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Abstract 

     Potatoes are one of the most important food crops globally, yet their 
susceptibility to a wide range of diseases poses a serious threat to agricultural 
productivity. Conventional methods for identifying potato diseases are labor-
intensive and time-consuming, underscoring the need for more advanced 
solutions. Deep learning has emerged as a promising alternative, 
outperforming traditional methods with its ability to automate and enhance 
potato disease identification. However, previous research has primarily 
focused on single-dataset implementations, and the interpretability of these 
models remains insufficiently explored. To address this, we introduce a 
solution that combined the strengths of ensemble deep learning and 
Explainable AI (XAI) for the identification of potato leaf pests and diseases. 
Our ensemble model integrates MobileNetV3-Large and EfficientNetV2B3 
architectures and demonstrates remarkable accuracy of 97.91%. 
Furthermore, the incorporation of XAI techniques greatly enhances the 
interpretability of the model. By improving both interpretability and 
predictive accuracy, these results support more informed and reliable model 
outputs. 

     Keywords: ensemble deep learning, explainable artificial intelligence, image 
classification, potato leaf pest and disease identification 
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1      Introduction 

Potato is the third most important food crop globally after wheat and rice, and it is a 

primary source of food for over a billion people worldwide. It is a crucial source of calories 

and nutrition, with an annual production of over 300 million metric tons [1]. Potatoes are 

also used as an industrial raw material. Maintaining potato plant health is important for 

ensuring food security because diseases can lead to a significant reductions in crop yield 
[2]. Plant disease experts and experienced farmers play a crucial role in monitoring crops 

and issuing timely warnings to mitigate potential yield losses [3]. However, traditional 

methods for disease detection in agriculture are often time-consuming, labor-intensive, and 

inefficient, relying heavily on manual inspection, which can be tedious and prone to human 

error [4]. Therefore, rapid and accurate identification of diseases is crucial for effectively 

addressing these problems. 

Machine Learning (ML) and image analysis are increasingly being viewed as viable 

alternatives for the continuous monitoring of plant diseases across various crops [5,6]. 

Although notable successes have been reported in the literature, conventional ML methods 

have several limitations, including reliance on manually designed features, complex image 

processing steps, and a lack of robustness. The advancement of Deep Learning (DL) has 

provided a powerful approach to address this challenge. In particular, Convolutional 

Neural Networks (CNN) have demonstrated exceptional performance in image 

classification tasks, which has led to their use in agriculture [7–17]. In potato leaf disease 

detection, DL has demonstrated remarkable success, achieving superior accuracy and 

reliability compared to traditional methods. By leveraging advanced architectures, DL 

models can automatically extract features from leaf images, thereby enabling fast and 

accurate identification [18–22]. 

However, previous studies have been limited to implementation on a single dataset, 

which hinders the models' generalizability. Moreover, their lack of interpretability and 

explainability has not been adequately investigated. This limitation hinders the practical 

application of the existing models. To overcome this challenge, we developed a novel 

approach for detecting potato leaf pests and diseases. By leveraging an ensemble deep 

learning model combined with explainable AI (XAI) [23], our method not only enhances 

detection accuracy but also identifies the most critical features, offering valuable insights 

for practical agricultural use. Our objective is to aid decision-making in agriculture through 

an explainable deep-learning-guided method. The proposed model was trained on multiple 

datasets to address the limitations of prior research, which lacked generalizability due to 

training on a single dataset. The primary contributions of this study are as follows: 

• Integration of multiple datasets to enhance the model's generalizability and 

robustness across diverse conditions. 

• Development of an explainable deep learning framework for identifying potato 

leaf pests and diseases, using an ensemble of MobileNetV3 Large [24] and 

EfiicientNetv2B3 [25]. 

• Implementation of explainable AI (XAI) techniques to ensure transparency and 

provide deeper insights into the decision-making process of the proposed model. 

2      Related Work 

Potato leaf disease identification has garnered significant attention recently because of 

its critical impact on agricultural productivity and food security. Researchers are 

increasingly adopting ML and DL techniques to speed up identification processes. Islam 
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et al. developed a potato disease recognition model that uses image processing and ML 

techniques to identify over 300 images using PlantVillage Dataset and achieved 95% 

accuracy [19]. Patil et al. used PlantVillage and a self-collected dataset to conduct a 

comparative analysis using ANN, RF, and SVM methods to identify potato disease images; 

RF achieved 79% accuracy, SVM achieved 84%, and ANN gained the highest accuracy of 

92% [18]. Ji et al. used a hyperspectral imaging technique and discrete wavelet transform to 

recognize bruised potatoes, achieving 99.82% accuracy for damaged potatoes [26].  

