of deformations
arising inner automorphisms and to be quite precise on parameters. We call the
set 7(T',G, H) the deformation space of the action of I' on the homogeneous
space G/H.

We now introduce the Clifford-Klein space

CK(T,G,H) = {F’\G/H’ I'"is isomorphic tol’ }

I'" is discontinuous for G/H

By a deformation of the Clifford-Klein form I'\G/H, we mean any element of
the related Clifford-Klein space CK (', G, H).

There is a natural surjective map ¥ : Z(I',G,H) - CK(I',G,H), ¢ —
©(I\G/H. Now the group G itself acts on Z(I',G,H) and CK(I',G, H)
and the map VU is G-equivariant. In sum, V(7 (I',G,H)) = CK(I',G,H)/G
and the deformation space determines therefore all possible deformations of
the related Clifford-Klein form modulo the G—action. Let I';, ¢+ = 1,2 be
discontinuous subgroups for G/H, then I''\G/H = I';)\G/H if and only if
I'gHg ' = TygHg ! for all ¢ € G. We define an equivalence relation A on
Z(,G,H) as follows: ¢ A ¢ if and only if o(T)gHg ' = ¢'(T')gHg™ " for
any g € GG. We then introduce the space E(F,G, H) as being the quotient
subsequent space. Clearly the map ¥ factors to a bijection from E(F, G,H) to
CK(T',G, H) and to a topological homeomorphism when these spaces are en-
dowed with adequate topologies. Now the action of G on Z(I", G, H) induces
an associated action on E(F, G, H) which commutes with the relation A. The
space cé\(f‘, G,H) = I%(F, G, H)/G is called the refined deformation space and
is identified to the space CK(I',G, H)/G.
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Our interest to these spaces comes from the deformation theory of the
(G, X)-structures, where G is a Lie group and X is a homogeneous space. Let
M be a smooth manifold such that dim X = dim M. A (G, X)-atlas on M
is a collection (Uy, ¢ )acr, where {U,,a € I} is an open covering of M and
{bo : Uy — X,, a0 € I} is a family of local coordinates charts such that, on a
connected component C' of U, N Ug, there exists gc s € G satisfying

9C,0,8 © Pa = 3.

A (G, X)-structure on M is a maximal (G, X)-atlas on M and a (G, X)-
manifold is a manifold endowed with a (G, X)-structure. Let ¥ be a smooth
manifold, a marked (G, X )-structure on ¥ is a pair (M, f) where M is a (G, X)-
manifold and f : ¥ — M is a diffeomorphism. Let D x)(X) be the space of
the all marked (G, X)-structures on . The group Diffy(X) (the subgroup of
the group of diffeomorphisms of ¥ isotopic to the identity) acts on D x)(2)
through the law:

Yx (M, f) = (M, fop™"),¢ € Diffy(X).

The deformation space of the (G, X)-structures on ¥ is the quotient space
Def(G,X)(E) = D(G’X)<E)/Diﬁ‘0(2).

Assume ¥ is compact. By the deformation Theorem of Thurston, the
holonomy map is a local homeomorphism between the deformation space of
marked (G, X)-structures on ¥ and the quotient space Hom(m(X), G)/G, (cf.
[14]). If " is a discontinuous subgroup for X, the Clifford-Klein form I'\ X is a
(G, X)-manifold. If there is a diffeomorphism f: ¥ — I'\ X, then the marked
(G, X)-structure (I'\X, f) is said to be complete. The set Df, (X) of the
complete (G, X)-structures on X, is invariant under the action of Diffy(X).
The deformation space of complete (G, X )-structures on ¥ is defined as

Def(¢ x)(2) = D{g x)(2)/Diffo ().

Then the deformation space 7 (I', G, H) of the discontinuous actions of T on
X = G/H contains the image of Def( y) (%) by the holonomy map. Further-
more, if all the forms ¢(I")\G/H are diffeomorphic for ¢ € Z(I',G, H), then
the deformation space 7 (I', G, H) coincides with the image of Def(; v().

