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Abstract 

     The current study presents a novel approach for parameter estimation in LRP 
based on a linear intensity parameter model of the Non-Homogeneous Poisson 
Process (NHPP). The Modified Maximum Likelihood Estimation- Particle Swarm 
Optimization (MMLE-PSO) method enhances prediction accuracy and 
computational efficiency by integrating the PSO algorithm. Compared to Least 
Square Estimation (LSE) and PSO, MMLE-PSO achieves superior parameter 
estimation, reducing errors by 61.2% and 92.6%, respectively. Additionally, it 
accelerates computational performance by 97% over Maximum Likelihood 
Estimation (MLE) and PSO due to its faster convergence. The method's 
effectiveness in event pattern modeling is demonstrated using outage data from the 
Mosul Dam power facility. In statistical evaluation, MMLE-PSO attains the lowest 
RMSE value 0.0253, outperforming LSE 0.0652 and PSO 0.3429. With its 
enhanced estimation precision and operational efficiency, MMLE-PSO proves to 
be a reliable tool for reliability engineering applications.  

     Keywords: Least Square Estimation (LSE), Linear Rate Process, Modified Maximum 
Likelihood Estimation (MMLE), PSO Algorithm, Simulation. 

1      Introduction 

The NHPP is widely used in reliability engineering, telecommunications, and financial 

modeling to represent time-dependent event occurrences. NHPPs are valuable analytical 

tools as they accommodate time-varying event rates, making them well-suited for systems 

where failure rates fluctuate over time. However, estimating NHPP model parameters is 

challenging due to the complexity of their nonlinear intensity functions [1]. 

Traditional estimation methods, such as MLE and LSE, face significant limitations 

when applied to NHPP models. While MLE is theoretically optimal under certain 

conditions, its performance deteriorates in small-sample scenarios and nonlinear model 
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analysis. Additionally, MLE relies on iterative numerical solutions, leading to high 

computational costs. On the other hand, LSE assumes a linear relationship, which is 

inconsistent with NHPP data, resulting in inaccurate parameter estimates [2]. 

In telecommunications, NHPP is commonly used to model the rate of incoming 

calls or messages in communication networks [3-4]. A key advantage of NHPP is its 

adherence to the Markov property, meaning that future events depend only on the present 

state, independent of past occurrences [5-6]. This property makes NHPP particularly useful 

for modeling complex systems and processes. 

Despite the challenges posed by NHPP’s time-varying nature and the complexity 

of its intensity function, various parameter estimation methods have been developed. These 

include MLE, Bayesian inference, and intelligent techniques such as Genetic Algorithms 

(GA) and neural networks [7-8]. The rationale behind the use of such an analytical 

approach as the Linear Rate Process (LRP) is its ease of analysis, interpretability, and 

functionality of describing the time-dependent occurrence of events. In contrast to other 

models based on the NHPP that have in many cases complicated nonlinear relationships 

between intensity and parameters and inference of parameters based on tedious numerical 

integration, LRP can be seen to have a tractable linear intensity model. This linearity makes 

closed-form expression of important statistical statistics much easier and also leads to a 

much greater ease of compatibility with classical and agents-based optimization methods, 

including MMLE and PSO. Moreover, the performance of LRP models in the estimation 

task is very strong in the case of small-sample-size or noisy data and hence ideal in 

reliability engineering and failure rate analysis. 

1.1      Literature review 

In 2017, researchers developed a heuristic PSO algorithm called Sliding Mode Controlling 

Particle Swarm Optimization (SMCPSO) for Maximum likelihood (ML) parameter 

estimation in linear dynamic systems. The study evaluates SMCPSO against standard 

particle swarm optimization (SPSO), recursive ML generalized least squares (RMLGLS), 

and recursive ML least squares (RMLLS). According to simulation results, SMCPSO 

outperforms these methods in ML parameter estimation while effectively managing 

constrained optimization in linear rate processes [9]. 

In 2018, researchers focused on an estimation method for the frequency modulation 

rate of Linear Frequency Modulated (LFM) signals. By employing discrete polynomial-

phase transformation and DFT conversion, this method enhances accuracy compared to 

traditional approaches. The technique iteratively weights and merges coarse estimates to 

improve frequency modulation rate estimation [10]. 