A customized and dedicated CNN was also developed specifically for potato farming. 

Adillah M and Kristiyanti implemented pre-trained MobileNetV2 using transfer learning 

and augmentation techniques on the PlantVillage Dataset. The proposed method yielded 

an accuracy of more than 90% [20]. Chen et al. developed a weakly supervised learning 

framework for identifying potato plant diseases. The proposed framework utilizes a 

foundation network and a modified version of MobileNet V2 to enhance the ability of the 

architecture to detect small lesions. The proposed method achieved average accuracy and 

specificity of 97.33% and 98.39%, respectively, on a dataset of locally sourced images [21]. 

Firasari and Cahyanti employed a PLD dataset and utilized a CNN model optimized with 

the RMSProp algorithm. The proposed method achieving an impressive accuracy of 

97.53% [22]. 

The hybrid plant disease classification model proposed by Tabbakh et al. utilized a 

Transfer Learning-based model followed by a vision transformer (TLMViT). The 

proposed model was used to extract deep features and classify diseased plant leaves, 

including potato leaves. The results demonstrated that TLMViT outperformed the transfer 

learning-based model for PlantVillage by achieving an enhancement of 1.11% and 1.099% 

in validation accuracy, and 2.576% and 2.92% in validation loss, respectively [27]. Chen et 

al. introduced MobOcaNet, a novel network architecture designed for the identification of 

potato diseases. Building on the foundation of MobileNetV2, a lightweight network, the 

authors enhanced its ability to detect small crop lesions by incorporating an attention 

mechanism and an octave convolution block. The proposed method demonstrated superior 

performance, achieving an average accuracy of 97.73% in identifying various types of 

potato diseases, outperforming the other methods [28]. Javed Rashid et al proposed multi-

level DL techniques by integrating YOLOv5 for leaf segmentation and a novel 

convolutional neural network (PDDCNN) for disease detection, achieving a high accuracy 

of 96.71% on the PlantVillage dataset [29]. 

To address the "black box" nature of deep learning models, XAI methods were 

developed to interpret model decisions. In agriculture, these methods have been applied to 

tasks such as plant disease detection [30], crop recommendation [31], yield estimation [32], 

and nutrient deficiencies identification [33]. Visualization techniques such as SHAP and 

Grad-CAM are particularly popular for enhancing model interpretability and transparency 
[30,32,33]. In the context of potato leaf disease identification, Bengamra et al. used saliency 

explanations to highlight the relevant regions of input images.  

Leveraging XAI techniques empower farmers with interpretable AI, driven insights, 

foster trust and encourage the adoption of AI technologies in agriculture [34]. However, the 

use of XAI for potato leaf disease identification remains limited. To address this gap, the 

present study aims to integrate XAI techniques to improve the transparency of model 

predictions while simultaneously enhancing the performance of deep learning models for 

identifying potato leaf diseases. In addition, unlike previous studies that focused on a single 

dataset, this study leveraged multiple datasets to increase the model’s generalizability. 



 

N. Shabrina et al.                                                                                                          162 

3      Materials and Method 

3.1  Research Workflow 

Fig. 1 illustrates the workflow on the development of the proposed methods for potato 

leaf pest and disease datasets. The process began with the acquisition of two public datasets 

from the PlantVillage dataset [35] and the Potato Leaf Dataset (PLD) [29]. The dataset was 

then expanded through data augmentation, which involved the use of multiple techniques 

to increase its size. These methods include adjusting the brightness, flipping images 

vertically and horizontally, changing the zoom range, rotating the picture, and shifting it 

in both the length and width dimensions. Then, an ensemble model was formulated to 

integrate the predictions of the combined dataset, thereby enhancing the overall accuracy. 

Moreover, an average and concatenated learning ensemble model was formed by utilizing 

pre-trained transfer learning models, namely MobileNetV3 Large [24] and 

EfficientNetV2B3 [25,36], to generate more accurate predictions. The resulting ensemble 

model was evaluated using various metrics, including accuracy, recall, precision, and F1 

Score. Finally, an explanation based on the XAI algorithms was applied to interpret and 

explain the predicted results. 

