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Abstract 

    The substantial amount of information available on the web has made it challenging 

for users to search and process relevant content efficiently. Notably, web documents, 

such as product descriptions, blog posts, research papers, news stories, and articles, 

often contain lengthy and vast amounts of irrelevant or redundant information. Various 

methods have been introduced to summarize the web. However, they have faced 

challenges in mining key points from the documents. Hence, a new model termed 

Fractional Snow Ablation Optimization with Random Multimodel Deep Learning 

(FSAO-RMDL) is devised for web document summarization. Initially, the input web 

document undergoes tokenization, where the Bidirectional Encoder Representations 

from Transformers (BERT) is employed to tokenize the document. Following this, 

feature extraction is executed, and extractive summarization is performed using 

Random Multimodel Deep Learning (RMDL), trained by Fractional Snow Ablation 

Optimization (FSAO). The FSAO approach incorporates the Fractional Calculus (FC) 

and Snow Ablation optimization (SAO). Lastly, abstractive summarization is performed 

by exploiting the GPT-NeoX Large Language Model (LLM). Overall, the experimental 

outcomes of the FSAO_RMDL approach demonstrate that it obtained a maximum recall, 

F-measure, and precision of 93.766%, 92.750%, and 91.755%, respectively. 
 

Keywords: abstractive summarization, deep learning, extractive summarization, large 
language model, web document summarization. 

1      Introduction 

In today’s digital era, cloud resources, including blogs, news, user-generated content, 

social media platforms, and webpages, have generated vast volumes of textual data, and 

their numbers are growing exponentially. Furthermore, extensive textual content exists in 

various books, novels, legal documents, scientific papers, biomedical documents, articles, 
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and other archives [1-2]. Text content is a predominant medium for conveying important 

information across multiple domains. Nevertheless, the volume of explanations and 

clarifications frequently conceals the actual perspective in the content, making it more 

challenging to acquire crucial details promptly [3]. Additionally, it takes users longer to 

locate the information they need. In line with this, the textual content of search results is 

overly complex to read and understand. Consequently, summarizing and condensing the 

text resources becomes imperative and significantly more critical [4].  

Textual information summarization is challenging for humans due to the rapid growth of 

information in the vast data era, rendering manual summarization of most information 

impossible. As a result, this phenomenon significantly impacts long-form text documents 

since processing and summarizing them require exponentially more human labor and 

expertise. This, in turn, leads to a crucial bottleneck in advancing social and economic 

development, resulting in substantial vital information and knowledge going unobserved 

[5]. 

Text summarization is a vital area and a key research task in Natural Language Processing 

(NLP). It is defined as a term that involves producing summaries of various sizes based on 

user preferences and the original document's content [6]. It automatically alters a text or a 

group of texts on a similar subject into a summary with crucial, semantically valuable 

information for various downstream applications. This includes report generation, news 

digest creation, and search engine optimization. It also minimizes lengthy texts to a briefer 

abstract while maintaining their actual meaning [7-8]. A manual text summarization 

procedure that efficiently preserves the text’s meaning is time-consuming for humans [9-

11]. As a result, automatic text summarization is a more effective alternative to 

summarizing lengthy texts in seconds.  

Text summarization has faced various difficulties in recent eras, prompting the 

development of solutions dating back to the 1950s [6]. The most common techniques in 

the field of automatic text summarization are Machine Learning (ML), Deep Learning 

(DL), graph sorting, and statistics. However, simple and intuitive, statistically based text 

summarization techniques often overlook understanding word-sense relationships in favor 

of considering only word-surface features. Moreover, although graph sorting models suit 

texts with loose structure, they do not account for contextual information [3]. Accordingly, 

the summarization issue is altered into a sentence-level supervised classification issue in 

ML. Based on assessing a training set of documents and their corresponding summaries, 

the system decides whether a sentence in a test document is part of a summary. 

Subsequently, ML-based summarization algorithms initiate by recognizing features from 

sentence length and preprocessed documents, such as proper nouns and sentence location. 

It then feeds those attributes into classifier techniques that employ ML to produce a single 

score . Building on this, text summarization models based on DL have become increasingly 

popular recently [12]. As such, DL-based frameworks significantly enhance the ease of 

engineering by minimizing reliance on manual feature extraction and linguistic pre-

knowledge [7]. In particular, developing DL techniques has led to remarkable progress in 

NLP. Text summarization has significantly benefited from DL methods, as have other tasks, 

including text translation and sentiment analysis. For example, these modern 

summarization methods often employ a sequence-to-sequence model, typically an 

encoder-decoder model of neural networks trained on both the outcome and input [13]. 

Another DL technique is multimodel DL, which combines various neural network 

architectures to analyze data efficiently, leveraging the power of multiple neural 

architectures to oversee complex tasks. These models are particularly valuable for text 

classification and summarization, where combining different DL approaches yields better 

results than a single model. Meanwhile, Convolutional Neural Networks (CNNs) are used 
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for feature extraction in text classification. In comparison, Recurrent Neural Networks 

(RNNs) or transformer models are employed for processing sequential data. In essence, 

this hybridization approach enhances the efficiency of capturing local and global features, 

particularly in non-linear text data. This improves accuracy in various tasks, such as 

sentiment analysis and topic categorization [14].  

Bio-inspired techniques like swarm algorithms have already been applied to training DL 

models. This algorithm mimics the behavior of social organisms, such as flocks of birds 

or colonies of ants, to solve complex optimization problems. Correspondingly, swarm 

algorithms are utilized in DL training for significant effects [15]. They were used to 

improve profound learning results and search for optimal weights. At the same time, other 

techniques were employed efficiently to fine-tune hyperparameters, such as learning rates, 

batch size, and network architecture layers, all of which influence the model’s performance. 

Although they lead to faster convergence and more robust models, manually fine-tuning 

them is time-consuming [16]. In other words, this flexibility is valuable in DL tasks 

requiring trade-offs between performance aspects [17]. 

Snow Ablation Optimizer (SAO) is one of the swarm algorithms inspired by nature that 

mimics the snow ablation phenomena, including snow melting related to environmental 

conditions. The crucial mechanism behind SAO involves gradually reducing snow layers, 

thereby simulating search space reduction in various optimization problems. In this 

algorithm, the objective function represents the environment’s influence on the snow, 

which melts iteratively throughout the optimization process. The possible solutions are 

defined as snow layers, and the interaction process between these layers and a control 

system is based on temperature. Correspondingly, the SAO algorithm begins with an initial 

population of solutions and then updates them through the melting process, systematically 

eliminating lower-quality solutions. Melting is controlled by a cooling function where the 

better solutions are preserved while less promising solutions are ignored. This process is 

repeated until the algorithm converges to an optimal solution. The SAO has effectively 

solved complex optimization problems, particularly in continuous search spaces, by 

striking a balance between exploration and exploitation during the search process. 

Accordingly, SAO is a new melting-inspired mechanism that allows it to avoid premature 

convergence and overcome local optima [18]. Simultaneously, DL has exploited SAO in 

many tasks in previous studies. For instance, Manikandan K. (2024) has utilized SAO for 

hyperparameter tuning to train the Long Short-Term Memory (LSTM) auto-encoder model 

for sentiment classification. In noisy, ambiguous data, such as social media text, SAO helps 

improve the model’s ability to learn from these data, leading to better accuracy values. The 

suggested model achieved 94.28% and 97% on sentiment 140 and the airline’s dataset, 

respectively [19]. Wu et al. (2024) addressed issues in the Bidirectional Long Short-Term 

Memory (Bi-LSTM) model for photovoltaic power prediction tasks, such as carefully 

tuning various hyperparameters in Bi-LSTM models. Similarly, Bi-LSTM models can be 

prone to overfitting, especially with limited datasets. In addition, Bi-LSTM is less accurate 

in dealing with nonlinear data. Notably, Wu’s model avoided overfitting by balancing 

exploration and exploitation through SAO behaviors during hyperparameter tuning of the 

Bi-LSTM model. This also enables effective oversight of non-linear power generation data 

fluctuations [20].  