In 2020, researchers explored MLE of LFM signals, incorporating PSO to improve 

estimation efficiency. The study examines three PSO optimization methods-global mode, 

local mode, and a hybrid approach-to enhance LFM parameter optimization. It highlights 

PSO’s capability to simplify computation and accelerate convergence. However, the 

research does not include LSE or simulation evaluations [11]. 

In 2021, researchers applied a Mutating particle swarm optimization (MuPSO) 

algorithm to optimize finite Fourier series parameters for dynamic parameter estimation in 

a six-degree-of-freedom industrial robot manipulator. The approach minimizes the 

condition number of observation matrices and integrates linear least squares with unknown 

dynamic parameter estimation methods. While the study explores several optimization 
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strategies, it does not specify modifications to maximum likelihood estimation or its 

application in linear rate processes [12]. 

In 2022, researchers investigated parameter estimation for the Rayleigh process 

using its NHPP formulation. They implemented three estimation approaches: The first: 

Grey Wolf Optimization (GWO): Inspired by wolf social behavior to solve optimization 

problems. The second: PSO: Modeled after the collective movements of birds and fish. 

The third: MLE: A classical statistical method for parameter estimation. 

Among these, GWO produced the most accurate results with faster convergence. 

MLE, in contrast, exhibited lower accuracy and longer iteration times. Simulation results 

confirmed GWO’s effectiveness in generating reliable parameter estimates. Researchers 

validated their findings using failure data from the Badush Cement Factory, analyzing 

records from April 2018 to January 2019. The results demonstrated that GWO surpasses 

traditional estimation techniques in industrial applications, particularly for real-world 

failure data analysis [13]. 

In 2023, researchers evaluated parameter estimation for the Exponential Process, 

an NHPP application for modeling failure data. Three estimation methods were tested: The 

first: Firefly Algorithm (FFA): Inspired by firefly flash patterns to optimize solutions. The 

second: PSO: A population-based stochastic optimization technique. The third: MLE: A 

standard statistical approach. 

Researchers have recently explored PSO as a computational intelligence technique 

for parameter estimation. While PSO performs well in searching multidimensional spaces, 

its indirect statistical framework can lead to unreliable results in stochastic parameter 

inference. This issue arises when PSO produces suboptimal solutions due to an 

unstructured search space [14]. 

This study introduces a Modified Maximum Likelihood Estimation framework 

with PSO integration (MMLE-PSO) to address these challenges. MMLE-PSO enhances 

parameter estimation accuracy by combining MLE’s statistical precision with PSO’s 

computational efficiency. This integration reduces estimation complexity while improving 

speed and convergence stability. 

Simulation results demonstrate MMLE-PSO’s effectiveness, showing: 61.2% 

lower error compared to LSE, 92.6% lower error compared to PSO alone, 97% reduction 

in required iterations compared to MLE. These improvements make MMLE-PSO 

particularly suitable for reliability engineering applications, such as predicting outages in 

critical infrastructure like the Mosul Dam power facility. 

The current study has the following structures: Section 2 reviews existing NHPP 

parameter estimation methods. Section 3 details the MMLE-PSO methodology. Section 4 

discusses the experimental setup and simulation evaluation, applying MMLE-PSO to real-

world distribution system outages. The conclusion summarizes key findings and outlines 

future research directions. By addressing the limitations of traditional estimation methods, 

this study presents an advanced framework for NHPP modeling, contributing to both 

theoretical developments and practical applications in reliability assessment and predictive 

analysis. 

2      Linear Rate Process 

Consider a scenario where the Poisson process {𝑋(𝑡), 𝑡 ≥ 0} represents a NHPP, which 

models the number of events occurring within the time interval (0, 𝑡]. The distribution of 
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the number of events in this interval follows a Poisson distribution, characterized by a 

probability density function [13]. 

                                 𝑝[𝑁(𝑡) = 𝑛] =
[𝜆(𝑡)]𝑛𝑒−𝑚(𝑡0)

𝑛!
 ,   𝑛 = 1,2,3 …                                    (1) 

𝑚(𝑡) signifies the process parameter, serving as the cumulative intensity function of the 

time rate of occurrence. It is defined by the following formula: 

                                     𝑚(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢 , 0 < 𝑡 < ∞  
𝑡

0
                                           (2) 

where 𝜆(𝑢)  denotes the time rate of occurrence or intensity function. The linear rate 

Process, a type of nonhomogeneous Poisson process, is characterized by the time rate of 

occurrence, as defined below: 

                                       𝜆(𝑡) = 𝑎 + 𝑏𝑡, 𝑡 ≥ 0, 𝑎, 𝑏 > 0                                           (3)  

where 𝑎, 𝑏, 𝑐 are the parameters for the time rate of occurrence of events for the Linear rate 

Process; parameters estimation for such processes has been studied extensively and quite 

a number of techniques have been proposed.  