 

 

Figure 1. Schematic of the research workflow 

3.2 Dataset 

The datasets used in this study were sourced from the PlantVillage dataset [35] and the 
Potato Leaf Dataset (PLD) [29]. The PlantVillage dataset was developed by Penn State 
University (United States), and EPFL (Switzerland), and contained approximately 2,152 
images for training and testing. The PLD was developed in Pakistan's Central Punjab 
region and comprises approximately 3,251 training and 405 testing images. In summary, 
the datasets comprised of 5,187 and 621 images for training and testing, respectively. The 
datasets were divided into three classes: early blight, late blight, and healthy. The two 
datasets were combined and trained using the proposed ensemble deep-learning model. 
The amount of data per class for training and testing is presented in Table 1. Table 2 
presents a sample of potato leaf pest and disease images from both datasets. 
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Table 1. Distribution of potato leaf pest and diseases dataset 

Classes 
Training Testing 

PlantVillage PLD PlantVillage PLD 

Early Blight 900 1,303 100 162 

Late Blight 900 1,132 100 141 

Healthy 136 816 16 102 

Total 1,936 3,251 216 405 

 

Table 2: Sample of the potato leaf pest and diseases dataset 

Category PlantVillage dataset PLD 

Late blight 

 
 

 

 
 

 

Early blight 

 
 

 

 
 

 

Healthy 

  

3.3 Data Preprocessing and Bias Mitigation 

Figure 2 shows the UMAP [37] visualization of feature embeddings derived from the 

PlantVillage (red) and PLD (blue) datasets. The clear separation between the two clusters 

highlights a significant domain shift between the datasets. This domain shift can be 

attributed to differences in image acquisition conditions, environmental backgrounds, and 

disease expression across potato varieties. The PlantVillage dataset, collected in a 

controlled laboratory environment, forms a tight and uniform cluster, whereas the PLD 

dataset appears more dispersed and distinct. To address domain shifts between the 

PlantVillage and PLD dataset, we applied a series of data augmentation techniques, 

including brightness adjustment, flipping, zooming, rotation, and shifting.  

The applied augmentations were intended to replicate typical conditions encountered 

in agricultural environments, including variations in lighting, leaf orientation, and image 
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capture angles. While they may not fully replicate extreme scenarios, such as severe 

lighting conditions or advanced stages of disease, they effectively represent a broad range 

of realistic variations. Additionally, these augmentation strategies were employed not only 

to simulate field variability but also to address class imbalance within the datasets, ensuring 

more balanced learning across disease categories. 

 

 

Figure 2. UMAP visualization shows domain shifts between PlantVillage and PLD 

dataset. 

The augmentation was performed only on the training set of the dataset. This process 

entailed enlarging each class until it comprised 3,214 early blight classes, 3,253 late blight 

classes, and 3,289 healthy classes, resulting in a total of 9,756 images. This amount was 

split into training and validation sets at a ratio of 90:10, consisting of 8,781 images and 

975 images for training and validation, respectively. The model was evaluated on 621 

images from the test dataset.  Below are the details regarding the implementation of data 

augmentation on the training dataset. 

 The brightness of the images was adjusted randomly from 0.5 to 1.2. 

 The images were subjected to horizontal and vertical flipping at 180 degrees. 

 The degree of rotation of the images varied within 25 degrees. 

 The zoom range was randomly changed from 0.6 to 0.9. 

 The images were also shifted horizontally and vertically in the range 0.1. 

To further enhance robustness and geographic coverage, we combined both datasets 

and applied transfer learning [38] as a domain adaptation technique before integrating the 

models into an ensemble learning framework. 

3.4 Classification System Design using Ensemble Learning 

The classification system was based on two pretrained models: MobileNetV3-Large 

and EfficientNetV2B3. The MobileNetV3-Large and EfficientNetV2B3 models were 
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selected owing to their lightweight nature and outstanding performance. Tables 3 and 4 

present the model architectures of MobileNetV3-Large and EfficientNetV2B3. 