As a result, recently, users have frequently been overwhelmed by the vast amounts of 

information available on web pages due to the exponential development of online content. 

Thus, efficiently summarizing these web documents is crucial for providing users with 

clear, relevant, and concise information. In particular, the problem of automatically 

generating a concise and coherent synopsis of a web document while preserving its context 

and meaning is known as web document summarization. Thus, a robust web document 
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summarization system must produce concise, educational, and contextually relevant 

summaries from unstructured web content. Moreover, the prevailing summarization 

techniques failed to attain a high accuracy rate. Therefore, this paper proposes an efficient 

approach to Fractional Snow Ablation Optimization with Random Multimodal Deep 

Learning (FSAO-RMDL) for summarizing web documents. Initially, the web document is 

considered input and then subjected to the tokenization stage, where it is tokenized using 

BERT. Subsequently, feature extraction is performed, followed by extractive 

summarization using RMDL, which FSAO trains. Concurrently, FSAO is obtained by 

integrating two methods: Fractional Calculus (FC) and SAO. Finally, the abstractive 

summarization is accomplished using the GPT-NeoX Large Language Model (LLM).  

The contribution of this research is as follows:  

 Proposed FSAO_RMDL for web document summarization: A new method called 

FSAO_RMDL is presented for web document summarization in this research. As 

such, the RMDL method is employed for extractive summarization and is trained 

using FSAO, an optimizer derived by combining FC and SAO. Then, abstractive 

summarization is performed using the GPT-NeoX LLM technique.  

The remaining work sections are arranged as follows: Section 2 exemplifies traditional 

methods' merits, demerits, and challenges. Section 3 elucidates FSAO_RMDL. Section 4 

presents the outcomes of FSAO_RMDL, summarizing the findings from the web document, 

and Section 5 presents the conclusion.  

2      Related Work 

Jalil, Z. et al. [21] developed a graph-based summarizer, Grapharizer, to summarize 

extractive multi-document texts. This technique successfully addressed data redundancy, 

provided comprehensive coverage of entire topics, and resolved issues such as poor 

grammar, missing important information, and data repetition. Nevertheless, the 

Grapharizer did not consider DL algorithms to enhance document summarization 

efficiency or utilize multiple databases from different domains to improve usability. 

Meanwhile, Gurusamy, B.M. et al. [15] established an Optimized Auto Encoded Long 

Short-Term Memory Network (OAELSTM) for enhanced automatic text summarization. 

This model minimized overfitting problems during word embedding training and more 

effectively processed complicated text to produce attainable and content-rich summaries. 

This model effectively maintained the coherence and sentence-level structure of the 

generated summaries. Nevertheless, this method did not incorporate advanced neural 

network structures to maximize the accuracy and context of text summarization. At the 

same time, Bano S. et al. [22] devised Bidirectional Encoder Representations from 

Transformers (BERT) and Bidirectional Gated Recurrent Units (BiGRU) for extractive 

summarization. These reliable methods prevented overfitting problems and produced 

useful and relevant summaries, striking a balance between computational efficacy and 

model accuracy. However, these techniques did not investigate the usage of multi-language 

corpora and alternative assessment measures to provide helpful information about the 

effectiveness of cross-lingual and cross-metric measures. Additionally, this technique 

cannot enhance the accuracy and adaptability of automatic text summarization models. 

Similarly, Fan J. et al. [3] introduced the Multi-Features Maximal Marginal Relevance 

BERT (MFMMR-BertSum) model for extractive social media text summarization. This 

model minimized the time required to complete social media text summarization tasks, 

eradicated redundant information, and enhanced summary outcomes. Despite that, this 



 

A. Bahaaulddin et al.                                                                                                     44                                            

model did not account for the benefits of abstractive and extractive summarization 

techniques in improving performance.  

Dai, W., and He, Q. [23] proposed a K-means clustering algorithm for automatic 

summarization. This model efficiently minimizes sentence semantic redundancy to 

enhance the quality of the extracted summary, achieving high accuracy and reducing 

sentence repetition in semantic summaries. Nonetheless, the K-means clustering algorithm 

did not consider the model’s influence on sentence selection during text summarization. In 

addition, Moro, G. et al. [24] established an Efficient Memory-Enhanced Transformer-

based Architecture (EMMA) for long-document summarization. The EMMA technique 

requires substantially less Graphics Processing Unit (GPU) memory when summarizing 

text documents. However, this method neither addressed the backpropagation problems 

encountered during text summarization nor considered memory writing and reading 

operations that utilize structured information extracted from the text to complete the task. 

Furthermore, Divya S. et al. [6] developed a hybrid summarization algorithm for 

extractive-abstractive summarization. This method rapidly converged in producing text 

summaries after learning the document’s context from start to end. This allowed it to 

eliminate redundancies and extract informative sentences. Nevertheless, this method did 

not verify the summary's quality since there was no dataset with ground truth summaries. 

Additionally, Wazery, Y.M. et al. [12] established an Optimized Convolutional Neural 

Network and a Feed-Forward Neural Network (Opt-CNN-FFNN) for extractive 

summarization. This technique effectually captured a document’s semantic and statistical 

information while requiring low computing time for text generation. Consistent with the 

others, this model could not contemplate an attention mechanism for the text 

summarization task. The difficulties encountered in the previous studies are outlined as 

follows: 

 The OAELSTM model, introduced in [13], effectively distills complex textual 

content into succinct, cohesive summaries for web document summarization while 

maintaining the essential meaning of the original text. Nevertheless, this method 

did not capture the internal structure of words, making it challenging for the model 

to comprehend word variations and derivations. 

 The BERT+BiGRU method established in [22] efficiently resolved the redundancy 

problems by combining various features to perform complex extractive 

summarization tasks. Nevertheless, this method did not investigate other features 

to manage highly complicated databases during text summarization. 

 The Opt-CNN-FFNN method devised in [12] effectively avoided redundancy while 

capturing the primary concepts of the text. However, this method did not change 

other DL language models or transformers for CNN to perform the text 

summarization task. 

 The MFMMR-BertSum model was devised in [3] for extractive social media text 

summarization. This technique required less computational resources and was 

relatively simple and faster. Despite that, this method did not enhance the accuracy 

and efficiency of extractive summarization. 

 Abstractive summarization requires additional computational power and resources 

compared to extractive models, which can challenge real-time applications. This is 

particularly true with limited hardware or high-volume environments. Moreover, 

attaining high summary accuracy is highly challenging. 
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Therefore, the proposed model addresses the limitations of previous studies by developing 

an adaptable and learnable model that can be applied to various datasets. It also combined 

abstractive and extractive summarization with cutting-edge transformers (e.g., BERT), 

offering a richer semantic perspective. Additionally, SAO enhances the model by reducing 

overfitting and allowing it to focus on more relevant features. The SAO-optimized hybrid 

model generalizes more effectively and captures a more profound semantic context, 

enhancing overall summarization quality across various datasets. 

3      Methodology 

The document is summarized by extracting relevant information from a specified 

document while preserving key details and condensing the content. However, the 

prevailing techniques utilized for summarization often faced challenges in automatically 

generating summaries of web documents with high relevance and accuracy. Therefore, a 

new model referred to as FSAO_RMDL is introduced to summarize the web document. 

