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Abstract 

     Nowadays, brain tumors are prevalent conditions affecting millions of people 
worldwide. Detecting the brain tumor accurately in its early phases by brain MRI 
images is important for diagnosing the disease and avoiding mortality. The rise of 
deep learning techniques over the past few years has led to effective tools for the 
diagnosis of medical illnesses, predominantly for the segmentation of brain 
tumors. Unet is considered one of the most effective end-to-end convolutional 
neural networks for biomedical image segmentation. This article introduces an 
Inception pre-trained network on ImageNet with residual connections based on 
the UNet architecture (called IRU-Net) for brain tumor segmentation. IRU-Net 
enhances the ability to integrate contextual information by using the GoogLeNet 
network and adding a residual connection as an encoder part. Additionally, the 
Inception module that incorporates residual connections is used as a decoder part, 
enabling the model to capture multi-scale features and ensure efficient gradient 
flow. The experiments conducted on two different size datasets obtained from 
Kaggle, namely Brain Tumor Segmentation (BraTS2020) and LGG MRI 
segmentation (LGG) which is smaller than BraTS2020. The presented results show 
the influence of pre-training on the network's performance using datasets of 
varying sizes. The experimental results demonstrate that the proposed IRU-Net 
architecture outperforms both the traditional UNet and other models that are 
based on pre-trained UNet..  

     Keywords: Brain tumors, MRI, Deep learning, segmentation, Pre-trained, UNet, 
Inception, Residual connections. 
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1 Introduction 

The brain is a crucial and intricate component of the person’s body, controlling other 

organs and all processes that regulate bodily functions [1,2,3]. As a result, an unusual brain 

abnormality can put an individual’s health at risk or, in some cases, can be life-threatening. 

Among the various types of abnormalities, brain tumors represent the most severe diseases, 

which can be either benign (noncancerous) or malignant (cancerous) [4,5,6,7,8]. Early and 

correct brain tumor detection is quite important to help plan the treatment and monitor 

patients' conditions to improve the survival rate [9,10]. Various medical imaging 

techniques [11] are used to help diagnose brain tumors by providing important information 

about their location, size, shape, and kind. Brain MR images (MRI) are considered a 

standard and precise technique for the early detection and classification of brain tumors 

[12]. MRI creates several 2D and 3D images of the interior organs of the body in a non-

invasive and painless manner [13]. Detecting brain tumors involves a doctor or radiologist 

analyzing MRI images to identify lesion regions and make diagnostic decisions. Because 

of the diverse nature of tumors, MRI images sometimes lack distinct features, making 

accurate decision-making challenging. As a result, integrating AI technologies, particularly 

deep learning (DL), has become essential for analyzing medical images for diagnostic 

purposes using computer-aided diagnosis (CAD) systems. [1,2,4,14].  

Recently, deep learning (DL) has profoundly impacted numerous medical applications 

across diverse domains [12,16]. The rapid increase of graphics processing units (GPUs) 

and the accessibility of medical imaging datasets for training have enabled deep learning 

to develop advanced methods for processing medical images [16]. For segmentation tasks, 

DL systems utilizing convolutional neural networks (CNNs) have proven successful, 

outperforming traditional neural network techniques. Many DL models have been 

employed during the image segmentation process [17]. Among these models [18-21], UNet 

[22] has garnered significant attention for its tremendous performance in medical image 

segmentation since its introduction in 2015 [22,23]. The symmetrical design of UNet, 

which consists of an encoder and a decoder paths linked by a skip connection, improves 

its performance. These concatenation-based skip connections can actively preserve tiny 

features in images and save high-resolution data both throughout the encoding and 

decoding processes. [17]. 