Table 3. MobileNetV3-Large Architecture 

Operator Input Expansion size Stride 

Conv2d 2242 x 3 - 2 

Bneck 3x3 1122 x 16 16 1 

Bneck 3x3 1122 x 16 64 2 

Bneck 3x3 562 x 24 72 1 

Bneck 5x5 562 x 24 72 2 

Bneck 5x5 282 x 40 120 1 

Bneck 5x5 282 x 40 120 1 

Bneck 3x3 282 x 40 240 2 

Bneck 3x3 142 x 80 200 1 

Bneck 3x3 142 x 80 184 1 

Bneck 3x3 142 x 80 184 1 

Bneck 3x3 142 x 80 480 1 

Bneck 3x3 142 x 112 672 1 

Bneck 5x5 142 x 112 672 2 

Bneck 5x5 72 x 160 960 1 

Bneck 5x5 72 x 160 960 1 

Conv 2d, 1x1 72 x 160 - 1 

Pool 7x7 72 x 960 - 1 

Conv2d 1x1, NBN 12 x 960 - 1 

Conv2d 1x1, NBN 12 x 1280 - 1 

Table 4. EfficientNetV2B3 architecture 

Operator Channel Layer Stride 

Conv3x3 40 1 1 

Fused-MBConv1, 3x3 16 1 2 

Fused-MBConv4, 3x3 40 3 2 

Fused-MBConv4, 3x3 56 3 2 

MBConv4, 3x3, SE 0.25 112 5 1 

MBConv6, 5x5, SE 0.25 136 7 2 

MBConv6, 3x3, SE 0.25 232 12 1 

Conv1x1 & Pooling & FC 1536 1 1 

 

Using two pretrained models, average and concatenate ensemble techniques were 

constructed. The average ensemble technique was implemented by computing the average 

of the prediction outputs of two pretrained models that had previously been trained. This 

process generated new ensemble predictions that could be retrained. A visual 

representation of this technique is shown in Fig. 3. In the average ensemble method, the 

final prediction is obtained by averaging the outputs of the multiple models. Suppose we 

have 𝑁 models, and each model 𝑖 produces a prediction 𝑦𝑖 for a given input. The ensemble 

prediction 𝑦̂ is calculated as in Eq. (1). 

 

𝑦̂ =
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1          (1) 
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Figure 3. The proposed average ensemble deep learning 

The concatenation ensemble involves combining the features of two base pretrained 

models into a single, larger feature, which is then subsequently employed in the 

classification layer. The scheme employed in the concatenation ensemble is illustrated in 

Fig. 4. The concatenate ensemble method combines the feature representations learned by 

different models prior to making a final prediction. For two models, each producing a 

feature vector 𝑓1 and 𝑓2, respectively, the concatenated feature vector 𝑓𝑐𝑜𝑛𝑐𝑎𝑡 is formed as 

in Eq. (2). The [; ]  denotes the concatenation operation. The combined feature vector 

𝑓𝑐𝑜𝑛𝑐𝑎𝑡 is fed into a subsequent classifier (e.g., a fully connected neural network) to produce 

the final prediction. The proposed method leverages the strengths of each model's feature 

extraction capabilities to capture more comprehensive information from the input data. 

 

𝑓𝑐𝑜𝑛𝑐𝑎𝑡 =  [𝑓1; 𝑓2]        (2) 

 

 

Figure 4. The proposed concatenate ensemble deep learning 

The average and concatenate ensemble methods were chosen over alternatives like 

boosting or bagging because they are well-suited for combining pretrained deep learning 

models, particularly in tasks like image classification [39]. Boosting methods, typically rely 

on iterative training multiple weak learners to correct errors in previous iterations, which 

is not as effective for complex deep learning models where pre-trained architectures 

already capture a high level of feature representation [40]. Similarly, bagging approaches 

focus on training multiple independent models on different subsets of data, which may not 

effectively leverage the strengths of pre-trained models effectively in this context. 

The average and concatenate ensembles allow us to leverage the unique strengths of 

both EfficientNetV2B3 and MobileNetV3-Large without requiring complex iterative 
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processes. By combining these two models, the ensemble method captures both the robust 

feature extraction capabilities of EfficientNetV2B3 and the computational efficiency of 

MobileNetV3-Large. The average ensemble integrates the prediction probabilities from 

both models, reducing the individual model biases and providing balanced and robust 

output. In addition, the concatenate ensemble fuses the feature representations of both 

models, thereby creating a richer feature space that allows the final classifier to learn 

patterns in the data.  

3.5 Hyperparameter and Evaluation Metrics 

The use of hyperparameters is important for attaining desired performance results. 

Table 5 presents the details of the employed hyperparameters and their respective 

functions. The Adam optimizer was selected because it combines the benefits of both the 

Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp) 
[41], thereby offering efficient performance across a wide range of deep learning tasks. A 

low learning rate of 0.0001 was selected to ensure stable and gradual convergence during 

training. Categorical crossentropy was used as the loss function because the task involved 

multi-class classification of potato leaf diseases. A batch size of 64 was selected to balance 

computational efficiency and gradient stability. Finally, the model was trained for 50 

epochs to provide sufficient data exposure, which enable effective learning while 

minimizing the risk of overfitting. 