3      Performance of Estimation Accuracy 

When obtaining different estimates for a parameter, comparing their accuracy is essential. 

Several techniques exist in the literature for this purpose, with the Root Mean Squared 

Error (RMSE) being one of the most widely used. RMSE quantifies the differences 

between estimated and actual parameter values by calculating the square root of the 

average squared difference between them [15]. 

Mathematically, RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = √
∑ (𝛾𝑖̂−𝛾)2𝑄

İ=1

𝑄
 .                                                    (4) 

where 𝛾𝑖̂: reflects the parameter’s predicted value for iteration, 𝛾:  reflects the actual value 

of the parameter, and 𝑄: is the total number of iterations. 

4      Parameters Estimation 

To estimate the parameters of this process, both MMLE method and a PSO algorithm are 

employed.  

4.1    Maximum Likelihood Estimation (MLE) 

The MLE is a widely used statistical method for estimating the parameters of a probability 

distribution based on observed data. It seeks to determine the parameter values that 

maximize the likelihood function, which represents the probability of obtaining the 

observed data given a specific set of parameters. 

In the case of a NHPP with a linear rate of occurrence 𝜆(𝑡) = 𝑎 + 𝑏𝑡, the joint probability 

function for the occurrence times (𝑡1, 𝑡2, … , 𝑡𝑛) in which (0 < 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤  𝑡𝑛 ≤ 𝑡0), 
is described by the following equation [13-14]: 

 

                                   𝑓𝑛(𝑡1, 𝑡2, … , 𝑡𝑛) = ∏ 𝜆(𝑡𝑖)𝑒−𝑚(𝑡0)𝑛
𝑖=1                                          (5) 

 

Thus, one of the parameters of the linear rate process, the cumulative function of the time 

rate of occurrence, is defined as follows: 
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                                                𝑚(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
 

= ∫ (𝑎 + 𝑏𝑢)𝑑𝑢
𝑡

0

 

                                                         = 𝑎𝑡 +
𝑏

2
𝑡2                                                              (6)                                                 

 

Hence, the Likelihood function for the Linear rate process for the period (0, 𝑡] with the rate 

time 𝜆(𝑡) is: 

 

                                         𝐿 = ∏ (𝑎 + 𝑏𝑡𝑖)𝑒𝑎𝑡+
𝑏

2
𝑡2𝑛

𝑖=1                                                       (7)                                                                                                            

 

The maximum likelihood estimator for 𝑎, 𝑏 can be estimated from formula (7), where: 

 

                                𝐼𝑛𝐿 = −𝑡0(𝑎 + 𝑏𝑡0) + ∑ 𝐼𝑛(𝑎 + 𝑏𝑡𝑖)𝑛
𝑖=1                                         (8) 

 

The derivative of the logarithm for the maximum likelihood function for the parameter 𝑎 

is found as follows 

 

                                             
𝜕𝐼𝑛𝐿

𝜕𝑎
= −𝑡0 + ∑

𝑡𝑖

𝑎+𝑏𝑡𝑖

𝑛
𝑖=1                                                       (9)  

 

To estimate the 𝑏 parameter, we derive equation (8) so we get: 

 

                                     
𝜕𝐼𝑛𝐿

𝜕𝑏
= −

1

2
𝑡0

2 + ∑
𝑡𝑖

𝑎+𝑏𝑡𝑖

𝑛
𝑖=1                                                          (10) 

 

These equations can be solved numerically using iterative methods, such as the Newton-

Raphson algorithm or the EM algorithm, to obtain estimates for aaa and bbb that maximize 

the likelihood function [15-16]. However, we have found that solving the system of 

equations resulting from the derivatives of equation (7) with respect to aaa, bbb, and ccc is 

not feasible using conventional methods due to the high degree of nonlinearity. Therefore, 

we propose a modified maximum likelihood method that incorporates one of the most 

important artificial intelligence techniques PSO. 