Although the unique UNet architecture improves segmentation accuracy in medical 

imaging tasks, the model has several significant limitations. Some of these include its 

reliance on enormous datasets that have been annotated, sensitivity to imbalanced class 

distributions, and its limited ability to capture multi-scale contextual factors. Furthermore, 

the high costs of training and memory requirements may limit its performance when 

applied to large datasets [26,12]. Transfer learning (TL) has emerged as a technique 

enabling deep learning algorithms to deal with the issue of limited training data by utilizing 

the weights of a model that has already been trained on large-scale datasets (e.g., 

ImageNet) for various applications and research, particularly in the medical domain 

[27,28]. The three benefits of TL are that it requires less training time, enhances neural 

network performance, and operates effectively with minimal data [29]. In a UNet design, 

the encoder part can be substituted with any pre-trained model. [25]. 

This study presents an enhanced model based on the UNet architecture, called IRU-

Net, that uses a pre-trained GoogLeNet [30] (also known as Inception) model with residual 

connections [25] for brain tumor detection. Unlike earlier architectures such as AlexNet 

[31] and VGG-16 [32], GoogLeNet featured a more complex and profound architecture 

but used a fewer number of parameters without waiving the network's performance [33]. 

The use of residual connections helps avoid the vanishing gradient problem in 
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backpropagation and makes it easier to train a deeper network. The aim of the IRU-Net 

structure is to combine the advantages of both GoogLeNet and UNet in order to increase 

accuracy, especially in more complex medical imaging tasks like brain tumor detection. 

Following are the major contributions from this study: 

- A new approach (IRU-Net) to detecting brain tumors using end-to-end deep 

learning is suggested. 

- IRU-Net adopted the foundational structure of the UNet architecture. A transfer 

learning approach was employed, utilizing a pre-trained Inception model with a 

residual connection as the encoding path. In the corresponding decoding path, the 

Inception module with residual connections is utilized. 

- The effectiveness of the proposed IRU-Net was tested using some common 

segmentation metrics, such as the Dice Similarity Coefficient, the Jaccard 

Similarity Index, accuracy, sensitivity and specificity. 

- IRU-Net and comparison methods were trained and tested using different datasets 

in two modes: from scratch and with pre-trained weights. The results indicate that 

the suggested network performs better in both modes on all datasets. 

- Two datasets of different sizes, a larger one (BraTS2020) and a smaller one (LGG), 

were used. The influence of pre-training shows more with the LGG dataset since 

its training set is smaller than the BraTS2020 dataset. The research indicates that 

pre-training enhances model performance when utilizing smaller datasets. 

The paper is divided into multiple sections as detailed below: The second section 

provides a review of related work, whereas the third section outlines the proposed 

methodology. Section 4 presents the experiment results. The paper’s conclusions and 

future work are finally presented in section 5. 

2 Related Work 

A brain tumor is challenging to identify manually because of its irregular shapes and 

ambiguous boundaries [1]. As a result, deep learning and image processing play crucial for 

the early detection of brain tumors. For the automatic early segmentation and classification 

of tumor regions, various intelligent techniques have been developed. [17]. Among these 

techniques, CNN, ensemble learning and pre-trained deep learning models are the most 

prevalent. Below is a brief overview of some of the most well-known and latest techniques. 

Ujalambkar et al. [34] introduced a segmentation model for deep learning that employs the 

U-Net architecture in conjunction with EfficientNet-B7 to improve the detection of lower-

grade gliomas (LGGs). The model addresses the limitations of conventional segmentation 

techniques, including manual inaccuracies, inefficiencies, and prolonged processing times, 

by employing various levels of feature extraction and discerning distinctions in MRI scans. 

Model Dice scores averaged 0,92 using a dataset of 110 LGG patients obtained from TCIA 

and TCGA, highlighting its expert proficiency. Shu-You Lin and Chun-Ling Lin [35] 

presented an enhanced model by combining pre-trained EfficientNetV2 model as an 

encoder together with U-Net. Utilizing the Brats 2019 dataset supplied by the (MICCAI), 

the proposed methodology was assessed for its effectiveness. Experimental results 

demonstrated that using the proposed architecture enhances the segmentation model’s 

performance, achieving a Dice score of 0.9133, accuracy of 0.9977, and a loss of 0.0866. 

