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Abstract 

Early childhood education plays a vital role in supporting the cognitive and 
motor development of children aged zero to six years. However, due to limited 
verbal communication skills at this stage, young children are often unable to 
accurately report their school activities, presenting challenges for parental 
monitoring. To address this issue, this research proposes the development of a 
Deep Learning-based system capable of automatically analyzing and recording 
children's daily activities within children education institutions. The system aims 
to facilitate real-time access to developmental records by both parents and 
educators. This system received input in the form of images of early childhood 
activities from video recordings and videos in real time at school. The 
methodology employs BlazePose for human pose estimation and a modified 
Convolutional Neural Network (CNN) for classifying activities based on image 
datasets. The expected output is a software product in the form of an intelligent 
system to automatically monitor the development of early childhood motor skills. 
This study focused on activities classified as gross motor skills, which engage the 
body’s large muscle groups and facilitate movements. Examples of such activities 
include sitting, standing, and sleeping. Experimental results showed that the 
proposed system demonstrated effective performance, achieving the highest 
accuracy of 97.77%. Some errors occurred due to dependence on camera angles 
and the similarity of poses across different viewpoints. 

Keywords: Children Monitoring, BlazePose, Children Activity Detection, Human 
Pose Estimation, Convolutional Neural Network. 

1 Introduction 

Monitoring is an activity that aims to observe an event that occurs within a certain period. 

Monitoring activities are often carried out with the aim of recording or documenting 

events that occurred at that place and time. This recording process certainly has 

constraints and limitations because monitoring generally must be done manually or 

directly by humans. It is not uncommon for the monitoring process to be carried out with 

observers going directly to the field. In this increasingly advanced technological world, 

monitoring can be carried out using technological assistance with an image or video 

recording hardware. This image or video recording media is capable of recording events 

that occur in the field automatically at a specified place. Some examples of recording 

mailto:kshehadeh@ppu.edu


Deep Learning-Based Monitoring Systems…                                                                  379  

media that can be used are Closed Circuit Television (CCTV), web cameras, smartphone 

cameras, etc. By utilizing the results of this recording, monitoring activities can be 

carried out to see the results of the recording at the desired time. However, these results 

must be observed sequentially so that it takes quite a long time if the search is done 

manually. Thus, this method is inefficient because it takes a lot of time and energy to 

observe the contents of the entire video for quite a long duration. 

Beyond the security considerations of residential and public environments, educational 

settings—particularly early childhood institutions—require systematic monitoring of 

human activities. This need arises not only from safety concerns but also from parental 

interest in the day-to-day experiences of their children. However, direct access to 

classrooms or regular review of video recordings of classroom activities is often 

impractical or restricted. According to Papalia and Martorell [1], children in the 

preschool stage exhibit rapid development in gross motor skills—such as running and 

jumping—that engage large muscle groups. As their musculoskeletal systems strengthen 

and pulmonary capacity increases, children become capable of executing these activities 

with greater speed and endurance. Moreover, young children generally lack the cognitive 

and linguistic capacity to accurately recount their daily experiences, making external 

observation essential for understanding their behavior and development [2,3]. To address 

this limitation, this study proposes the development of an intelligent monitoring system 

capable of automatically assessing motor skill development in early childhood. Such a 

system would enable continuous, real-time access for parents, educators, and relevant 

authorities, thereby enhancing oversight of developmental milestones. The proposed 

solution employs Artificial Intelligence algorithms to detect and classify motor skill 

activities autonomously, thereby eliminating the need for manual observation and 

reporting by teachers or administrative personnel. 

Despite the growing number of studies on Human Activity Recognition (HAR), most of 

the existing research has focused predominantly on adult subjects. This presents a 

significant challenge in recognizing activities performed by children, primarily due to the 

reliance on adult-centric datasets and the scarcity of child-specific references in the 

literature. Several prior studies have primarily focused on the characterization of 

activities in children with specific medical conditions [4-10], with limited attention given 

to healthy and typically developing children. Factors such as high articulation variability, 

small and less discernible joints, occlusions due to clothing, diverse lighting conditions, 

and motion blur contribute to the increased difficulty of accurately recognizing children's 

activities. To address these challenges, the proposed system is specifically designed to 

advance research in child-centered HAR.  

Human Activity Recognition (HAR) can be broadly categorized into two main 

approaches: sensor-based techniques and vision-based techniques [11]. Sensor-based 

methods typically involve the use of wearable or embedded devices to capture motion or 

physiological data [12]. However, these techniques are often considered less practical for 

real-world deployment due to the requirement for additional hardware, which must be 

worn or carried by the user [13]. This not only introduces logistical constraints but also 

compromises user comfort and convenience. 