Initially, the input web document is extracted from the provided dataset, which is then 

subjected to the tokenization stage, where the BERT [25] tokenizer is used to tokenize the 

input data. In addition, various features, including sentence-to-sentence similarity [26], 

Bag-of-Words (BOW) [27], word2vec [28], Term Frequency-Inverse Document 

Frequency (TF-IDF) [29], and sentence length [30], are extracted. Following this, 

extractive summarization is performed based on the mined features using RMDL [31], 

which is tuned by FSAO [32], an optimizer formulated by combining FC [32] and SAO 

[33]. At the same time, the abstractive summarization uses the GPT-NeoX LLM approach, 

considering the extractive summary formed by the RMDL. Accordingly, Fig. 1 exhibits 

the schematic view of FSAO_RMDL for web document summarization. It also addresses 

BERT tokenization on the input web document. The feature extraction processes extract 

BOW, TF-IDF, word2vec, sentence length, and sentence-to-sentence similarity. 

Subsequently, the extracted features are fed into the RMDL model for extractive 

summarization, which the proposed FSAO optimizes. Notably, the proposed FSAO was 

initially based on an SAO optimizer enhanced by FC to reach a convergence level 

efficiently. Correspondingly, extractive summarization produces key idioms, after which 

abstractive summarization uses the keywords to generate a comprehensive, informative 

summary paragraph for the readers. 

 

3.1 Data Acquisition 

Assume the input data for web document summarization is obtained from a web document 

database. 𝑈 with 𝑡 is the amount of web data, which is modeled as:  

𝑈 = {𝑈1, 𝑈2, . . . , 𝑈𝑧 , . . . , 𝑈𝑡}.     (1) 

Here, the overall quantity of documents is postulated as 𝑡, and 𝑈𝑧 exemplifies the 𝑧𝑡ℎ web 

document.  

3.2 BERT Tokenization 

Tokenization was applied to the input web document. 𝑈𝑧  is subjected to a 

tokenization process using BERT tokenization [25]. BERT is employed to change 

sentences or paragraphs into tokens or individual words. Correspondingly, a single 

sentence can be compressed into a single token sequence to represent the input, allowing 
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BERT to manage multiple downstream tasks. Moreover, the specified sentence is regarded 

as a random span of contiguous text instead of an actual linguistic sentence. As such, the 

input token is designated as a sequence consisting of one or two sentences concatenated 

together. Notably, the primary token in all the sequences is a unique classification token, 

which is typified as ([𝐶𝐿𝑆]). In the classification task, this token corresponds to the last 

hidden state, which is employed as the aggregate sequence representation. The sentence is 

differentiated based on two methods. First, the given sentence is separated into unique 

tokens ([𝑆𝐸𝑃]). In the second process, the learning embedding is added to each token to 

demonstrate the sentence with which it is associated. 𝛽𝑜 ∈ ℝ𝑥 exemplifies the last hidden 

vector for 𝑜𝑡ℎ the input token, ℎ ∈ ℝ𝑥designates the last hidden vector of a unique token, 

and ℎ indicates the input embedding. Furthermore, the corresponding position token, 

segment, and embedding are added to generate the input representation. Additionally, the 

tokenized web document is represented as 𝜛𝑥.  

3.3 Feature Extraction 

In web document summarization, feature extraction is used to identify attributes within the 

document, which can be leveraged to create a concise summary. Moreover, this process is 

also beneficial in determining the most appropriate content and ensuring that the summary 

characterizes essential information. Concurrently, features such as BOW [27], TF-IDF [29], 

sentence-to-sentence similarity [26], word2vec [28], and sentence length [30] are extracted 

by considering 𝜛𝑥 as an input. This is in addition to these features, which are described 

below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Schematic view of FSAO_RMDL for web document summarization 
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3.3.1 Bag of Words 

The BOW model [27] encompasses word tokens transformed into a binary representation 

of bits, allowing the machine to maintain or learn its vocabulary. Here, the outcome of this 

approach is considered a binary feature vector, which is represented as 𝐶1.  

 

3.3.2 TF-IDF 

TF-IDF [29] is exploited to characterize the text by determining the frequency range of 

each term observed in the document. TF-IDF identifies the word’s frequency in a specific 

document correlated to the inverse proportionality of that word over the whole document 

corpus. It helps determine the relevant work in the given document. Furthermore, the word 

frequency score is generated by TF-IDF, and it is expressed as:  

𝐶2 = 𝑇𝐹𝑀,𝑦 × 𝑙𝑜𝑔 (
ℏ

𝑍𝑀
),     (2) 

wherein ℏ indicates the document count at 𝑀𝑡ℎ document. The word in the document is 

denoted as 𝑇𝐹𝑀,𝑦, a quantity of documents is represented as 𝑍𝑀, and 𝐶2 Specifies the TF-

IDF feature.  

3.3.3 Word2Vec 

The word2vec [28] signifies the semantic relationship between words within a document. 

This feature provided maximum performance for the semantic task in establishing the 

word’s association with other similar words. Moreover, cosine similarity is utilized for 

identifying the similarities between the words, which are written as:  

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠 𝜙 =
𝑏⋅𝑗

||𝑏||||𝑗||
,     (3) 

 

where 𝑏𝑡ℎ and 𝑗𝑡ℎ  long vector is denoted as ||𝑏||and ||𝑗||, vector dot product from 𝑏and 𝑗 

is represented as 𝑏 ⋅ 𝑗, and 𝐶3 designates the word2vec feature.  

 

3.3.4 Sentence Length 

Sentence length [30] is the central element in the summary, which must be of adequate 

length. Here, the sentence length is assessed by dividing the length by the longest 

sentence’s length, where the number of words in the sentence is designated as length. The 

sentence length is modeled as follows:  

𝐶4 =
𝐿𝑤

𝐿𝑎
,      (4) 

where the length of the long sentence is denoted as 𝐿𝑎 , the length of the sentence is 

represented as 𝐿𝑤, and 𝐶4 signifies the sentence length feature.  

3.3.5 Sentence-to-Sentence Similarity 

This feature [26] measures the similarity among the sentences based on their structure, 

content, and meaning. Notably, this similarity is usually measured using several models, 

namely cosine similarity, which intends to evaluate the close relation. This includes 

conveying the same information or idea between two sentences, which is articulated as:  

 

𝐶5 =
𝐹𝑑

𝑀𝑎𝑥(𝐹𝑑)
,     (5) 

where this feature is denoted as 𝐶5, 𝐹𝑑 denotes the number of sentence similarities, and 

𝑀𝑎𝑥(𝐹𝑑) represents the maximum number of sentence similarities.  
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Here, the features that are explained above are unified to generate a feature vector, 𝐶, and 

it is designated as:  

 

𝐶 = {𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5}.     (6) 

 

3.4 Extractive summarization 

Extractive summarization extracts a document by directly selecting and mining the original 

text’s most significant sections, phrases, or sentences. Accordingly, the original sentence 

in the summary is retained by selecting the most applicable ones. Furthermore, this process 

creates a summarized document, extracting the most relevant and significant information 

by eliminating less relevant or redundant content. It is primarily beneficial to deal with 

large corpora or long documents, where rapid selection of critical points is necessary. In 

addition, the extractive summarization is performed by employing RMDL [31].In 

particular, the proposed approach combines three DL models instead of relying on one type. 