Rehan Razat et al. [36] introduced dResU-Net a segmentation model based on a 3D deep 
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residual U-Net for brain tumors segmentation from multi-modality MRI data. The encoder 

contains residual blocks to deal with the vanishing gradient problems and help to maintain 

low-level features, while the decoder maintains the U-Net structure for up-sampling. The 

model attained DSC of 0.8357 for the tumor core, 0.8004 for the enhancing tumor and 

0.8660 for whole tumor during cross-validation within the BraTS 2020 dataset. Ali TM et 

al. [37] suggested a U-Net-based model that uses a pre-trained VGG19 network with the 

convolutional unit as the encoder part followed by the decoder part uses the encoder's 

output with an attention mechanism. Testing was done using the BRATS 2020 dataset, 

achieving DSC values for TC were 0.86, 0.83 for the ET and 0.90 for the WT regions. 

Isensee et al. [38] employed the nnU-Net architecture for the segmentation of brain 

tumours. Although nnU-Net's original model did well, the authors improved it by adding 

region-based training, advanced data augmentation, customised post-processing, and other 

pipeline modifications. To determine the best configuration, they also re-implemented the 

BraTS rating system. With respective HD95 values of 8.498, 17.337, and 17.805, their 

model's Dice scores of 88.95 (total tumor), 85.06 (tumor core), and 82.03 (enhancing 

tumor). A new deep learning system based on a modified U-Net architecture was 

developed by Zeldin et al. [39].  The encoder part was used to extract features using 

different pre-trained networks like DenseNet, ResNet, and NASNet. Then, the decoder part 

was utilized to obtain the semantic probability map.  The BRATS'19 dataset was used to 

validate the suggested technique. The DSC for the U-Net, VGGNet, ResNet, and DenseNet 

encoders were 0.809, 0.837, 0.811, and 0.839, respectively. Pei et al. [40] described a 

framework for brain tumor segmentation using a context-aware deep neural network 

(CANet). A context encoding module is incorporated into the U-Net's encoder-decoder 

architecture to compute scaling factors for all tumor classes, facilitating the acquisition of 

a global context representation. The BraTS 2019 and 2020 datasets were utilized for 

evaluating the efficacy of the proposed model using DSC. The model reached DSC values 

of 0.821 for ET, 0.895 for WT, and 0.835 for TC. Silva et al. (41) proposed a fully 

connected, multicascaded, deep neural network of brain tumor segmentation. A basic 

convolutional block, an aggregation block, and a convolutional block make up the three 

deep layer aggregation neural networks that are proposed. The BRATS'20 datasets were 

employed to evaluate the proposed method, with Hausdorff distance and DSC serving as 

evaluation metrics. The DSC values for whole tumors were 0.88, 0.82 for enhancing 

tumors, and 0.79 for core tumors, respectively. distance. The DSC values recorded were 

0.88 for whole tumors, 0.82 for enhancing tumors, and 0.79 for core tumors, respectively. 

Colman et al. (42) introduced a two-dimensional deep residual U-Net design, DR-Unet104, 

consisting of 104 convolutional layers for brain tumor segmentation from multimodal 

MRI. The model incorporated bottleneck residual blocks in the encoder and applied 

dropout regularization after each convolutional block to improve generalization. Evaluated 

on the BraTS 2020 dataset, it achieved Dice scores of 0.8862 (whole tumor), 0.6756 

(enhancing tumor), and 0.6721 (tumor core) on validation data and 0.8673, 0.7514, and 

0.7983, respectively, on test data. Despite being a 2D model, DR-Unet104 demonstrated 

competitive performance while maintaining lower computational complexity compared to 

3D models. Despite being a 2D model, DR-Unet104 demonstrated competitive 
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performance while maintaining lower computational complexity compared to 3D models. 

Myronenko et al. (43) presented an automated 3D semantic segmentation of brain tumors 

utilizing an encoder–decoder architecture based on MRI. The encoder consists of a pre-

trained ResNet network, followed by the corresponding decoder. The suggested technique 

was tested with the BRATS 2018 dataset, resulting in DSC values of 0.82 for enhanced 

tumors, 0.91 for complete tumors, and 0.86 for core tumors, respectively. 