4.2      Particle Swarm Optimization (PSO) 

PSO is a population-based, nature-inspired stochastic optimization technique widely used 

for solving various computational optimization problems. Its development centers around 

the concept of information exchange within a population of individuals. PSO's 

effectiveness lies in its remarkable blend of simplicity and power, making it a robust search 

algorithm. The origins of PSO can be traced to the social behaviors of various living 

organisms, such as insect swarms, birds, and fish. This algorithm abstracts the fundamental 

mechanisms of these natural phenomena, leveraging the movement and intelligence 

exhibited by collective groups (swarms). PSO was introduced in 1995, initially 

conceptualized to emulate the social dynamics of animals like bird flocks and schools of 

fish. This initial model, originally intended to describe social behaviors, unexpectedly 

proved effective for optimization tasks, leading to the development of PSO as an 

optimization tool. Since its inception, PSO has evolved and diversified, with various 

versions tailored to meet specific needs. Its utility has been demonstrated across a wide 

range of scientific and industrial domains. 
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Intriguingly, PSO is based on a dynamic interplay of feedback and cooperation. 

Particles adjust their positions and velocities based not only on their personal experiences 

but also on the collective knowledge of the swarm. This collaboration ensures that even 

particles far from a promising trajectory quickly align with the optimal path once 

identified. By integrating local and global best information, PSO accelerates exploration. 

For instance, when one particle identifies a promising path, such as a food source, other 

particles can follow suit, even if initially far from the source. As a result, each particle is 

characterized by three key vector components: its position, velocity, and adaptation to both 

local and global information. In essence, Particle Swarm Optimization merges the 

principles of natural cooperation and intelligence, offering a mechanism that effectively 

emulates the collaborative behavior of organisms in nature to solve optimization 

challenges across diverse domains [17]. 

1. Position Vector (X-vector): This vector represents the particle's current location within 

the designated search space. It serves as a key parameter that guides the particle's 

exploration and optimization path. 

2. Velocity Vector (V-vector): The velocity vector represents the direction and magnitude 

of the particle's movement. It encapsulates the gradient, indicating the trajectory the 

particle will follow in pursuit of an optimal solution. 

3. Personal Best Vector (P-vector, P-best): The P-vector records the most optimal solution 

encountered by the particle so far. It represents the particle's personal best and serves as 

a reference point for comparing subsequent solutions during the optimization process. 

As a result, each particle has a location vector, a velocity vector, and its optimal 

solution, or p-best. The PSO algorithm begins with a set of random particles, each of which 

undergoes multiple generations (iterations) in search of the optimal value. In each iteration, 

each particle is updated based on two best values: the local best and the global best. The 

fitness value for each particle is then determined using the fitness function, also known as 

the objective function, which is employed for optimization. The PSO approach, which 

differs conceptually from existing methods, is explained here [18-20]. A swarm (group) of 

particles is maintained using the PSO algorithm, a parallel multi-agent search method 

where each particle is considered a potential solution. Each particle flies through a multi-

dimensional search space and tries to change its location based on its own experience and 

that of its neighbors. Assuming  𝑋𝑖
𝑡  denote the position vector and 𝑉𝑖

𝑡 the velocity vector 

of particle i in the multidimensional search space, i.e. at each step t in the search space, the 

position and velocity of each particle are determined based on the distance between 𝑃 best 

and 𝑔 best and its current velocity as follows: 

 

                           𝑉𝑖
𝑡+1 = 𝜔𝑉𝑖

𝑡 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑡) ,                       (11) 

 

                                                              𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑉𝑖
𝑡+1,                                            (12) 

 

with                                                     𝑋𝑖
0 ~ 𝑈(𝑋𝑀𝑖𝑛, 𝑋𝑀𝑎𝑥) , 

 

i.e.                                          𝑋𝑖
0 =  𝑋𝑀𝑖𝑛 + 𝑟𝑖(𝑋𝑀𝑖𝑛 − 𝑋𝑀𝑎𝑥) , 𝑟𝑖  ~  𝑈(0,1) . 