First, CNN is preferred in detecting patterns since it focuses on essential phrases within 

the text. Second, RNN understands sequences or sentence structures. Third, deep neural 

networks (DNNs) process complex features in many layers. Furthermore, RMDL targeted 

extractive text summarization by analyzing text features such as word importance and 

sentence semantic similarity. The multimodel then votes on the best sentence to include. 

Following this, the FSAO enhances the efficiency of RMDL as a coach who trains athletes 

to reach their best performance. As a result, FSAO fine-tunes RMDL for better accuracy.  

SAO is inspired by the natural snow melting phenomenon, which occurs when snow layers 

gradually melt under environmental conditions. In conjunction with RMDL fine-tuning, 

each candidate group of hyperparameters is represented as a layer of snow or solution. As 

such, SAO works iteratively by melting the less promising hyperparameter adjustments 

and focusing on preserving and exploring better solutions. It also avoids trapping in poor 

solutions by a selective melting strategy to ensure better solution space exploration and 

determine optimal adjustments for the multimodel DL system. At the same time, FC 

enhances the fine-tuning process by preparing a mathematical framework that preserves 

the history of the search path, offering a more precise update.  

Contrary to traditional optimization paradigms that depend on simple step-by-step changes, 

FC conjuncts memory of past movements in the solution space. This results in mode-

balanced decisions that avoid arbitrary jumps or slow convergence. Hence, by combining 

these two ways, FSAO successfully balances between exploration and exploitation. This 

combination yielded faster convergence to optimal, stable, and robust hyperparameters, 

leading to a more accurate and reliable RMDL model. Correspondingly, the fine-tuned 

RMDL refines key sentences from documents by exploiting the strength of various DL 

models like CNNs, RNNs, and DNNs. The teamwork between SAO’s naturally inspired 

paradigm and FC’s mathematical strategy produces a smooth acceleration. It strengthens 

the multimodel system’s training, enhancing its ability to generate high-quality, pithy 

summaries. Briefly, SAO mimics snow melting to eliminate inferior solutions 

progressively. Simultaneously, FC controls this melting with a memory-based mechanism 

that renders the optimization more efficient and stable. This is in tandem with enabling the 

fine-tuning of RMDL for enhanced performance in web document summarization. The 

description of FSAO_RMDL is provided below. 

 

3.4.1 Architecture of RMDL 
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RMDL [31] is a robust approach that leverages the strengths of multiple techniques to 

enhance the performance of DL models. This method incorporates various DL methods 

tuned with randomness into the training process, allowing these combined approaches to 

make robust decisions and predictions. As such, the feature vector 𝐶 is fed as an input to 

RMDL, where DL techniques, including CNN, DNN, and RNN, are combined to obtain 

this model. Note that integrating multiple techniques minimizes overfitting issues, thereby 

enhancing the model’s overall capability. In addition, RNN is utilized for text 

classification, while CNN is employed for image or document classification. At the same 

time, DNN is utilized for classification and includes many hidden layers. Two RNNs 

RMDL uses: LSTM and Gated Recurrent Unit (GRU). Furthermore, the number of layers 

of all these DL multi-approaches is created, and the RMDL’s output is represented as:  

 

𝑁(𝑔𝑞1, 𝑔𝑞2, …… , 𝑔𝑞3)  =  [
1

2
+

(∑ 𝑉𝑛𝐻
𝑠
𝐻=1 )

𝑠
−

1

2
],   (7) 

 

where 𝑉𝑛𝐻 symbolizes the prediction result for the 𝐻𝑡ℎ model at 𝑛𝑡ℎ. The data point, the 

number of random techniques, is denoted as 𝑠. Meanwhile, the majority voting, which is 

used for assessing the final result 𝑔𝑛, is represented as:  

 
                           𝑔𝑛 = [𝑔𝑛 … . . 𝑔𝐻 … . . 𝑔𝑛𝑠]

𝑇,                       (8) 

 

where 𝑔𝑛𝐻 postulates the 𝑛𝑡ℎ data point of document label, and is formulated as:  

 

𝑌𝑝 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜗

[𝑆𝑜𝑓𝑡 𝑚𝑎𝑥(𝐶)],     (9) 

 

where 𝜗 exemplifies the number of classes. The output attained in RMDL is stipulated as 

𝑌𝑝, and 𝐶 stipulates the mined features fed to the RMDL model. Fig. 2 displays the RMDL 

architecture. Notably, the RMDL in Fig. 2 is a hybrid multimodel system that combines 

three DL models: CNN, DNN, and RNN. Each extracts a specific set of features to 

minimize overfitting by incorporating a voting classification mechanism.  

 

3.4.2 Proposed Fractional Snow Ablation Optimization for Tuning Random 

Multimodel Deep Learning 

FSAO, which is engineered by combining FC [32] and SAO [33], is utilized to fine-tune 

the RMDL network, thereby enhancing convergence efficiency and overall performance. 

Specifically, SAO [33] is a novel nature-inspired metaheuristic approach for engineering 

design and numerical optimization. Accordingly, the snow’s melting and sublimation 

behavior is emulated primarily to achieve a trade-off between exploration and exploitation, 

discouraging premature convergence and expanding the solution space. Moreover, SAO 

exhibits high scalability, even as the dimensionality of the optimization issue increases. 

The simulation results demonstrate that the SAO model was more robust and could yield 

high performance. In line with this, FC [32] optimizes the algorithm’s computational 

performance. Furthermore, FC is enhanced by incorporating fine-tuning and flexibility into 

the optimization models to enhance the search process. Overall, the integration of FC and 

SAO is more effective in improving performance, and the mathematical process of FSAO 

is presented below.  
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(i) Initialization: The iteration process in SAO begins with an arbitrarily formed swarm, 

where the swarm is represented in a matrix form with 𝑑𝑖𝑚 columns and 𝑅 Rows, expressed 

as:  

𝐴 = 𝑓 + 𝜑 × (𝑞 − 𝑓),          (10) 

 

 

𝐴 =

[
 
 
 
 

𝑙1,1 𝑙1,2 ⋯ 𝑙1,𝑑𝑖𝑚 −1 𝑙1,𝑑𝑖𝑚

𝑙2,1 𝑙2,2 ⋯ 𝑙2,𝑑𝑖𝑚 −1 𝑙1,𝑑𝑖𝑚

⋮ ⋮ ⋮ ⋮ ⋮
𝑙𝑅−1,1 𝑙𝑅−1,2 ⋯ 𝑙𝑅−1,𝑑𝑖𝑚 −1 𝑙𝑅−1,𝑑𝑖𝑚

𝑙𝑅,1 𝑙𝑅,2 ⋯ 𝑙𝑅,𝑑𝑖𝑚 −1 𝑙𝑅,𝑑𝑖𝑚 ]
 
 
 
 

,    (11) 

 

 

 

where the swarm is denoted as 𝐴, 𝑙 specifies the search agent’s position, and the solution 

space’s dimension is implied as 𝑑𝑖𝑚, random number among [0,1] is characterized as 𝜑, 

size of the swarm is denoted as 𝑅, solution space’s upper, and lower bounds are represented 

as 𝑞 and 𝑓. 

 

(ii) Fitness function: Mean Square Error (MSE) is employed as a fitness function to 

evaluate the prediction quality during the tuning process. Moreover, the MSE is designated 

as:  

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑌𝑝 − 𝑌𝑝

∗)2𝑚
𝑝=1 ,     (12) 

 

wherein, 𝑌𝑝
∗ specifies the predicted value of RMDL, 𝑌𝑝 symbolizes the actual values, and 

𝑚 represents the number of samples.  