The majority of researchers concentrate on the results of segmentation rather than its 

effectiveness. As a result, for every machine learning task, it is crucial to obtain the fewest 

features that are still useful. In solving this issue, we use a feature extraction method based 

on residual connections and inception units, which is light but strong, as it captures 

meaningful information from the whole MRI image. Similarly, to lessen the task's 

algorithmic and computational complexity, we will employ a pre-trained network rather 

than creating a neural network from scratch. This method allows us to optimize 

segmentation results without affecting the other task's requirements. 

3 Methods 

This section will explain the suggested model and the fundamental techniques 

employed in its design and implementation details.  

3.1 Research Methods 

3.1.1 UNet 

  A UNet is a deep learning architecture typically used for image segmentation, 

particularly in medical imaging segmentation tasks [44,45]. It is called UNet because its 

configuration resembles the letter “U”, and the architecture itself consists of two paths: the 

encoder and the decoder linked together by a skip connection [25,46]. The down-sampling 

encoder is composed of multiple convolutional layers that gradually reduce the dimensions 

of the input image while capturing its low-level features [24,47]. In a corresponding up-

sampling decoder, it captures semantic features, and spatial information is recovered by 

using a series of transposed convolutional layers to reproduce segmented output [22,47]. 

A key feature of UNet is its use of skipped connections, which significantly enhances the 

accuracy of the segmentation map [48]. Skip connections facilitate the integration of low-

level features with semantic features, enabling the acquisition of more informative features 

and the preservation of crucial details throughout the segmentation process [16, 4]. The 

original UNet architecture is shown in Figure.1. 
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Figure. 1 UNet CNN architecture [22]. 

 

3.2.1. GoogLeNet: 

 Inception, or GoogLeNet, is a pre-trained network architecture proposed by Szegedy 

et al. [30] in 2014; its design is shown in Figure.2. Networks utilizing the Inception design 

are faster compared to those employing non-Inception architectures. The model is 

composed of 22 layers, incorporating nine Inception modules [30,49.50]. This advanced 

Inception module utilizes trainable filters with different kernel sizes, ranging from (1×1) 

to (5×5), to execute parallel convolution operations [17, 25]. Figure.3 displays the structure 

of the Inception module. This design enables the extraction of richer image features at 

multiple levels of detail. GoogLeNet features a deeper and more complex architecture 

while utilizing significantly fewer parameters without compromising performance. This 

efficiency is achieved by replacing the fully connected layers at the top of the network with 

a global average pooling layer and incorporating auxiliary classifiers to enhance gradient 

flow in deeper layers. These design elements not only improve convergence during training 

but also help mitigate the vanishing gradient problem, which is common in deeper 

networks [30,33,49,50,51]. 
 

 

Figure.2 The structure diagram of GoogLeNet 
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Figure.3 The components of the inception’s module 

 

 

3.2.2. Residual Connections 

Residual connections [51] were introduced to enhance network learning efficiency and 

mitigate the vanishing gradient problem during backpropagation, particularly in deeper 

architectures with numerous layers. The following is the formula for a residual block: 

                                   𝐻(𝑥) = 𝐹(𝑥) + 𝑥………………………………………..                 (1) 

In a residual block, the output of each layer is forwarded to the next layer while 

simultaneously being directly combined with the input through a shortcut connection. 

Figure.4 illustrates the residual block, which facilitates the design of deeper networks while 

reducing the risk overfitting. 

 

 

 

 

 

 

 

 
 

Figure.4 Original residual block 

 

 

3.2. The Proposed Method 

  IRU-Net is a deep learning model that is proposed for the purpose of brain tumor 

segmentation. It is based on the basic architecture of UNet. There are two primary 

pathways that make up the structure of the IRU-Net. The encoder path is situated on the 

left, and the decoder path is situated on the right. Each of these pathways is composed of 

six layers. A skip connection is used to establish a connection between each encoder layer 
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and the decoder layer that corresponds to it. Figure.5 illustrates the overall structure of the 

proposed IRU-Net. 