Table 5. Hyperparameter settings 

Hyperparameters Value 

Optimizer Adam 

Learning Rate 0.0001 

Losses Categorical Crossentropy 

Batch size 64 

Epoch 50 

 

The evaluation metrics of the trained models play a crucial role in their analysis, 

serving to assess performance, compare models, optimize the model, and draw 

conclusions. In this study, several standard evaluation metrics were employed, namely, 

accuracy, recall, precision, and F1 score. The formula for each metric is given by Eqs. (3)-

(6). 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ,      (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,        (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,        (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ,      (6) 

where TP is a True Positive; FP is a False Positive; TN is a True Negative; FN is a 

False Negative. The utilization of the learning curve was also incorporated into the 

evaluation of the model's performance in addition to the standard evaluation metric. 
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3.6 Explainable-driven method  

Several XAI techniques were applied to explain the predicted results. XAI 

encompasses a range of techniques and approaches aimed at increasing the transparency 

and understandability of the decisions and outputs of model systems. In this study, 

LIME[42], SHAP[43], and GradCAM[44], three commonly used XAI methods, were 

employed. The GradCAM technique was used to identify the vital regions of the potato 

leaf images necessary for classification by utilizing the spatial information maintained by 

the convolutional layers. To assess the usefulness of the proposed visual explanation 

methods, a thorough examination of individual potato leaf samples from each category was 

carried out, including a visual inspection of the heatmaps generated by the methods. 

Shapley Additive Explanation (SHAP) is similar to the method used in game theory 

to enhance the interpretability of specific predictions by determining the significance 

values for each input feature. This provided a description of the predicted outcome based 

on the contribution of each feature. This technique has also been applied to surrogate 

models [45]. It is easier to calculate and provides more natural interpretations than other 

methods [46]. SHAP generates both local and global explanations, making it a reliable 

option for any data, and it is not limited to model-agnostic situations.  

Local interpretable model-agnostic explanation (LIME) is a model-agnostic tool 

generates local explanations of a model's predictions by identifying the most relevant 

features necessary for the prediction. Unlike SHAP, LIME does not rely on game theory, 

instead, it uses a direct approach by varying the input data of the model to observe changes 

in the prediction. The explanations provided by LIME are based on individual instances 

rather than the entire dataset, and they train the model locally to provide explanations for 

each prediction. In addition, LIME employs hierarchical clustering to select the most 

relevant cluster of instances for explanation [47,48]. 

3.7 Implementation 

Using Keras and the TensorFlow Library in Python, the ensemble deep learning 

model and XAI were implemented in Google Colab with the specifications of the Tesla 

K80 accelerator, CPU Xeon Processor at 2.2 GHz based on availability, and 12 GB RAM. 

The training process also incorporated custom callbacks, including the implementation of 

checkpoints and early stopping functions, to ensure efficient and effective model training. 

A learning rate scheduler was also employed to optimize the training process and mitigate 

overfitting and instability. 

4      Results and Discussion 

4.1 Evaluation of Ensemble Deep Learning Model Performance 

Figs. 5 and 6 show the learning curve results from the pretrained MobileNetV3-Large 

and EfficientNetV2B3 models, respectively. The learning curves for the proposed average 

ensemble and concatenated ensemble are shown in Figs. 7 and 8, respectively. 

Figs. 4 and 5 demonstrate that both the pretrained deep learning models yielded 

excellent results, with validation and training accuracy exceeding 95%. In addition, the 

convergence between the two accuracy was noteworthy. When comparing the performance 

of EfficientNetV2B3 and MobileNetV3Large, EfficientNetV2B3 outperforms 

MobileNetV3Large. In particular, EfficientNetV2B3 achieved a maximum validation 
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accuracy of 99.08%, which is higher than the training accuracy of 97.85%. In contrast, 

MobileNetV3Large's maximum validation accuracy of 98.97% is lower than its training 

accuracy of 99.32%. 

 

  

Figure 5. Model accuracy and loss of MobileNetV3-Large 

  

Figure 6. Model accuracy and loss of EfficientNetV2B3 

As shown in Fig 7. And Fig. 8, the concatenate ensemble resulted in training, 

validation, and testing accuracy values of 99.25%, 99.49%, and 97.91%, respectively. The 

average ensemble deep learning achieved training, validation, and testing accuracies of 

97.55 %, 98.55 %, and 97.91 %, respectively. The use of the average ensemble deep 

learning model did not satisfy expectations because the average performance of the 

ensemble model was subpar. The resulting graphs do not converge. This implies that the 

model faces an underfitting problem. The curve suggests that the model has potential for 

further development and enhancement; however, the training process was discontinued 

before its full potential. The addition of network complexity may overcome this problem. 