In contrast, vision-based HAR has emerged as a viable alternative, leveraging visual data 

captured by cameras to recognize and classify human activities. Unlike sensor-based 

approaches, vision-based systems enable non-intrusive activity monitoring, eliminating 

the need for body-mounted devices and allowing for immediate detection through image 

or video analysis. Vision-based HAR studies, such as [14–18], typically utilize raw 

image data captured directly from camera devices. More recent advancements in HAR 
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involve the use of wearable sensors, either individually or in combination, attached 

directly to the human body. These include 3D triaxial accelerometers, magnetometers, 

gyroscopes, Radio Frequency Identification (RFID) devices, and Global Positioning 

System (GPS) sensors [19–23]. These sensors capture detailed biomechanical and spatial 

data reflecting body movement. The HAR process in such systems involves the 

acquisition of movement data by the sensors, which is then analyzed by recognition 

algorithms to classify and interpret the specific activities being performed. Collectively, 

these sensor modalities enhance the precision and applicability of HAR across diverse 

real-world scenarios. Moreover, a well-known example of such a system is Microsoft 

Kinect [24–26], which employs depth-sensing and skeletal tracking capabilities to detect 

up to 20 key joint positions on the human body, enabling the classification of various 

physical activities. Numerous studies in HAR also utilize skeletal data for activity 

identification due to its detailed representation of human posture and movement [27–30]. 

However, the generation and processing of skeletal data demand substantial 

computational resources, which can limit the feasibility of real-time implementation and 

deployment on resource-constrained platforms [31,32]. To address these limitations, 

Albukhary and Mustafah [33] proposed a computationally efficient human activity 

recognition method that relies solely on metrics derived from human movement distance 

and aspect ratio. 

2 Research Methodology 

The research methodology employed in this study consists of two stages: (1) object 

detection focusing on early childhood subjects through skeleton-based edge detection, 

and (2) activity classification employing a Convolutional Neural Network (CNN) 

architecture. The proposed system accepts image inputs directly from a camera or video 

source. These images are processed using BlazePose framework to extract skeletal 

keypoints, which are then transformed into a two-dimensional matrix representation 

suitable for input to a trained Convolutional Neural Network (CNN) model. Activity 

prediction within the system is performed by averaging the CNN outputs over the most 

recent three frames, with frame selection occurring at one-second intervals, starting from 

the initial frame of each second. The overall system workflow is illustrated in Fig. 1. 

The pose estimation method employed in this system is BlazePose [34,35]. BlazePose 

utilizes a modified stacked-hourglass architecture to predict skeletal keypoints from 

human subjects. The architecture comprises an encoder-decoder network designed to 

generate heatmaps for all joint locations, followed by an additional encoder module that 

refines these heatmaps to accurately estimate the coordinates of each specific joint. 

BlazePose employs a detector-tracker framework wherein human detection is performed 

in the initial frame by identifying the region of interest (ROI) corresponding to the 

 

Figure 1. Diagram of the Proposed Human Activity Recognition System. 
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subject. In subsequent frames, BlazePose utilizes a tracking mechanism to follow the 

detected human within the previously established ROI. If tracking fails or the human 

object is not detected, the detection process is reinitiated. The system detects a total of 33 

keypoints representing anatomical landmarks, the spatial configuration of which is 

illustrated in Fig. 2. Each keypoint detected by BlazePose is represented by four values: 

the x, y, and z coordinates, along with a visibility score. The visibility score, derived 

from the model’s confidence estimation, indicates whether a keypoint is occluded or 

detected with low accuracy. This mechanism enables BlazePose to robustly estimate 

keypoints even when certain points are partially outside the frame or obscured. 

In the next stage, the Convolutional Neural Networks (CNN) architecture is constructed 

to identify human activities. Unlike traditional artificial neural networks, CNN requires 

minimal preprocessing of input data, as they inherently possess the capability to extract 

complex hierarchical features directly from raw images, provided that sufficient training 

data is available [28]. The CNN method consists of two main stages, namely the feature 

training stage consisting of convolutional layers, ReLU (activation function) and pooling 

layers, while the classification stage consists of the flattening process, fully connected 

layers, and predictions. Each part of CNN has two main processes, namely feedforward 

and backpropagation. The first stage in the CNN method is the convolutional layer which 

is a layer that performs feature extraction that is connected to the local area of the input 

image. The equation used in the convolutional layer calculation process is as follows 

[36]: 

𝑥(𝑖, 𝑗) =  ∑ ∑ 𝑤𝑚,𝑛
𝑙 ∗ 𝑜𝑖+𝑚,𝑗+𝑛

𝑙−1  + 𝑏 𝑛𝑚      (1) 

where x(i, j) is the result of the convolution calculation at position (i, j), l is the layer, 

o(i,j) is the input value, w(m,n) is the filter, i is the bias, and i and j represent the row and 

column of pixels in the image, respectively. 