 The standard GoogLeNet is used as the encoder in the UNet architecture's encoding 

path. Employing a pre-trained encoder allows the model to converge more quickly and 

achieve better performance than a model without pre-training. The encoder weights are 

initialized from the pre-trained GoogLeNet on the ImageNet dataset and then fine-tuned 

using a brain tumor dataset. Each encoder layer consisting of two Inception layers, 

convolution1x1 (Conv1x1), rectified linear unit (ReLU) activation function and 2x2 spatial 

max pooling (MP). In each layer, the residual connection is passed from base convolution 

to enhance feature propagation and prevent information loss. The output layer is 

concatenated and transmitted directly to the appropriate decoder layer via skip connections 

to preserve spatial features and increase segmentation performance. The max pooling 

operation halves the output feature map resolution before passing it to the next encoding 

layer. 

 

Figure.5 The proposed brain tumor detection focused on the combination of UNet 

architecture and GoogLeNet model. 
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The feature map that were extracted by the encoder component is up-sampled for the 

decoding path using an inception module and the residual connection as a decoder portion. 

The inception module, which relies on learnable filters with sizes ranging from (1x1) to 

(5x5), is applied after the input has first been passed to convolution 3 x 3 (Conv 3x3) in 

each inception residual decoder (IR Decoder) block to extract the key features. The parallel 

convolution in different kernel size aids in capturing features with varying levels of detail, 

enhancing the network's learning capacity. Last but not least, to provide a deeper network 

design without performance deterioration, a residual connection is routed from the base 

convolution. The IR Decoder block is using convolution 1x1 (Conv1x1) for equalizing the 

number of the encoder feature maps. Each decoder block's output is sent into transposed 

convolutions (TConv), which use skip connections to concatenate it with the matching 

encoder layer, doubling the size of the feature map. The feature map's size gets restored to 

the input image's original size at the final layer of the decoding route. The structure of IR 

Decoder is shown in Figure.6. 

Figure.6 IRU-Net Decoder Structure. (a) UNet decoder. (b) Residual UNet decoder. (c) 

Inception UNet decoder. (d) Proposed IR Decoder 

 

3.2 Implementation Details 

 The experimental work executed with PyTorch framework [52] within Google's 

Collaboratory environment, a cloud-based platform designed for machine learning and 

deep learning tasks. The model was trained on the BraTS2020 and Brain LGG training 

datasets using a batch size of 16 for 50 epochs. The resolution of the input images scaled 

down to 128 × 128 pixels for the BraTS2020 dataset and 256 × 256 pixels for the LGG 

dataset. The Adam optimizer was employed with its default settings [53]. The learning rate 

was started at 0.001 and then reduced if the DCS metric stopped to improve over the course 

of seven epochs. 
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4 Results and Discussion 

This part discusses the impact of pre-training on the efficacy and performance of the 

proposed model. Furthermore, a comparison with other pre-trained deep learning models 

as well as other state-of-the-art models will be presented. 

4.1 MRI Datasets 

The proposed model's accuracy and performance are evaluated using the MRI brain 

tumor dataset. The two different datasets used in this study to perform a convincing 

evaluation were taken from the Kaggle database, which publicly provides brain MRI 

images. The first dataset, namely Brain Tumor Segmentation (BraTS2020) [54]. It 

comprises 3D photos of dimensions 240 x 240 x 155 from 660 patients, sourced from 

various institutions employing distinct clinical methods and MRI scanners. Each patient 

has four types of 3D MRI images: regular T1-weighted (T1), T1-weighted after contrast 

(T1Gd), T2-weighted (T2), and T2 Fluid-Attenuated Inversion Recovery (T2-FLAIR) 

volumes. Given that the model architecture utilised in this study accepts 2D images as 

inputs, the 3D images from the BraTS 2020 dataset are segmented into 2D slices. 