Any information concerning the spaces Hom(T', G), Z(I', G, H), 7 (I', G, H)
and Hom(I', &)/G may help to understand the properties of Def(g v (¥) and
Defg,x)(I'\X). We are therefore interested to the study of the topological,
geometric, algebraic, or others, local or global properties of the aforemen-
tioned spaces. It is well know that the deformation space may enjoy with
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several pathological phenomena. The analytic variety Hom(I', G) may have
some singularities and there is no clear raison, to say that the parameter space
Z(I',G, H) is an analytic or algebraic or smooth manifold. It has been shown
in [5] and [4] that the set Hom®(T', G)/G, (where Hom’(T', G) designates the
set of injective homomorphisms) is endowed with a smooth manifold structure
in some nilpotent contexts. In general, the action of G on the space Hom(T", )
is not proper, then the quotient spaces Hom(I', G)/G and .7 (I', G, H) may fail
to be Hausdorff spaces. It is therefore natural to pose the following questions:

Question 3.1 When is the deformation space 7 (I', G, H) a Hausdorff space?

Question 3.2 When is the deformation space (I, G, H) a smooth mani-
fold?

These questions have been investigated by many authors and the program of
the classification of these spaces, in all generality was initiated by T. Kobayashi
in [22].

We now give some answers to Questions 3.1 and 3.2 in some contexts of
connected simply connected exponential Lie groups. To do so, we need an
algebraic interpretation of both the deformation and parameter spaces. Let
I' be a discrete subgroup of G. Let L be the syndetic hull of I" which is the
smallest (and hence the unique) connected Lie subgroup of G which contains I’
cocompactly (see [7]). Recall that the Lie subalgebra [ of L is the real span of
the lattice log ', which is generated by {log~i,...,log~,} where {~1,..., v}
is a set of generators of I'. The group G also acts on Hom(l, g) by:

g+ =Ad,; 0. (2)

Our first observation is that the parameter space only depends on the structure
of the syndetic hull of I' when the basis group G is completely solvable. Recall
that any continuous homomorphism of a connected Lie groups is smooth and
its derivative is a homomorphism of Lie algebras. We consider the smooth
map d : Hom.(L,G) — Hom(l, g), ¢ — dy|, where [ is the Lie algebras of
L. In the case of exponential Lie groups dyj.(X) = log oy o exp(X) for any
X € g. The group G acts on the spaces Hom(I', G), Hom(L, G) and Hom(!, g)
respectively through the following laws:

(9-9)(7)=gp(v)g " : y€L, p€Hom(L,G),g € G
g-=Ad, o1,y € Hom(l,g),g € G.

The following useful result was originated in [23] and obtained in [7].

Theorem 3.3 Let G = expg be an exponential solvable Lie group, H =
exp b a closed connected subgroup of G, I a discontinuous abelian subgroup for
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the homogeneous space G/H and L = expl its syndetic hull. Then, up to a
homeomorphism, the parameter space Z(I', G, H) is given by:

Z(l,9,h) = {1/1 € Hom(l, g)

dim ¢ (l) = dim [,
exp(¢(l)) acts properly on G/H |-

The deformation space 7 (I',G,H) is likewise homeomorphic to the space
T (l,8,0) = Z(I,9,b)/Ad, where the action Ad of G is given as in (2). Fur-
thermore, when G is completely solvable, the assumption on I' to be abelian
can be remowved.

3.1 Case of Heisenberg groups.

Let g := bo, 11 designate the Heisenberg Lie algebra of dimension 2n + 1 and
G = Hs,1 the corresponding Lie group. g can be defined as a real vector
space endowed with a skew-symmetric bilinear form b of rank 2n and a fixed
generator Z belonging to the kernel of b. The center 3(g) of g is then the kernel
of b and it is the one dimensional subspace [g,g]. For any X,Y € g, the Lie
bracket is given by

[X,Y] =b(X,Y)Z.

The following theorem provides a necessary and sufficient condition for the
deformation space to be a smooth manifold.