The second stage is the pooling layer which is a layer that functions to reduce the size of 

the previous layer (downsampling) in the spatial dimension (width, height). There are 2 

types of pooling layers, namely max pooling and average pooling. The max pooling 

process is carried out by searching and applying the maximum value of each part on the 

feature map, while the average pooling process calculates the average value of each part 

on the feature map. Max pooling is the most frequently used method including in this 

paper. Furthermore, ReLU is an activation function that is responsible for being able to 

normalize the values generated from the convolutional layer. The ReLU stage is the value 

 

Figure 2. The Location of 33 BlazePose Keypoints. 
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normalization stage. ReLU will display the value directly if the value is positive while for 

negative values it will be given a value of zero. 

In the classification stage, the first process that occurs is flattening which will change the 

feature map in the previous layer into a one-dimensional vector. Furthermore, the next 

stage is the formation of a fully-connected layer for linear classification on CNN. In the 

fully-connected layer, each neuron has a full connection to all neurons in the previous 

layer. The output of the fully-connected layer in the form of a y value with weight 

parameters W and bias b from an input x can be seen in the following formula: 

𝑦 =  ∑ 𝑥𝑖  ×  𝑊𝑖 + 𝑏𝑖      (2) 

Softmax is an activation function that will be used in the output layer. The function of 

softmax is to take a number from the input vector that has gone through the fully-

connected layer process and change the number into a range of 0 to 1. The output layer 

has many similarities with the fully-connected layer, the difference between the two is 

that the output layer uses the softmax activation function and the fully-connected layer 

uses the ReLU activation function. The softmax activation function can be seen in the 

following formula: 

𝑝𝑖 =  
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑁

𝑗=1

                          (3) 

where pi is the probability of the i-th vector, zi is the i-th input vector, and z is the input 

vector. 

The CNN architecture implemented in this paper is a custom-designed model, with its 

detailed configuration layers are presented in Table 1. 

Table 1: The Proposed CNN Architecture. 

Layer Type Filter/Unit Size/Padding Activation Function 

Conv2D 32 (3, 3) / same ReLU 

Conv2D 32 (3, 3) / same ReLU 

Conv2D 64 (3, 3) / same ReLU 

Flatten - - - 

Dense 32 - ReLU 

Dense 3 - Softmax 

3 Experimental Results and Discussion 

In this experiment, a dataset comprising children’s activities was compiled from private 

early childhood education institutions in Indonesia and publicly accessible online 

sources. Researchers conducted site visits to private schools in Indonesia to recruit parent 

volunteers who provided informed consent to participate in the study. Children 

participants were recorded while performing a series of predefined activities under the 

supervision of the research team. Data were collected in a designated student playroom 

with camera placement optimized to capture the participant’s full body in unobstructed 

motion. A total of 150 videos were recorded, comprising 30 children aged 6 to 8 years, 

each performing three distinct activities. Ethical approval for this study was obtained 

from Universitas Tarumanagara Human Research Ethics Committee (Approval No.001-

UTHREC/UNTAR/II/2025). The dataset was subsequently augmented through geometric 
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transformations including translation, rotation, and occlusion to enhance data variability 

and robustness. The augmentation process was performed using image processing 

techniques, including affine transformations to simulate translation and rotation effects, 

as well as motion blur applied through Gaussian filtering. The activity categories consist 

of standing, sitting, and sleeping. The dataset was partitioned into 75% for training and 

25% for testing purposes. Detailed information regarding the quantity and distribution of 

samples across each activity class is provided in Table 2. 

The proposed model was evaluated across a range of hyperparameter settings to assess its 

performance. Hyperparameter tuning was conducted iteratively, beginning with the 

learning rate, followed by batch size, and finally the number of epochs. For each stage, 

the optimal value identified was fixed and utilized in subsequent tests of the remaining 

hyperparameters. The results of the hyperparameter evaluations are summarized in Table 

3.  

Table 2: Training and Testing Data Distribution. 

Class Type Amount of Training Data Amount of Test Data 

Sleeping 2861 521 

Standing 5827 1005 

Sitting 4826 859 

Total 13514 2385 

 

Table 3: Hyperparameter Tuning Results. 

Hyperparameter Values Training Accuracy Training Loss Validation Accuracy Validation Loss 

Learning rate 0.01 96.60% 0.1047 95.22% 0.1519 

 0.001 99.14% 0.0251 97.65% 0.0935 

 0.001 97.56% 0.0667 96.60% 0.0946 

Batch size 16 99.19% 0.0239 97.61% 0.1218 

 32 99.21% 0.0243 97.02% 0.1013 

 64 98.61% 0.0243 96.44% 0.0965 

 128 99.07% 0.0275 97.40% 0.0729 

Epoch 32 99.19% 0.0234 97.78% 0.1162 

 75 99.75% 0.0113 97.69% 0.1635 

 100 100% 1.67e-6 98.20% 0.1966 

 

Based on the experimental results, the optimal hyperparameter configuration was 

identified with a learning rate of 0.001, a batch size of 16, and 32 training epochs. 