Consequently, each image divided the axial plane, producing a collection of 155 two-

dimensional slices matching to each original three-dimensional image [55]. The second 

dataset is the LGG MRI segmentation dataset (LGG) [56]. The number of MRI slices of 

patient brains ranges from 20 to 88, and the imaging data taken before surgery includes a 

fluid-attenuated inversion recovery (FLAIR) sequence. This database has roughly 3,929 

brain MRI images accompanied by the associated manual FLAIR segmentation results. 

The ground truth for all images was manually generated following a consistent annotation 

protocol and was validated by an expert neuroradiologist. Table.1 describes the splitting 

of the training and testing size for datasets used in our experiments. 

 

Table.1 Datasets information 

  

4.2 Evaluation Metrics 

 The proposed model's effectiveness is evaluated using several well-known metrics for 

image segmentation, including Dice Score (DSC), Jaccard Similarity (JSC), Sensitivity 

(SEN), Specificity (SPE) and Accuracy (ACU). Dice Score and Jaccard Similarity are the 

essential metrics in brain tumor segmentation. They are appropriate for brain tumor 

datasets due to their imbalance issues [57]. Dice Score (F1-score) quantifies the agreement 

or spatial overlap between the predicted segmentation mask and the ground truth mask. Its 

formula is as follows in Equation (2) as follows:- 

 

                                    DC𝑆 =
2∗Tp

2∗Tp+Fp+Fn
   ………………………………..                     (2)  

 

Jaccard Similarity quantifies the extent of overlap between the predicted mask and the 

ground truth. Both DSC and JSC are used to evaluate the similarity between the predicted 

and actual masks. The formula for computing JSC is presented as follows in Equation (3): 

- 

DATASET Training size Testing size 

Brain Tumor Segmentation (BraTS2020) 14,784 6,336 

LGG MRI segmentation  (LGG) 3,179 693 
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                                    JSC =  
Tp

Tp+Fp+Fn
  …………………………………. (3) 

ACU, SEN, and SPE are used as additional indicators for model evaluation. These metrics 

criteria are calculated using the formulas presented in equations (4) to (6), respectively:

  

                                    ACU =  
Tp+Tn

Tp+Tn+Fp+Fn
  ………………………………….. (4) 

                                    SEN =  
Tp

Tp+Fn
              …………………………………… (5) 

                                    SPE =  
Tn

Fp+Tn
               …………………………………… (6) 

True positives (Tp), false positives (Fp), true negatives (Tn), and false negatives (Fn) 

are the four primary outcomes that indicate the pixel’s number in the predicted image in 

comparison to the ground-truth image. 

4.3. Ablation Study 

 

      To find out how various changes affect the suggested network performance, ablation 

research is conducted. As shown in Table.2, the suggested IR-Unet contains three changes; 

as a result, it trained and tested MRI datasets using these modifications, both from scratch 

and with pre-training, using the same number of epochs and hyper-parameter for every 

experiment. Since the DCS is the most widely used metric to reflect segmentation 

performance, it is used to evaluate the testing set outcomes for the datasets included in this 

research for each experiment. 

      The first experiment, which we have dubbed IRU-Net1 for convenience, employed the 

pre-trained Inception network as the encoder part for the UNet architecture in both the 

training and testing datasets. The model, which we refer to as IRU-Net2, was created and 

evaluated in the second experiment by including the residual connection to improve the 

outcomes. After employing the inception block with a residual connection as a decoder 

component for the UNet architecture, the last experiment, which exemplifies the suggested 

model, tests the IRU-Net. Incorporating residual connections enhances the network's 

learning ability and improves performance by addressing the vanishing gradient problem, 

which often occurs in deeper networks. 

 
Table. 2 Ablation analysis of the proposed network was conducted on two datasets, comparing 

performance with and without pre-training on ImageNet. 