However, the concatenated ensemble model outperformed both EfficientNetV2B3 and 

MobileNetV3Large. The validation accuracy was 99.18% and the training accuracy was 

98.69%. In addition, the validation and training accuracy were converged more quickly 

using the concatenated ensemble model. This indicates that the proposed concatenation 

ensemble deep learning method demonstrates potential and may prove to be highly 

effective for the identification of potato leaf pests and diseases. 
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Figure 7. Model accuracy and loss of the proposed average ensemble 

  

Figure 8. Model accuracy and loss of the proposed concatenate ensemble 

The performance of the proposed method was further verified by calculating the 

precision, recall, and F1-score, as listed in Table 6. In terms of accuracy, both average and 

concatenated ensemble deep learning demonstrated superior performance compared to the 

pretrained EfficientNetV2B3 and MobileNetV3-Large, with values of 97.91%. The 

concatenated ensemble also achieved an impressive average recall score of 98.1%, which 

significantly surpassed that of the other models. The precision and F1-score of the average 

ensemble learning achieved the highest results 97.37% and 97.6%, respectively. In 

conclusion, the results of the experiment revealed that despite its lackluster performance 

in the learning curve, the average ensemble deep learning  demonstrated superior 

performance in terms of testing accuracy, precision, and F1-score. Furthermore, the 

proposed concatenation approach demonstrated promising results, achieving noteworthy 

performance in both the learning curve and all metric evaluations, compared to the 

pretrained EfficientNetV2B3 and MobileNetV3-Large. 

Table 6. Model performance result (in %) 

Model Precision Recall F1-score Accuracy 

EfficientNetV2B3 96.93 98 97.42 97.75 

MobileNetV3-Large 96.78 97.69 97.21 97.58 

Average Ensemble 97.39 97.82 97.6 97.91 

Concatenate Ensemble 97.09 98.1 97.56 97.91 
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The results also show that both the average and concatenate ensemble methods achieve 

the same accuracy of 97.91%, with minor variations in precision, recall, and F1-score. This 

comparable performance can be attributed to the complementary strengths of the base 

models (EfficientNetV2B3 and MobileNetV3-Large) which are effectively integrated in 

both ensemble strategies. The average ensemble method averages the prediction 

probabilities of the base models. This ensures that each model contributes equally, 

effectively smoothing out individual biases and improving the overall predictions 

robustness. On the other hand, the concatenate ensemble method combines the feature 

representations from both models before making predictions, which allow the model to 

learn richer and more diverse features from the input data.  

However, as shown in Table 6, the average ensemble produced more stable results 

across metrics. This can be explained by the concatenate ensemble's increased feature 

dimensionality, which may introduce redundancy or noise, increasing the risk of 

overfitting, particularly when the training data are limited or imbalanced. In contrast, the 

simpler structure of the average ensemble reduces variance while maintaining strong 

performance, which results in balanced performance across metrics. 

The use of both ensemble methods highlights the robustness and versatility of 

combining multiple models, which results in improved performance over that of individual 

models. The shared accuracy between the two approaches demonstrates the effectiveness 

of the ensemble strategy in maximizing the predictive performance for potato leaf disease 

detection. 

4.2 Effectiveness of the Augmentation Techniques 

To validate the effectiveness of data augmentation, we conducted a comparative 

analysis of model performance with and without augmentation, as presented in Table 7. 

Table 7. Model performance before and after augmentation (in %) 

Model Precision Recall F1-score Accuracy 

Average Ensemble (Before 

Augmentation) 

96.04 96.46 96.22 96.51 

Average Ensemble (After 

augmentation) 

97.39 97.82 97.60 97.91 

Concatenate Ensemble 

(Before Augmentation) 

96.75 96.67 96.69 96.67 

Concatenate Ensemble 

(After Augmentation) 

97.09 98.1 97.56 97.91 

 

The results presented in Table 7 demonstrate that data augmentation led to consistent 

improvements across all evaluation metrics for both ensemble strategies. For the Average 

Ensemble, precision increased from 96.04% to 97.39%, recall from 96.46% to 97.82%, 

and F1-score from 96.22% to 97.60%, with overall accuracy improving from 96.51% to 

97.91%. Similarly, the Concatenate Ensemble showed enhancement, with F1-score rising 

from 96.69% to 97.56%, and accuracy increasing from 96.67% to 97.91%. These 

improvements indicate that augmentation not only enhances generalization but also helps 

the model better capture relevant features across diverse conditions. Overall, the results 

validate that data augmentation plays a significant role in boosting classification 

performance and mitigating dataset limitations. 
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4.3 Computational Cost for Ensemble Deep Learning 

To assess the computational costs associated with each ensemble method, we 

performed a detailed analysis of inference time and memory consumption, as presented in 

Table 8. The Concatenate Ensemble achieved a slightly faster average inference time of 

1.3287 seconds compared to 1.3783 seconds for the Average Ensemble. However, this 

performance gain came at the cost of higher memory usage, with the Concatenate 

Ensemble consuming 7.0 GB, whereas the Average Ensemble used only 5.4 GB. These 

results suggest a trade-off between speed and memory efficiency, where the Concatenate 

Ensemble is more time-efficient, while the Average Ensemble is more memory-efficient. 