 

Moreover, beyond the initial random initialization of particle positions, the introduction of 

an inertia weight parameter, 𝜔, assumes significant importance in orchestrating both local 

and global search dynamics. The cognitive component, 𝑐1  and 𝑐2  embodied by 

acceleration coefficients or learning factors, play a pivotal role in fine-tuning each 
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iteration. These coefficients essentially regulate the magnitude of particle movement 

within a single iteration. Specifically, 𝑐1embodies an individual particle′s self-knowledge, 

propelling it towards its own best-recognized position. Conversely, 𝑐2 , the social or 

cooperative element, harnesses the collective wisdom of the swarm, compelling particles 

to converge towards a globally optimized solution. The judicious selection of these 

coefficients, namely 𝑐1, 𝑐2, and 𝜔, profoundly influences the overall performance of the 

PSO algorithm. Notably, 𝑟1  and 𝑟2  are random numbers drawn from the uniform 

distribution 𝑈(0,1). Hence, the fundamental progression of the PSO algorithm can be 

concisely outlined through the following sequential steps: 

 

(1) Initialization of Particle Positions: Commencing the algorithm, random positions are 

assigned to each particle within the solution space. 

(2) Evaluation of Fitness Function: The fitness function is computed for each particle, 

providing an assessment of their solution quality. 

(3) Updating Local Best: If the current solution surpasses the previously recorded local 

best for a particle, the local best is updated accordingly. 

(4) Updating Global Best: Similarly, if the current solution is superior to the global best 

solution attained thus far, the global best is updated. 

(5) Calculation of Particle Velocity: The velocity of each particle is computed using 

Equation (11), which factors in components such as inertia, individual cognition, and 

collective social knowledge. 

(6) Updating Particle Position: Leveraging the calculated velocity, the position of each 

particle is adjusted using equation (12), guiding its traversal within the solution space. 

 (7) Iterative Process: Steps (2)-(6) are iterated repetitively until predefined termination 

criteria are met, signifying convergence or any other desired conditions. 

𝑉𝑗
(𝑖)

= 𝜃𝑉𝑗
(𝑖−1)

+ 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗
(𝑖−1)

] + 𝑐2𝑟2[𝑔𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗
(𝑖−1)

], 𝑗 = 1,2,3, … , 𝑁.  (13) 

4.3      Least Square Estimation (LSE) 

LSE is a classical technique used to estimate the unknown parameters in a model. This 

method minimizes the sum of squared residuals between the observed values and the values 

predicted by the model. It can be seen that equation (6) represents a straight line with 

respect to the cumulative time of the stochastic process. Therefore, linear regression can 

be used to find the best-fit line for the data. We plot this line as follows [14]: 

                                 𝑦𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝑒𝑖 ; 𝑖 = 1,2, … , 𝑛.                                              (14) 

 

Where 𝑦𝑖 = 𝑚(𝑡𝑖),  𝑏0 = 𝑎𝑡, 𝑏1 =
𝑏

2
, 𝑋𝑖 = 𝑡𝑖

2. Then 

 

                                        𝑏̂0 =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
− b̂1

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
 ,                                                          (15) 

 

                                        𝑏̂1 =
∑ 𝑥𝑖𝑦𝑖−

(∑ 𝑦𝑖
𝑛
𝑖=1 )(∑ 𝑥𝑖)𝑛

𝑖=1
𝑛

𝑛
𝑖=1

∑ 𝑥𝑖
2𝑛

𝑖=1 −
(∑ 𝑥𝑖)𝑛

𝑖=1
2

𝑛

 .                                                  (16)                                                                
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We insert the above assumptions into the two equations (15) and (16) and after 

simplification, arrive at the following results: 

 

                                     𝑎̂ = (
∑ 𝑚(𝑡𝑖)𝑛

𝑖=1

𝑛
− 𝑏̂1

∑ 𝑡𝑖
𝑛
𝑖=1

𝑛
) 𝑡,                                                     (17) 

 

                                    𝑏̂ = 2(
∑ 𝑡2𝑚(𝑡𝑖)−

∑ 𝑚(𝑡𝑖) ∑ 𝑡𝑖
2𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑛
𝑖=1

∑ 𝑡𝑖
4−

(∑ 𝑡𝑖
2𝑛

𝑖=1 )2

𝑛
𝑛
𝑖=1

).                                              (18) 

4.4      Computational Complexity Analysis (CCA) 

The paper explores the computational requirements of parameter estimation strategies 

MLE, PSO, and LSE used in its methodology. A precise analysis shows the efficiency and 

feasibility characteristics of each approach mainly when handling extensive datasets. 