 

 

Table.2 presents quantitative results indicating that the proposed network achieved 

better scores on pre-trained datasets. Furthermore, the dice score curves in Figure.7 

illustrate the effect of pre-training on model performance. The curves show the model's 

training and testing behavior with and without pre-training on each dataset. from the curves, 

it is noticeable that the model with pre-training converged faster. This makes sense, as the 

MRI DATASET Model 
DCS 

Pre-trained Scratch 

BraTS2020 

IRU-Net1 0.872 0.866 

IRU-Net2 0.874 0.871 

IRU-Net 0.891 0.878 

LGG  

IRU-Net1 0.901 0.854 

IRU-Net2 0.919 0.868 

IRU-Net 0.922 0.883 
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low-level features that are obtained from pre-training on the ImageNet dataset (one of the 

largest and most popular datasets) are effective in the learning process.  

 

 

 

 

 

 

 

 

Figure.7 The DCS curves for MRI datasets (BraTS2020 and LGG) train on the proposed 

(IRU-Net) model. The training set is denoted by TN, the testing set by TS, and the 

number of epochs by EPS. 

4.4. Comparison with Other Pre-trained Deep Learning Methods 

Other pre-trained models that follow the U-shaped structure were compared to the 

suggested IRU-Net using the BraTS2020 and LGG datasets with pre-training and from 

scratch. Table.3 presents key metrics, including the number of parameters and computing 

complexity as shown by floating point operations (FLOPs), for both the proposed method 

and alternative methods. 

 
     Table. 3 Resources utilized for both the suggested approach and alternative approaches. 

Model Alex-

Unet 

IR-Unet 

(Proposed) 

ResNet18-

Unet 

UNet VGG11-

Unet 
Number of 

parameters 

8,759,073 20,098,369 28,976,321 31,037,633 45,995,457 

Number of 

FLOPs 

629,277,984 

 

2,023,036,416 

 

5,958,262,784 

 

12,081,823,744 

 

6,946,193,408 

 

Size in Memory 72.99 MB 

 

284.75 MB 

 

246.47 MB 

 

373.59 MB 

 

421.4 MB 

 

Inference (s) 0.19 0.19 0.19 0.19 0.19 

According to Table.3, IR-Unet is more computationally efficient than ResNet18-Unet, 

UNet, and VGG-Unet because it uses less FLOPs and parameters. But compared to Alex-

Unet, it needs more parameters and FLOPs. On the other hand, IRU-Net uses less memory 

than UNet and VGG-Unet but more than Alex-Unet and ResNet18-Unet combined. In 

terms of inference time, the suggested model’s time on a single test image is close to other 

models. Thus, IRU-Net uses reasonable amounts of computational resources. As shown in 

Table.4, the suggested approach and alternative deep learning techniques were assessed 

using the datasets in Table.1. Five performance metric measures (DC, JSC, ACU, SEN, 

and SPE) were used, both with and without ImageNet pre-training. 

 

0

0.05

0.1
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0.2
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BraTS2020 dataset
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D
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Table. 4 Results obtained from proposed model and other deep learning models. Bold indicates 

high-value performance metrics. 

  

       The results presented in Table.4 for the BraTS2020 dataset confirm that the IRU-Net 

model with pre-training and from scratch offers better values for all metrics, with the 

exception of a small ratio in SEN when compared to VGG-Unet. The IRU-Net model 

achieved Dice Score, Jaccard Similarity, Accuracy and Specificity of 0.891, 0.796, 0.984 

and 0.993, respectively.   The results on the LGG dataset, as shown in Table.4, confirm 

that the proposed model both with pre-training and from scratch, offers better values of all 

metrics except for a small ratio in SEN and ACU compared to VGG-Unet with pre-training. 

The IRU-Net model achieved Dice Score, Jaccard Similarity and Accuracy of 0.922, 0.893, 

0.984 and 0.998, respectively. The IRU-Net outperformed other deep learning methods 

recently built for brain tumor segmentation, Using the BraTS2020 and LGG datasets, as 

illustrated in Table.5 

Pre-training is an effortless adjustment that enhances performance and allows the 

networks to converge more quickly. The pre-trained weights positively impacted our 

model and demonstrated improved outputs in terms of convergence speed and accuracy. 