Table 8. Computational cost for ensemble deep learning 

Model Inference time 

(seconds) 

Memory Usage 

(GB) 

Average Ensemble  1.3783 5.4 

Concatenate Ensemble  1.3287 7.0 

 

Considering both inference time and memory usage, the choice between ensemble 

methods depends on the deployment context. If computational resources are limited, such 

as in mobile or edge devices, the Average Ensemble is more suitable due to its lower 

memory consumption. However, if faster inference is prioritized and sufficient memory is 

available, the Concatenate Ensemble offers better time efficiency. Overall, both methods 

perform comparably in accuracy, the decision for depployment should be based on the 

target application's hardware constraints and performance requirements. 

4.4 Model Explanation with Ensemble Deep Learning 

The predicted probabilities for each class of sample images and the results of the XAI 

techniques are presented in Table 9. As shown in the table, the three methods employed 

different analysis method. The Grad-CAM heatmap shows the significance of each spatial 

location in the input image for target class prediction. Warmer regions indicate higher 

importance, whereas cooler regions indicate lower importance. The SHAP visualization 

represents positive features, that influence the model's prediction and increase its output, 

with green color, whereas negative features are represented in red. The LIME visualization 

utilizes red color to guide the model to yield its predicted results. As shown in Table 9, the 

prediction outcomes of the proposed ensemble models mostly conformed to the expected 

features. Compared to the two XAI models, the Grad-CAM had poorer evaluation results. 

The evaluation provided by Grad-CAM still provides a background that should not be the 

main feature of the late blight disease class. LIME improves the evaluation of Grad-CAM 

by reducing background noise, while SHAP provides more detailed and precise evaluation 

results. 
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Table 9. XAI results 

Actual class Prediction 

result 

GradCAM SHAP LIME 

 
Late blight 

 

Late Blight 

(95.29%) 

   

 
Early blight 

 

Early Blight 

(99.9%) 

   

 
Healthy 

Healthy 

(100%) 

   

To complement the qualitative results, we provide a quantitative comparison of the 

three XAI methods, as presented in Table 10. All methods demonstrated high fidelity, with 

LIME achieving the highest score (1.0000), followed closely by GradCAM (0.9958) and 

SHAP (0.9747). These results indicate that all three techniques can represent the model's 

predictions effectively. However, a significant variation was observed in inference time. 

SHAP was the fastest, requiring only 5 seconds, whereas GradCAM and LIME took 210 

seconds and 268 seconds, respectively. This result highlights a trade-off between 

interpretability fidelity and computational efficiency, where SHAP offers rapid 

explanations with slightly lower fidelity, while LIME provides the most reliable 

interpretation at the expense of processing time. 

Table 10. Quantitative comparison of the XAI method 

XAI Method Fidelity score Inference time (seconds) 

GradCAM 0.9958 210 

SHAP  0.9747 5 

LIME 1.0000 268 

 

This study effectively integrates XAI techniques like Grad-CAM, SHAP, and LIME, 

to improve the interpretability of model predictions. While the XAI methods evaluated in 

this study demonstrated high fidelity, there are significant differences in computational 

efficiency. SHAP and LIME took more than 200 seconds for inference, presenting a 

computational bottleneck that may hinder scalability and real-time deployment in resource-

constrained settings. To address this issue, future work could focus on exploring other XAI 

techniques, such as MASHAP [49], or FastSHAP [50]. Another potential approach could 

involve applying those techniques selectively to smaller subsets of the dataset or reducing 

the dimensionality of input features, which can help to minimize computational demands 

without sacrificing interpretability. 
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4.5 Comparison with Other Studies 

To evaluate the effectiveness of our proposed method, we compared our results with 

those of similar studies. The comparison in Table 11 demonstrates the performance of 

various methods for potato leaf disease detection, with our proposed approach achieving 

the highest accuracy of 97.91%. Our proposed method stands out not only for its superior 

accuracy but also for its ability to generalize effectively across multiple datasets, including 

PlantVillage and PLD. This highlights the advantage of leveraging an ensemble of 

MobileNetV3 and EfficientNetV2B3, which combines the strengths of both architectures 

to enhance feature extraction and classification performance. 