Theorem 3.4 (c¢f.[5]). Let H = exp(h) be a connected subgroup of the
Heisenberg group G = exp(g) and I' a discontinuous subgroup of G for the
homogeneous space G/H with a syndetic hull L = exp(l). Then the following
assertions are equivalent:

1. The space T (1,g,b) is equipped with a smooth manifold structure.

2. The space T (1,9,h) is a Hausdorff space.

3. dim G -1 is constant for any i € Z(1,g,0).

4-3(g) C¥() + b for any ¢ € Z(1,8,h).

More generally, the space T (1, g,bh) admits a smooth manifold as its dense
open subset whose pre-image consists of topologically stable and maximal di-
mensional orbit points.

Definition 3.5 Let g be a Lie algebra. A mazximal abelian subalgebra of g
1s an abelian subalgebra of g of maximal dimension. Maximal subalgebras are
not unique and contain obuviously the center of g.

When G is a connected simply connected two step nilpotent Lie group, the
following result is obtained in [2].
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Theorem 3.6 Let g be a two-step nilpotent Lie algebra, if one of the fol-
lowing holds:

1. All G-orbits in Z(T',G, H) have a common dimension

2. Uis a maximal abelian subalgebra of g,
then the deformation space (T, G, H) is a Hausdorff space.

3.2 Case of the n—step Threadlike groups.

Let now I' C G be a discontinuous subgroup acting on a threadlike homoge-
neous space GG/H. Threadlike means here that the Lie algebra g of the n—step
basis group G admits a stratified basis Z = {X,Y1,...,Y,} with non-trivial
Lie brackets:

(X, Y] =Y, ie{l,...,.n—1}. (3)

The following result concerning the class of threadlike Lie groups is is
proved in [4]:

Theorem 3.7 Let G be a threadlike Lie group, H a connected Lie subgroup
of G and T a non-abelian discontinuous subgroup for G/H. Then the parameter
space Z(U', G, H) is semi-algebraic smooth manifold of dimension n+k if k > 3
and n + 4 otherwise. Furthermore, we have:

1. The deformation space 7 (I',G, H) is a Hausdorff space.

2. For k>3, 7(I',G, H) is endowed with a smooth manifold structure.

3. For k =3, 7(I',G,H) is a disjoint union of an open dense smooth
manifold and a closed smooth manifold.

More significantly, the phenomenon of Hausdorffness of the deformation
space is strongly linked to the feature of adjoint orbits of the basis group G on
Z(I',G, H), specifically to their dimensions. We have (cf. [4]):

Theorem 3.8 Let G be a threadlike Lie group, H a closed connected sub-
group of G and I' a discontinuous subgroup for G/H. If G acts on the param-
eter space Z(U',G, H) with constant dimension orbits, then the deformation
space T (I',G, H) is a Hausdorff space. When the Clifford-Klein form I'\G/H

18 compact, this implication becomes an equivalence.

4  On the concept of rigidity

4.1 The terminology of rigidity

We keep the same notations and assumptions. A. Weil [29] introduced the no-
tion of local rigidity of homomorphisms in the case where the subgroup H was
compact. T. Kobayashi [18] generalized it in the case where H is not compact.
For non-Riemannian setting G/H with H non-compact, the local rigidity does
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not hold in general. In the reductive case, T. Kobayashi first proved in [16] that
local rigidity may fail even for irreducible symmetric space of high dimensions.
For non-compact setting, the local rigidity does not hold in general in the non-
Riemannian case and has been studied in [7, 17, 22, 23]. We briefly recall here
some details. For a comprehensible information, we refer the readers to the
references [7, 15, 16, 17, 18, 20, 21, 22, 23|. For ¢ € Z(I",G, H), the discontin-
uous subgroup ¢(I") for the homogeneous space G/ H is said to be locally rigid
(resp. rigid) ([18]) as a discontinuous group of G/H if the orbit of ¢ under the
inner conjugation is open in Z(I',G, H) (resp. in Hom(I',&)). This means
equivalently that any point sufficiently close to ¢ should be conjugate to ¢
under an inner automorphism of G. So, the homomorphisms which are locally
rigid are those which correspond to those which are open points in the defor-
mation space .7 (I', G, H). When every point in Z(I', G, H) is locally rigid, the
deformation space turns out to be discrete and the Clifford-Klein form I'\G/H
does not admit continuous deformations. If a given ¢ € Z(I", G, H) is not lo-
cally rigid, it admits continuous deformations and the related Clifford-Klein
form is continuously deformable.