 

Fig. 2. RMDL architecture 
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(iii) Exploration stage: A high-decentralized feature is presented by the search agent due 

to the irregular movement during the process when the liquid water or snow converted 

from snow transforms into water vapor. Subsequently, a Brownian motion is employed to 

model this scenario. Brownian motion, as a stochastic process, is widely applied to emulate 

the changing behavior of stock prices, the irregular and endless movement of particles, and 

the foraging behavior of animals, among other phenomena. Additionally, the step size is 

obtained using the probability density function for standard Brownian motion based on a 

normal distribution with variance one and mean 0, which is modeled as:  

 

𝐺𝐵𝑀(𝑣; 0,1) =
1

√2𝜋
× 𝑒𝑥𝑝 (−

𝑣2

2
).     (13) 

 

Furthermore, in the search space, some potential regions are explored, which is enabled by 

Brownian motion through the use of uniform and dynamic step lengths. Correspondingly, 

the steam spreading out in the search space is reflected well. Moreover, during the 

exploration process, the position updated is formulated as follows:  

 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ (𝑆(𝑢) − 𝐴(𝑢)) + (1 − 𝜑1) ∗

(𝐴̄(𝑢) − 𝐴(𝑢))), 

(14) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝜑1 ∗ 𝐴(𝑢) + (1 − 𝜑1) ∗
𝐴̄(𝑢) − (1 − 𝜑1) ∗ 𝐴(𝑢)), 

(15) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢)(𝜑1 + (1 − 𝜑1)) + (1 −
𝜑1) ∗ 𝐴̄(𝑢)), 

(16) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢)(𝜑1 + 1 − 𝜑1)) + (1 −
𝜑1) ∗ 𝐴̄(𝑢)), 

(17) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 − 𝜑1) ∗ 𝐴̄(𝑢)). (18) 

                                                                                                                                              

Moreover, by subtracting 𝐴(𝑢) on both sides to apply FC, we obtain: 

 

𝐴(𝑢 + 1) − 𝐴(𝑢)
= 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 − 𝜑1) ∗ 𝐴̄(𝑢))
− 𝐴(𝑢). 

(19) 

 

FC [32] is integrated with SAO to enhance convergence, making the process faster and 

more robust against local optima. Thus, by applying FC [32]:  

 

𝐷𝜂(𝐴(𝑢 + 1) − 𝐴(𝑢)) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 −
𝜑1) ∗ 𝐴̄(𝑢)) − 𝐴(𝑢), 

(20) 

𝐴(𝑢 + 1) − 𝜂 ∗ 𝐴(𝑢) −
1

2
𝜂 ∗ 𝐴(𝑢 − 1) −

1

6
(1 − 𝜂) ∗ 𝐴(𝑢 − 2) −

1

24
𝜂 ∗

(1 − 𝜂)(2 − 𝜂)𝐴(𝑢 − 3) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 −
𝜑1) ∗ 𝐴̄(𝑢)) − 𝐴(𝑢), 

(21) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 − 𝜑1) ∗ 𝐴̄(𝑢)) −

𝐴(𝑢) + 𝜂 ∗ 𝐴(𝑢) +
1

2
𝜂 ∗ 𝐴(𝑢 − 1) +

1

6
(1 − 𝜂) ∗ 𝐴(𝑢 − 2) +

1

24
𝜂 ∗ (1 − 𝜂)(2 −

𝜂)𝐴(𝑢 − 3), 

(22) 

𝐴(𝑢 + 1) = 𝐸𝑙𝑖𝑡𝑒(𝑢) + 𝐵𝑀(𝑢) ⊗ (𝜑_1 ∗ 𝑆(𝑢) − 𝐴(𝑢) + (1 − 𝜑_1) ∗ 𝐴 ̄(𝑢))

− 𝐴(𝑢)(1 − 𝜂) +
1

2
𝜂 ∗ 𝐴(𝑢 − 1) +

1

6
(1 − 𝜂) ∗ 𝐴(𝑢 − 2) +

1

24
𝜂

∗ (1 − 𝜂)(2 − 𝜂)𝐴(𝑢 − 3) 

(23) 



 

A. Bahaaulddin et al.                                                                                                     52                                            

 

Here, the random number between [0,1] is represented as 𝜑1, a vector with a random 

number regarding Gaussian distribution symbolizing the Brownian motion is indicated as 

𝐵𝑀𝜔(𝑢). Meanwhile, 𝜔𝑡ℎ an individual at the 𝑢𝑡ℎ iteration is denoted as 𝐴𝜔(𝑢), current 

finest solution is signified as 𝑆(𝑢), entry-wise multiplication is expressed as ⊗. At the 

same time, 𝐴̄𝑢 embodies the whole swarm’s centroid position, while an arbitrary individual 

chosen from a group of several elites in the swarm is represented as 𝐸𝑙𝑖𝑡𝑒(𝑢). Furthermore, 

the corresponding mathematical equations are presented below.  

 

𝐴̄(𝑢) =
1

𝑅
∑ 𝐴𝜔(𝑢)𝑅

𝜔=1 , (24) 

𝐸𝑙𝑖𝑡𝑒(𝑢) ∈ [𝑆(𝑢), 𝐴𝑡ℎ𝑖𝑟𝑠𝑒𝑐
[𝑢]], (25) 

 

wherein an individual’s centroid position with fitness value ranked in the top 50%, termed 

as leader, is symbolized as 𝐴𝑟(𝑢) . In comparison, the third-best and second-best 

individuals in the present population are characterized as 𝐴𝑡ℎ𝑖(𝑢) and 𝐴𝑠𝑒𝑐. In addition, the 

𝐴𝑟(𝑢)is evaluated based on the equation below:  

 

𝐴𝑟(𝑢) =
1

𝑅1
∑ 𝐴𝜔(𝑢)

𝑅1

𝜔=1

. 

(26) 

 

Here, 𝜔𝑡ℎ the best leader is signified as 𝐴𝜔(𝑢). The number of leaders is stipulated as 𝑅1, 

where 𝑅1is half the size of the entire swarm. Following this, at every iteration, 𝐸𝑙𝑖𝑡𝑒(𝑢) is 

selected arbitrarily from a set that involves the leader’s centroid position, third-best 

individual, and second-best individual and presents an optimum solution. To control the 

movement to the centroid location and the movement toward the present optimum 

individual, the parameter 𝜑1is used. The combination of the 𝜑1 × (𝑆(𝑢) − 𝐴𝜔(𝑢)) and 

(1 − 𝜑1) × (𝐴̄(𝑢) − 𝐴𝜔(𝑢)) cross terms are also exploited to reflect the incorporation 

among individuals.  