The suggested approach and other deep learning methods that used pre-training perform 

better than those built from scratch, as shown in Table.5 of the experimental results for the 

datasets, which require more data and computing power to achieve similar results. The 

influence of pre-training is more evident on the LGG dataset because it has a smaller 

training set when compared to other datasets. In summary, based on its DCS and JSC, the 

proposed pre-trained model outperformed the other pre-trained models. According to the 

results, the IR-Unet model is effective in detecting brain tumor images and could be a 

useful tool for medical practitioners to diagnose brain tumors 

Table. 5 DSC values of the proposed method and other state-of-the-art methods. 

 

 

 

.      

DATA

-SET 
Model 

DCS JSC ACU SEN SPE 

Pre-

trained 
Scratch 

Pre-

trained 
Scratch 

Pre-

trained 
Scratch 

Pre-

trained 
Scratch 

Pre-

trained 
Scratch 

BraTS 

2020 

UNet. 0.866 0.789 0.984 0.864 0.993 

ResNet18-

Unet. [44] 

0.871 0.864 0.795 0.784 0.984 0.983 0.795 0.857 0.992 0.993 

Alex-Unet. 

[16] 
0.852 0.850 0.768 0.765 0.982 0.981 0.844 0.843 0.992 0.992 

VGG-Unet. 

[39] 
0.862 0.856 0.796 0.781 0.984 0.984 0.876 0.878 0.992 0.992 

IRU-Net. 

(Proposed) 
0.891 0.878 0.796 0.786 0.984 0.983 0.868 0.866 0.993 0.992 

LGG  

UNet. 0.823 0.745 0.940 0.820 0.949 

ResNet18-

Unet. 

0.706 0.676 0.683 0.676 0.997 0.997 0.686 0.676 0.899 0.896 

Alex-Unet. 0.882 0.861 0.852 0.833 0.992 0.991 0.903 0.895 0.999 0.998 

VGG-Unet. 0.917 0.852 0.889 0.830 0.998 0.996 0.934 0.870 0.998 0.998 

IRU-Net. 

(Proposed) 
0.922 0.852 0.893 0.853 0.997 0.997 0.918 0.910 0.998 0.998 

Model DSC Dataset 
EfficientNet-B7-Unet [34] 0.920 LGG 

dResU-Net [36] 0.834 BraTS2020  

VGG19-Unet [37] 0.863  BraTS2020  

nnU-Net [38] 0.853 BraTS2020 

IRU-Net (Proposed) 0.922 LGG 

IRU-Net (Proposed) 0.891 BraTS2020 
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5 Conclusion 

      This paper introduces an end-to-end deep learning model called IRU-Net for the 

segmentation of brain tumors in MRI images. IRU-Net is an improved UNet model, 

replacing its encoder with a pre-trained GoogLeNet network with residual connections. 

The combination enables capturing different levels of features to fuse them from different 

layers prior to sending them to the decoder. Furthermore, the inception block with residual 

connections was used in the path of the decoder to enhance multi-scale feature 

representation and improve information flow; thus, it improves the results. A public 

datasets BraTS2020 and LGG with five evaluation metrics were employed to evaluate the 

performance of the proposed pre-trained model against other pre-trained deep learning 

models. The results indicated that all models performed better with pre-training compared 

to training from scratch. Moreover, the proposed model outperformed all other comparable 

models. The IRU-Net model achieved Dice Score, Jaccard Similarity, Accuracy and 

Specificity 0.922, 0.893, 0.984 and 0.998, respectively in BraTS2020 and of 0.922, 0. of 

893, 0.984 and 0.998, respectively in LGG dataset. Future work will focus on improving 

the accuracy and efficiency of the proposed model by integrating additional training data 

and utilizing fine-tuning techniques with pre-trained weights rather than initiating training 

from scratch. Subsequent investigations could assess the model's robustness by analyzing 

its performance on images influenced by noise or enhanced by using super-resolution 

methods to replicate diverse clinical imaging conditions. Furthermore, extending the model 

to accommodate additional imaging modalities, including CT and PET, along with the 

incorporation of innovative heuristic optimization techniques, could enhance diagnostic 

accuracy and overall model efficacy. 
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