In the context of connected simply connected nilpotent Lie groups, the
following Conjecture was substantiated in [6]:

Conjecture 4.1 Let G be a connected simply connected nilpotent Lie group,
H a connected subgroup of G and I' a non-trivial discontinuous subgroup for
G/H. Then, the local rigidity globally fails to hold on the parameter space.

A positive solution to conjecture 4.1, has been given in the following settings:

1. T ~ ZF acting properly discontinuously on G/H ~ Rt by affine
transformations. (cf [23]).

2. G is the Heisenberg groups, (cf. [9] and [7]).

3. G is treadlike, (cf. [8] and [4]).

4. I is abelian, (cf. [3]).

5. G is two-step, (cf. [2]).

6. The Lie algebra [ of the syndetic hull of I' is not characteristically
nilpotent. This is the case for instance when [ is a graded algebra. And also
the case dim G < 7, (cf. [1]).

We now focus on the exponential case. Let first g = Aff(R) := R-span(X,Y)
be the Lie algebra of the affine group of the real line, ax + b say, with the Lie
bracket [X,Y] =Y. For h = RX a maximal subalgebra of g and I" any discon-
tinuous subgroup for exp(g)/ exp(h), the local rigidity property holds. Indeed,
if " is non-trivial, it is isomorphic to exp(ZY’). The corresponding parameter
space is then homeomorphic to R*Y. For p = aY € Z(I', G, H) with a € R*,
we have

G- ¢ ={ae’Y, b e R}.
This means that Z(I', G, H) only admits two open orbits.
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In ([3], Theorem 5), we have proved the following result, referred to as the
Selberg-Weil-Kobayashi theorem:

Theorem 4.1 Let G be an exponential Lie group, H connected maximal
non normal subgroup of G and I a discontinuous subgroup for G/H. Then the
three following assertions are equivalents :

1) There ezist a locally rigid homomorphism in Z(I', G, H).

u) Every homomorphism in Z(1', G, H) is locally rigid.

) G is isomorphic to Af(R).

This leads us to pose the following question:

Question 4.2 Let G be an exponential Lie group, H a connected Lie sub-
group of G and ' a abelian discontinuous subgroup for G/H. Is it true that
Z(U,G, H) admits a locally rigid homomorphism if and only if G is isomorphic
to the group Aff(R) and H is mazimal and non-normal in G.

When I' is abelian, we answered positively this question. This was the
subject of Corollary 3.12 and Theorem 3.13 in [1]. More precisely, the local
rigidity property fails to hold in this context if and only if dimG # 2 or
otherwise H is normal in G.

5 On the concept of stability

5.1 The terminology of stability in the sense of Kobayashi-
Nasrin

Let us come back to the general setting for a while. The homomorphism
e € Z(',G, H) is said to be topologically stable or merely stable in the sense
of Kobayashi-Nasrin [23], if there is an open set in Hom(I', G) which contains
¢ and is contained in Z(I", G, H). When the set Z(I', G, H) is an open subset
of Hom(I", G), then, obviously each of its elements is stable which is the case
for any irreducible Riemannian symmetric space with the assumption that I'
is a torsion free uniform lattice of G ([23] and [29]). Furthermore, we point out
in this setting that the concept of stability may be one fundamental concept
to understand the local structure of the deformation space.

5.2 Stability of discrete subgroups

Let G be a locally compact group and I' a closed subgroup of G. In (]20],
(5.2.1)), T. Kobayashi defines the set M (I" : G) consisting of subsets H for
which SHS™' N T is compact for any compact set S in G. Let M, (I' : G) be
the set of all closed connected subgroups belonging to th (I' : G).