 

(iv) Exploitation stage: The exploitative characteristics of this algorithm are formulated in 

this stage. During the process of snow conversion into liquid water through melting 

behavior, the search agents are stimulated to exploit the high-quality solutions around the 

present optimum solution rather than increasing with high-decentralized features in the 

solution space. Accordingly, the degree-day approach is used for reflecting the snow 

melting process, and it is formulated as follows:  

 

𝐽 = 𝛾 × (ℓ − ℓ1),     (27) 

 

wherein a base temperature, which is typically set to 0, is implied as ℓ1, and the average 

daily temperature is implied as ℓ. Meanwhile, the snowmelt rate is denoted as 𝐽, the key 

parameter used for emulating the melting behavior, and is expressed as:  

 

𝐽 = 𝛾 × ℓ.      (28) 

 

where the degree-day factor, which varies from 0.35 to 0.6, is represented as 𝛾. Moreover, 

the expression to update the 𝛾𝑡ℎ value in every iteration is articulated as:  
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𝛾 = 0.35 + 0.25 ×
𝑒

𝑢
𝑢𝑚𝑎𝑥

𝑒−1
,     (29) 

 

wherein the termination criterion is expressed as 𝑢𝑚𝑎𝑥. Following this, the snowmelt rate 

is determined using the expression presented below:  

 

𝐽 = [0.35 + 0.25 ×
𝑒

𝑢
𝑢𝑚𝑎𝑥

𝑒−1
[]

−𝑢

𝑢𝑚𝑎𝑥].   (30) 

 

Additionally, the location updating expression in the exploitation stage is designated as:  

 

𝐴𝜔(𝑢 + 1) = 𝐽 × 𝑆(𝑢) + 𝐵𝑀𝜔(𝑢)

⊗ [𝜑2 × (𝑆(𝑢) − 𝐴𝜔(𝑢)) + (1 − 𝜑2) × (𝐴̄(𝑢) − 𝐴𝜔(𝑢))], 

(31) 

 

where the snowmelt rate is characterized as 𝐽, a random number ranging from [−1,1] is 

represented as 𝜑2, which is used to facilitate communication among individuals. Moreover, 

the individuals are expected to employ capable regions based on the swarm’s centroid 

position and present the finest search agent’s knowledge using cross-terms 𝜑2 ×
(𝑆(𝑢) − 𝐴𝜔(𝑢)) and (1 − 𝜑2) × (𝐴̄(𝑢) − 𝐴𝜔(𝑢)).  

 

(vi) Re-evaluation: After every iteration, the present solution is re-evaluated to determine 

the enhancements and is assessed using the expression (12). 

(vii) Termination: The process is continued repetitively until the finest solution is 

accomplished. In essence, the overall performance of RMDL is effectively improved by 

employing FSAO. This enhances the robustness and effectiveness of determining optimal 

solutions with faster convergence. The extractive summarization is postulated as 𝑌𝑝. The 

pseudocode of FSAO is portrayed as follows: 

 

1     Start FSAO 

2     Initialization: Swarm 𝐴𝜔(𝜔 = 1,2, . . . , 𝑅), 𝑢 = 0, 𝑢𝑚𝑎𝑥, 
𝑅

2
 

3     Fitness evaluation 

4     Record the present optimum individual 𝑆(𝑢) 

5     While (𝑢 < 𝑢𝑚𝑎𝑥do 

6          Calculate the snowmelt rate 𝐽 
7            for every individual do 

8                     Update every individual’s location using equations (23) and (31) 

9            end for 

10          Fitness valuation 

11           Update 𝑆(𝑢) 

12          𝑢 = 𝑢 + 1 

13   End while 

14   Return 𝑆(𝑢) 

 

3.5. LLM Model 
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The outcome 𝑌𝑝 generated by RMDL, the input is used to obtain an abstractive 

summarized output and is then subjected to the LLM. In NLP, LLMs like GPT-NeoX are 

regarded as an essential phase that enables document summarization. At this point, 

abstractive summarization is enabled by a transformer-based model that generates relevant 

text in response to prompts and produces contextually accurate summaries. The model can 

also condense and rephrase the document, making the process highly efficient in generating 

summaries of various text type.  

Due to its powerful language generation capabilities, this approach utilizes a large-scale 

model to tune multiple datasets. Furthermore, it is also employed to oversee various tasks, 

such as text generation, summarization, translation, and question generation, among others. 

In particular, this technique exhibits long-range dependency in generating summaries from 

documents and can effectively manage large datasets. Thus, the GPT-NeoX removes 

irrelevant information from web documents, making them applicable to large-scale 

practices. Moreover, the outcome attained from GPT-NeoX LLM is formulated as 𝑈ℎ, 

which is the abstractive summary.  

4      Results, Analysis and Discussions  

This section presents an assessment of the FSAO_RMDL for web document 

summarization, providing an exhaustive description of the dataset and performance 

measures. 

 

4.1 Experimental setup 
 

The implementation of the FSAO_RMDL is performed utilizing the Python tool 

with the Data Understanding Conference (DUC) 2002 [34] and the DUC 2004 database 

[35]. 

 

4.2 Dataset description 
 

The text document used for summarization is taken from the DUC, namely the 

DUC 2002 [34] and DUC 2004 [35] datasets. 

 

a) DUC 2002 dataset: This database comprises approximately 600 documents [34], 

classified into 60 collections. Each collection was differentiated using various criteria, 

including event sets and biographical sets, to name a few, as well as single-document 

abstracts, comprised documents, and multi-document abstracts or extracts. In addition, 

200- and 400-word summaries are available.  

 

b) DUC 2004 dataset: This database contains 500 new articles and 50 sets of Text Retrieval 

Conference (TREC) documents [35]. Each collection comprises approximately ten 

documents, and four handcrafted summaries accompany each article. 

 

4.3 Evaluation metrics 

 
The evaluation measures, including F-measure, precision, and recall, used to assess 

the efficiency of the FSAO_RMDL approach are explained below.  
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i) Recall: The recall is assessed by comparing the relevant information in the generated 

summary to the relevant sentence in the original document. Recall is designated as:  

𝐷 =
𝑇

𝜆
.       (32) 

Here, 𝐷 denotes recall, 𝑇 signifies the number of relevant sentences in the summary, and 

𝜆 exemplifies the number of appropriate sentences in the original document.  

 

ii) Precision: This measure is exploited for measuring how much content in the produced 

summary is suitable to the original content and is signified as: 

𝐹 =
𝑇

𝑄
,       (33) 

wherein 𝐹 indicates the precision and 𝑄 specifies the overall number of sentences in the 

summary.  
 

iii) F-measure: F-measure is attained by combining recall and precision into a single score, 

which provides a balanced evaluation. The expression of this measure is formulated as:  
 

𝛽 = 2
𝐷∗𝐹

𝐷+𝐹
,      (34) 

where 𝛽 expresses the F-measure. 
 

4.4. Experimental results 
 

Fig. 3 depicts the experimental outcomes of FSAO_RMDL for abstractive 

summarization. Notably, the input document obtained from the DUC 2002 dataset and the 

generated abstractive and extractive summarizations are portrayed in Fig. 3(a). Meanwhile, 

the input document obtained from the DUC 2004 database and the generated abstractive 

and extractive summarizations are portrayed in Fig. 3(b). 

 

4.5. Algorithmic Methods  
 

Multiple algorithms, such as the Tunicate Swarm Algorithm+RMDL 

(TSA+RMDL) [31] [36], Border Collie Optimization+RMDL (BCO+RMDL) [31] [37], 

Gannet Optimization Algorithm+RMDL (GOA+RMDL) [31] [38], and SAO+RMDL [31] 

[33], are compared with FSAO+RMDL to evaluate the effectiveness of the model. 

Correspondingly, an algorithmic assessment of the FSAO+RMDL is performed by varying 

the swarm sizes between 5 and 20. 

 

4.6. Algorithmic Assessment 
 

This article devises a hybrid FSAO algorithmic scheme to update the trainability 

of the RMDL employed for abstractive summarization. Moreover, the effectiveness of this 

approach is evaluated using documents from the DUC 2004 and DUC 2002 databases 

based on changes in swarm sizes. 

 

4.6.1 DUC 2002 database 

 

The estimation of the FSAO+RMDL for the DUC 2002 dataset regarding swarm 

size is illustrated in Fig. 4. Fig. 4(a) presents the examination of the FSAO+RMDL with 

the F-measure. At a swarm size of ten, the F-measure quantified by existing models, such 

as TSA+RMDL, BCO+RMDL, GOA+RMDL, SAO+RMDL, and FSAO+RMDL, is 

82.375%, 83.865%, 85.211%, 86.319%, and 88.217%, respectively. This indicates that the 
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FSAO+RMDL achieved an F-measure improvement of 6.62%, 4.93%, 3.41%, and 2.15% 

compared to the traditional models.  