Table 11. Comparison with other studies 

Author Method Dataset Accuracy  

Islam et al. [19] 

 

Segmentation & SVM PlantVillage 95% 

Patil et al. [18] ANN PlantVillage & Self 

Collected dataset 

92% 

Firasari and 

Cahyanti [22] 

CNN with RMS Prop 

Optimizer 

 

PLD 97.53% 

Rashid et al. 
[29] 

Multilevel DL 

 

PlantVillage 96.71 

Ours Ensemble 

MobileNetV3 and 

EfficientNetV2B3 

PlantVillage and 

PLD 

97.91% 

 

However, we acknowledge that there are limitations in the comparability of these 

results due to inconsistent dataset splits and evaluation protocols used across the referenced 

studies. Islam et al. used a 60%-40% train-test split with 300 images from PlantVillage, 

while Rashid et al. employed an 80%-10%-10% train-validation-test division. Patil et al. 

utilized 892 images from mixed sources, including PlantVillage, but did not mention their 

data split strategy. Similarly, Firasari and Cahyanti divided the PLD dataset into three 

subsets, though the exact proportions were not reported. Furthermore, the lack of access to 

original code prevented us from retraining these methods under uniform experimental 

conditions. Therefore, our comparison is based solely on the reported results. 

4.6 Deployment Considerations 

The findings of this study have the potential to be integrated into a user-friendly 

application aimed at assisting plant disease experts and farmers in identifying potato leaf 

diseases. This would involve deploying the trained model in a lightweight and platform-

compatible format, such as TensorFlow Lite or ONNX, to support both mobile and web-

based environments. However, despite the improved classification performance 

demonstrated by the ensemble models, their deployment on resource-constrained platforms 

presents significant challenges. Ensemble architecture generally leads to increased model 

size, longer inference times, and higher memory usage, which can be difficult for devices 

with limited computational resources. 

To address these concerns, future work may focus on optimization strategies, such as 

model compression, quantization, and pruning, to reduce latency and resource usage. In 
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addition, selecting more lightweight base models or applying knowledge distillation to 

transfer ensemble knowledge into a smaller single model can make real-time deployment 

more feasible while preserving model accuracy. By deploying the model through a user-

friendly application, users would be able to upload images directly via the app interface. 

The system would preprocess the input and run it through the trained model to generate 

real-time predictions. Additionally, the app could visually highlight the most relevant leaf 

regions contributing to the prediction, providing users with intuitive and transparent 

insights into the model’s decision-making process. 

4.7 Challenges and Future Opportunities 

Despite the overall strong performance of the proposed model, we recognize the 

possibility of biases arising from underrepresented disease classes and limited geographic 

coverage within the datasets. Such imbalances can affect the model’s ability to generalize 

across all disease types and farming regions. To address this, we implemented class 

balancing techniques, including applied data augmentation with oversampling to simulate 

a wider range of real-world conditions. Additionally, we combined both the PlantVillage 

and PLD datasets to evaluate the model’s robustness across diverse domains. Moving 

forward, we aim to incorporate more regionally diverse data and conduct field-level 

validation to further ensure fairness and generalizability. 

While this study focused specifically on potato leaf disease identification, the 

proposed model has the potential to be generalized and adapted to detect diseases in other 

crops. The methods used, including deep learning and explainable AI techniques, are not 

limited to potato leaf datasets and can be applied to similar image-based plant disease 

datasets. The model can be further developed by incorporating additional training data 

representing a diverse range of crops and their associated diseases. 

5      Conclusion 

We have presented a framework for generating explanations along with an 

ensemble deep learning model comprising MobileNetV3-Large and EfficientNetV2B3, 

which achieved a remarkable testing accuracy of up to 97.91% for potato leaf pest and 

disease identification. The ensemble model was trained and evaluated using a detailed 

explanation generated by the applications of GradCAM, SHAP, and LIME. The results 

indicate that the explanations generated were able to identify the specific regions 

responsible for the classification of potato leaf pests and diseases. The proposed model 

demonstrates the potential of XAI and ensemble deep learning for generating admissible 

explanations of outcomes with high classification accuracy. The findings of this study can 

be incorporated into a user-friendly platform designed to assist plant disease experts and 

experienced farmers in accurately identifying potato leaf pests and diseases. The platform 

will deliver interpretable, AI-powered insights, empowering users to make well-informed 

decisions on potato disease management and pest control. Future research will also focus 

on developing models using a more diverse dataset that includes a broader range of images 

and classes to enhance the robustness of the results. 
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