The following questions have been posed in [6].
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Question 5.1 (c¢f. [6]) For a given discrete subgroup I' of G, is it possible
to characterize all the subgroups H € g, (I' : G) for which the parameter
space Z(I', G, H) is open. (Any deformation parameter is stable ).

Similarly, let H be a connected subgroup of G and rhy (H : G) the set of the
discrete subgroups of G belonging to M (H : G).

Question 5.2 Let H be a connected subgroup of G, is it possible to char-
acterize all the subgroups I' € g (H : G) for which the parameter space
Z(',G,H) is open?

Let I be a discrete subgroup of G and Stab(I" : G) the set of all subgroups
H e, (I' : G) for which the parameter space Z(I',G, H) is open. The
subgroup I is said to be stable, if Stab(I' : G) =y, (I' : G).

Question 5.3 (cf. [6]) Is it possible to characterize all stable discrete sub-
groups of connected simply connected solvable Lie groups?

Similarly, for a connected Lie subgroup H of G we denote by Stab(H : G) the
set of I' € hy (I' : G) such that Z(I', G, H) is open. The subgroup H is said
to be stable if Stab(H : G) =My (H : G).

Question 5.4 s it possible to classify stable connected subgroups of con-
nected simply connected solvable Lie groups?

Some answers to these questions are already provided for some restrictive cases
of exponential Lie groups. In the setting of nilpotent Lie groups, the following
result (see [3]) is a partial answer to the questions 5.1 and 5.2.

Theorem 5.5 (c¢f. [3]). Let G be a connected simply connected nilpotent
Lie group, H be a connected subgroup of G, and I' be a discontinuous subgroup
for G/H. If the Clifford-Klein form I'\G/H is compact, then the stability
holds everywhere; that is, the parameter space Z(I',G, H) is semi-algebraic
and open.

In the setting of Heisenberg groups, we got in [5] an answer to question
5.3. We proved the following:

Theorem 5.6 (c¢f. [5]). Let I' be a discontinuous subgroup of the Heisen-
berg group G = exp(g) and exp(l) its syndetic hull. Then I is stable if and
only if I' is non-abelian or | is abelian and maximal in g.

When G is two-step nilpotent, we have the following result concerning the
case where [ is a maximal subalgebra of g, see [2].
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Proposition 5.7 (c¢f. [2]). If | is a mazimal abelian subalgebra of g, then
the stability property holds.

As for the threadlike setting, we proved in [4] the following, as a partial
answer to question 5.3:

Theorem 5.8 (cf. [}]). LetT be a discontinuous subgroup of the Threadlike
group G and exp(l) its syndetic hull. If T is non-abelian or | is abelian and
mazimal in g, then I" is stable.

More generally when G is a exponential Lie group, the following result ( Propo-
sition 5.1 in [7] ) is a partial answer to questions 5.3 and 5.4. Consider first the
natural continuous action of Aut(l) on Hom([, g) which respects Z(I',G, H).
Our upshot in this section is the following:

Theorem 5.9 (c¢f. [7]). Let G be a completely solvable Lie group, H a
connected subgroup of G and T a discontinuous subgroup for G/H such that
L] =1[g,9]. Then Z(I',G, H) is an open set in Hom(I', G) and semi-algebraic.
Moreover for o € Z(I',G, H) the following assertions are equivalent:

1) @ is rigid.

u) ¢ is locally rigid.

ur) The orbit  Aut(l) is open in Hom(l, g) and

dim Aut(l) + dim ()= = dim g,

where p()* ={Y € g, [X,Y] =0 for all X € ¢(I)}.

Remark 5.10 We close the paper with the following important remark. As-
sume that the deformation space 7 (I', G, H) of the discontinuous actions of I’
on X = G/H coincides with the image of Defig x)(X) by the holonomy map
hol and that the stability holds. Then the restriction

hol : Defig x\(X) — Z(I',G, H)

is a local homeomorphism. Indeed, 7 (I', G, H) is an open set of Hom(I', G) /G,
therefore Def(¢ x\(X) is an open set of Defiq x)(X). As hol is a local homeo-
morphism, we are done.
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