The evaluation of the FSAO+RMDL regarding recall is illustrated in Fig. 4(b). Remarkably, 

the FSAO+RMDL achieved a recall of 90.876%, which is higher by 7.70%, 5.50%, 4.41%, 

and 3.30% compared to the recalls recorded by TSA+RMDL (83.877%), BCO+RMDL 

(85.876%), GOA+RMDL (86.868%), and SAO+RMDL (87.877%), with a swarm size of 

15. The precision-based examination of the FSAO+RMDL is indicated in Fig. 4(c). 

Conversely, by considering a swarm size of five, the precision achieved by TSA+RMDL 

is 80.870%, BCO+RMDL is 81.766%, GOA+RMDL is 83.877%, SAO+RMDL is 

84.877%, and FSAO+RMDL is 86.876%. This indicates that the FSAO+RMDL achieved 

enhanced performance of 6.91%, 5.88%, 3.45%, and 2.30% compared to the existing 

models.  

 

 
(a) 

 
(b) 

Fig. 3. Experimental results of FSAO_RMDL for (a) DUC 2002 and (b) DUC 2004 

datasets 

 

4.6.2 Assessment using the DUC 2004 dataset 

  

Fig. 5 specifies the evaluation of the FSAO+RMDL for the DUC 2004 dataset 

based on swarm size. In Fig. 5(a), the examination of the FSAO+RMDL for the F-measure 

is displayed. When the swarm size is assumed as 20, the FSAO+RMDL gained a higher F-

measure of 92.750%, which is better than the F-measure values calculated by TSA+RMDL, 
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BCO+RMDL, GOA+RMDL, and SAO+RMDL at 86.318%, 87.876%, 89.318%, and 

90.809% by 6.93%, 5.25%, 3.70%, and 2.09%.  

 

 

 

  

(a) (b) 

 

(c) 

Fig. 4. Algorithmic validation of the FSAO+RMDL employing the DUC 2002 database 

with a) F-measure, b) recall, and c) precision 

 

In comparison, Fig. 5(b) specifies the analysis of FSAO+RMDL regarding recall. The 

recall recorded by the FSAO+RMDL is 90.654%, while the values computed by the 

traditional models, including TSA+RMDL, BCO+RMDL, GOA+RMDL, and 

SAO+RMDL, are 83.877%, 85.877%, 87.877%, and 88.654%, respectively, at a swarm 

size of 10. Therefore, the FSAO+RMDL is demonstrated to generate a superior recall value 

of 7.48%, 5.27%, 3.06%, and 2.21% more than the conventional schemes. At the same 

time, the valuation of the FSAO+RMDL regarding precision is indicated in Fig. 5(c). When 

the swarm size of 15 is considered, the approaches, including TSA+RMDL, BCO+RMDL, 

GOA+RMDL, SAO+RMDL, and FSAO+RMDL, quantified a precision of 84.987%, 

85.987%, 86.877%, 88.757%, and 90.876%. This depicts that the FSAO+RMDL gained 

superior precision by 6.48%, 5.38%, 4.40%, and 2.33%.  
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(a) (b) 

 

(c) 

Fig. 5. Algorithmic investigation of the FSAO_RMDL employing the DUC 2004 dataset 

based upon a) F-measure, b) recall, and c) precision 

 

 

4.7 Comparative Techniques 

 
Classical abstractive summarization methods, such as OAELSTM [13], 

BERT+BiGRU [22], Opt-CNN-FFNN [12], and MFMMR-BertSum [3], are considered 

for evaluating the superiority of the FSAO_RMDL model in abstractive summarization. 

This study utilizes documents from the DUC 2002 and DUC 2004 databases with multiple 

training samples. 

 

4.7.1 DUC 2002 database 

 

The FSAO_RMDL evaluated the consideration of the DUC 2002 database for 

several abstractive summarization models, as depicted in Fig. 6. The investigation by 

FSAO_RMDL regarding the F-measure is illustrated in Fig. 6(a). In particular, the F-

measure recorded by OAELSTM, BERT+BiGRU, Opt-CNN-FFNN, and MFMMR-

BertSum is 78.255%, 80.765%, 84.350%, and 85.865%, respectively, assuming a training 

sample size of 80%. Meanwhile, the FSAO_RMDL model achieved a superior F-measure 

of 89.751%, outperforming the baseline methods by 12.81%, 10.01%, 6.02%, and 4.33%. 

Additionally, Fig. 6(b) represents the investigation by FSAO_RMDL regarding recall. The 
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recall measured with 60% training sample by OAELSTM is 78.760%, BERT+BiGRU is 

81.787%, Opt-CNN-FFNN is 83.876%, MFMMR-BertSum is 84.870%, and the 

FSAO_RMDL is 86.766%. This illustrates that the FSAO_RMDL recorded a superior 

performance of 9.23%, 5.74%, 3.33%, and 2.19%. Meanwhile, Fig. 6(c) specifies the 

investigation of FSAO_RMDL while considering the precision value. The FSAO_RMDL 

quantified a precision of 87.766%, which is higher by 14.67%, 12.53%, 7.85%, and 4.43% 

than the precision calculated by the classical approaches, such as OAELSTM, 

BERT+BiGRU, Opt-CNN-FFNN, and MFMMR-BertSum at 74.887%, 76.767%, 

80.877%, and 83.879%, at 70% training sample.  

 

  

(a) (b) 

 

(c) 

Fig. 6. Investigation of FSAO_RMDL for DUC 2002 database with a) F-measure, b) 

recall, and c) precision 

 

4.7.2 For DUC 2004 dataset 

 

The evaluation of the FSAO_RMDL, as represented in Fig. 7, is based on the 

document acquired from the DUC 2004 database. The analysis of the FSAO_RMDL 

concerning the F-measure is illustrated in Fig. 7(a). Accordingly, the F-measure computed 

by FSAO_RMDL is 91.810%, while the F-measures generated by the prevailing schemes, 

namely OAELSTM, BERT+BiGRU, Opt-CNN-FFNN, and MFMMR-BertSum, are 

83.384%, 85.312%, 86.870%, and 88.866%, respectively. The performance of F-measure 

is enhanced by 9.18%, 7.08%, 5.38%, and 3.21% compared to prevailing techniques when 

assuming an 80% training sample size.  
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Fig. 7(b) displays the assessment of FSAO_RMDL regarding recall. The 

FSAO_RMDL recorded a recall of 90.877%, using a 70% training sample, whereas 

baseline approaches, including OAELSTM, BERT+BiGRU, Opt-CNN-FFNN, and 

MFMMR-BertSum, quantified recall at 82.987%, 84.876%, 86.877%, and 88.877%, 

respectively. This demonstrates that the FSAO_RMDL has achieved performance 

enhancements of 8.68%, 6.60%, 4.40%, and 2.20%. Moreover, in Fig. 7(c), the 

examination of FSAO_RMDL regarding the precision value is depicted. The precision 

computed by OAELSTM, BERT+BiGRU, Opt-CNN-FFNN, MFMMR-BertSum, and 

FSAO_RMDL is 80.876%, 81.766%, 83.766%, 85.765%, and 87.766%, respectively, with 

a 60% training sample. Consequently, FSAO_RMDL has achieved performance 

enhancements of 11.14%, 9.25%, 6.91%, and 4.43%.  