Performance metrics, including overall accuracy graph, overall loss graph, accuracy 

graph for each category, and loss graph for each category are presented in Figures 3 

through Figure 6. During the testing phase, the evaluation was conducted using two 

distinct datasets. The first dataset comprises images of children's activities that were not 

included in the training set, ensuring the assessment of the model’s generalization 

capability. The second dataset consists of videos of children's activities, composed of 

multiple image frames arranged in varying activity sequences, enabling the evaluation of 

the model's performance in more dynamic and temporally dependent scenarios. Detailed 
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descriptions of Dataset 2 are provided in Table 4. The evaluation procedure involves 

frame-level prediction alongside a temporal smoothing technique, which computes the 

average prediction over the three most recent frames. 

 

Figure 3. The Overall Accuracy Graph. 

 

 

Figure 4. The Overall Loss Graph. 

 

 

Figure 5. The Accuracy Graph For Each Category. 
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Figure 6. The Loss Graph For Each Category. 

 

 

Table 4: Detailed Scenarios of Dataset 2 (Video Input). 

Data Label Time Frame (Seconds) Activity 

Scenario 1 

0 – 3 Standing 

4 – 6 Sitting 

7 – 9 Standing 

10 - 13 Sleeping 

Scenario 2 

0 – 8 Standing 

9 – 11 Sitting 

12 – 19 Sleeping 

20 – 22 Sitting 

23 – 31 Standing 

32 – 39 Sitting 

Scenario 3 

0 – 2 Standing 

3 – 8 Standing 

9 – 10 Sitting 

11 – 14 Standing 

15 – 18 Sitting 

19 - 21 Sleeping 

Scenario 4 

0 – 8 Standing 

9 – 10 Sitting 

11 – 12 Sleeping 

13 Sitting 

14 Standing 

15 - 17 Sleeping 
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Table 5: The Accuracy Results of the Proposed System. 

Dataset 1 
(Image) 

Dataset 2 (Video) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1 Frame 3 Frame 1 Frame 3 Frame 1 Frame 3 Frame 1 Frame 3 Frame 

97.77% 78.57% 83.33% 70.00% 77.14% 71.81% 76.84% 78.88% 70.00% 

 
Table 6: Samples of Testing Images Used in The Experiments. 

Test Images 

Activity 

Test Images 

Activity 

Ground-truth 
System’s 

Classification 
Ground-truth 

System’s 

Classification 

 

 

 

 

 

 

 

Sitting Sitting 

 

 

 

 

 

 

 

Standing Standing 

 

 

 

 

 

 

 

Sitting Standing 

 

 

 

 

 

 

 

Sleeping Standing 

 

The performance evaluation results for the two test datasets are presented in Table 5, 

while samples of video frames used for testing and their classification results are 

presented in Table 6. As shown in Table 5, the system demonstrates strong performance 

in activity recognition of Dataset 1, achieving a high accuracy of 97.77%. Meanwhile, for 

Dataset 2 which consists of video inputs with varying frame sequences, the system 

achieves a maximum accuracy of 83.33% in Scenario 1, indicating effective recognition 

under specific temporal conditions. In Dataset 2, which contains video data, Scenario 4 

yielded the lowest accuracy rate. This outcome is attributed to the abrupt positional 

changes of the subject, transitioning directly from a standing to a sleeping position. In 

contrast, the other scenarios involved more gradual transitions—from standing to sitting, 

and subsequently to sleeping. Additionally, activities in Scenario 4 were performed at a 

higher speed, as indicated by a shorter recording duration compared to the earlier 

scenarios. The results further demonstrate that the system achieves higher recognition 

accuracy when temporal consistency is preserved.  

4 Conclusion 

Based on the experimental results, the proposed system demonstrated effective 

performance in detecting children's activities, achieving a high accuracy of 97.77%. 

However, reliance on skeletal keypoints for human activity recognition may lead to 

misclassification of activities with similar skeletal configurations—such as distinguishing 

between learning and standing—due to the absence of contextual environmental cues. 

Additionally, camera positioning was found to significantly influence detection 

performance, underscoring the importance of incorporating datasets with diverse viewing 
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angles to enhance model generalization. To address the instability associated with 

individual frame predictions, aggregating outputs over the most recent three frames 

proved beneficial in improving both detection accuracy and robustness. 
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