 

  

(a) (b) 

 

(c) 

Fig. 7. Investigation of the FSAO_RMDL exploiting the DUC 2004 database based on 

(a) F-measure, (b) recall, and (c) precision 

 

4.8 Ablation comparative study 

 
We have conducted an ablation study to compare the influence of each optimization 

method on the proposed system. Tests on SAO+RMDL and FC+RMDL have been 

implemented on both DUC2002 and DUC2004 datasets. This comparative study aims to 

reveal the influence of each optimizer on the proposed system and to gain a deep 

understanding of the optimizers’ behaviors within the system. Table 1 below presents 
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precision, recall, and F1 scores for each SAO+RMDL and FC+RMDL implemented on 

DUC2002 and DUC 2004 datasets.  

SAO+RMDL gain on DUC 2002 scores of precision 84.9%, recall 87.9%. The 

scores with DUC 2004 were 88.8% and 88.7% for precision and recall, respectively. 

Notably, the proposed system, FSAO+RMDL, demonstrates a clear improvement of about 

+4-5% in accuracy, recall, and F1 scores. The fractal mathematics FC+RMDL registered 

with the DUC 2002 dataset precision of 83.5%, recall 86%, and F1 84.7%. At the same 

time, the model scored at DUC 2004 precision, recall, and F1 AS 87.0%, 87.4%, and 87.5%, 

respectively.  

 

Table 1: Comparison between SAO, FC, FSAO influence on the RMDL 

Optimization Method Dataset Precision (%) Recall (%) F1 Score (%) 

SAO + RMDL 
DUC 2002 

 

84.9 87.9 86.3 

FC + RMDL  83.5 86.0 84.7 

FSAO + RMDL 89.8 91.8 90.8 

SAO + RMDL 
DUC 2004 

 

88.8 88.7 89.8 

FC + RMDL  87.0 87.0 87.5 

FSAO + RMDL 91.8 93.7 92.8 

  

Fig. 8(a) and 8(b) illustrate the three methods on both DUC 2002 and 2004 using precision, 

recall, and F1 scores. It can be observed the superiority of our proposed model over other 

paradigms. SAO simulates snow melting stochastically, preventing it from being trapped 

in local minima. On the other hand, FC integrates past iterative information, reaching 

convergence smoothly and rapidly. Thus, combining SAO optimizers with FC 

mathematics makes RMDL avoid overfitting with a smoothing performance on parameter 

updates, helping generalize the model to hidden data. Nevertheless, SAO alone may face 

slow convergence in fine-tuning since it could become trapped near optimal positions. 

Moreover, using merely FC hinders the ability to explore the minimum areas despite the 

convergence process’s speed.  

 

 

  

(a) (b) 

Fig. 8. Investigation of the three methods exploiting the (a) DUC 2002 database and 

(b) DUC 2002 database  
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4.9 Comparative Discussion 
 

This section compares the FSAO_RMDL based on several evaluation metrics, 

utilizing data from DUC 2002 and DUC 2004 databases. The outcomes corresponding to 

a 90% training sample are summarized in Table 2. With the dataset of DUC 2002, the 

proposed FSAO_RMDL model scored an F-measure of approximately 90.755%, a recall 

of 91.765%, and a precision of 89.766%. In comparison, previous methods, such as 

OAELSTM, BERT+BiGRU, Opt-CNN-FFNN, and MFMMR-BertSum, achieved F-

measures of 80.235%, 82.708%, 86.297%, and 87.750%, respectively. Additionally, these 

techniques registered recall of 82.866%, 85.876%, 87.766%, and 88.756%. Lastly, the 

precision reported of OAELSTM is 77.766%, BERT+BiGRU is 79.765%, Opt-CNN-

FFNN is 84.877%, and MFMMR-BertSum is 89.766%. With the DUC 2004 dataset, the 

FSAO_RMDL achieved a maximal F-measure, recall, and precision of 92.750%, 93.766%, 

and 91.755%, respectively. Moreover, the traditional methods, such as OAELSTM, 

BERT+BiGRU, Opt-CNN-FFNN, and MFMMR-BertSum, achieved F-measures of 

84.429%, 86.350%, 88.246%, and 89.810%, respectively. Likewise, these classical 

techniques recorded recall of 84.877%, 87.877%, 89.766%, and 90.878%. Meanwhile, the 

precision calculated by OAELSTM is 83.987%, BERT+BiGRU is 84.876%, Opt-CNN-

FFNN is 86.766%, and MFMMR-BertSum is 88.768%.  

 

Table 2: Comparative discussion of FSAO_RMDL 

Dataset Metrics OAELSTM 
BERT+ 

BiGRU 

Opt-CNN-

FFNN 

MFMMR-

BertSum 

Proposed 

FSAO_RMD

L 

DUC 

2002 

F-Measure 

(%) 

80.235 82.708 86.297 87.750 90.755 

Recall (%) 82.866 85.876 87.766 88.756 91.765 

Precision 

(%) 

77.766 79.765 84.877 86.766 89.766 

DUC 

2004 

F-Measure 

(%) 

84.429 86.350 88.246 89.810 92.750 

Recall (%) 84.877 87.877 89.766 90.878 93.766 

Precision 

(%) 

83.987 84.876 86.776 88.768 91.755 

 

In addition, RMDL offers a more straightforward and accurate technique for 

summarization by extracting key sentences. LLM is flexible, readable, and cohesive, 

producing abstract summaries that improve the model’s performance. Conversely, FC 

facilitates better generalization when summarizing complex or lengthy documents. In 

contrast, SAO optimizes model parameters by mimicking the natural process of snow 

ablation, enabling more effective training. By integrating these two approaches, the 

FSAO_RMDL framework attains superior summarization outcomes, generating high-

quality abstractive summaries with enhanced precision. Hence, it is crucial to address the 

aspect of inference times and energy consumption within this study. In particular, LLMs 
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such as GPT-NeoX contain billions of parameters that need massive computational 

resources, resulting in long inference times and significant energy consumption. This, in 

turn, can decrease the efficiency of real-time applications, especially those with limited 

hardware. Conversely, the FSAO_RMDL system relies on extractive summarization 

through an RMDL approach, which targets preprocessing and refining the input to reduce 

the load on the abstractive LLM step. Thus, by accommodating the FSAO to tune the 

parameter, the system enhances efficiency by lowering inference time and computational 

cost compared to LLM standalone systems. As such, pure LLM-based summarizers are 

powerful yet less efficient since they take the whole input directly without filtering or 

feature compression. However, the proposed hybrid system trades off between 

computation cost and summarization quality by coupling optimized extractive models with 

LLMs. This makes it more appropriate for more resource-scarce settings or applications 

with shorter turnaround time demands. 

 

5      Conclusion  

Website document summarization generates a meaningful and concise summary of 

documents, such as news articles and blog posts. However, the conventional techniques 

employed for document summarization often fail to effectively create a summary that 

retains the key information and core content. Thus, a new approach called FSAO_RMDL 

is formulated for web document summarization. Initially, the input web document is passed 

through tokenization, where BERT is employed to tokenize the document. The features, 

namely sentence-to-sentence similarity, BOW, word2vec, TF-IDF, and sentence length, 

are mined. Subsequently, the extractive summarization is executed by RMDL, which is 

tuned using FSAO, an approach formulated by combining FC and SAO. Lastly, abstractive 

summarization is conducted by exploiting the GPT-NeoX LLM. Overall, the experimental 

results of FSAO_RMDL presented maximum recall, F-measure, and precision of 93.766%, 

92.750%, and 91.755%, respectively. Nevertheless, future work intends to explore hybrid 

models, which can be beneficial for rephrasing the document into a readable and coherent 

summary.  
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