 

 Complexity of Maximum Likelihood Estimation (MLE) 

 

The procedure to maximize the likelihood function through MLE requires solving a set of 

nonlinear equations. The complexity of MLE rises according to the optimization method 

selected for numerical calculation. Modest MLE implementations use Newton-Raphson 

Method as an iterative method to update parameters by employing the Hessian second-

order derivative matrix. The inversion of Hessian matrices with structured form takes 

𝑂(𝑛2)  time under ideal circumstances.  Hessian inversion leads to a worst-case 

performance of 𝑂(𝑛3) in most situations because both matrix factorization and inversion 

procedures require cubic time for unorganized system components. MLE Complexity 

Summary: Newton-Raphson: 𝑂(𝑛2) (best case) to 𝑂(𝑛3) (worst case). 

 

 Complexity of Particle Swarm Optimization (PSO) 

 

PSO operates as an iterative algorithm that adjusts a swarm composed of 𝑚 particles for 𝑘 

iterations during search space exploration. The PSO system requires three main 

computational expenses. 

1. Fitness Function Evaluation: Each particle evaluates the likelihood function at 

every iteration, requiring 𝑂(𝑛) operations per particle. 

2. Position and Velocity Updates: Each particle updates its position and velocity in 

constant time, contributing a computational cost of  𝑂(1) per iteration. 

3. Global and Local Best Updates: Identifying the best solutions among 𝑚 particles 

requires 𝑂(𝑚) operations per iteration. 

Thus, the total complexity of PSO over 𝑘 iterations is: 𝑂(𝑘. 𝑚. 𝑛). 

For well-posed problems, PSO typically converges in 𝑂(𝑙𝑜𝑔𝑛) iterations, leading to a 

practical complexity of 𝑂(𝑚. 𝑛 log 𝑛). 

However, in poorly conditioned search spaces, convergence may require up to 𝑂(𝑛) 

iterations, resulting in a worst-case complexity of 𝑂(𝑚. 𝑛2). 
 

 Complexity of Least Squares Estimation (LSE) 

 

LSE finds parameters by minimizing the sum of squared residuals. The computational 

complexity depends on the solving method: 
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1. Matrix Inversion (Gaussian Elimination): Directly solving the normal equations 

results in 𝑂(𝑛3)  complexity. 

2. Cholesky Decomposition: For positive-definite matrices, complexity improves to 

𝑂(𝑛2). 

3.  Conjugate Gradient (CG) Method: An iterative approach that can achieve 

𝑂(𝑛𝑙𝑜𝑔𝑛) complexity for well-conditioned problems. 

 

5      Parameter Estimation for Linear Rate Process (LRP) 

In this section, we present two algorithms for estimating the parameters of the linear rate 

process using different approaches. The linear rate process is a mathematical model 

commonly employed in survival analysis and reliability studies. The two methods we will 

discuss are the MMLE combined with the PSO algorithm, and the direct use of the PSO 

algorithm for parameter estimation. Below, we describe each algorithm: 

 

 Modified Maximum Likelihood Estimator with PSO (MMLE-PSO) 

 

The MMLE-PSO algorithm combines the MMLE approach with the PSO algorithm to 

estimate the parameters of the linear rate process. The MMLE incorporates additional 

information or constraints into the likelihood function, enhancing the accuracy of 

parameter estimation. By integrating the PSO algorithm, inspired by social behavior, the 

algorithm iteratively searches the parameter space to find the optimal values that maximize 

the likelihood function. 
 

Algorithm 1: MMLE (MLE-PSO) Method 

 

1) Derive the likelihood function for the GMP based on the given data and model 

assumptions. 

2) Take the natural logarithm of the likelihood function obtained in step 1 to simplify the 

calculations. 

3) Formulate a system of equations by taking the derivatives of the logarithm of the 

likelihood function with respect to the parameters (𝑎, 𝑏, 𝑐) of the GGOP model. 

4) Utilize the Particle Swarm Optimization (PSO) algorithm to solve the system of 

equations obtained in step 3. 

5) Initialize the PSO algorithm parameters, including the population size 𝑁 =  50 , 

maximum number of iterations 𝑖𝑚𝑎𝑥 = 100, and PSO constants such as acceleration 

coefficients 𝑐1 = 𝑐2 = 1 and random values 𝑟1 = 𝑟2 = 0.1. Set the minimum 𝜃min =
0.4 and maximum 𝜃max = 0.9 values for the inertial weight. 

6) Generate an initial population of particles with random positions and velocities within 

the parameter space. 

7) Evaluate the fitness function for each particle in the population, where the fitness 

function is defined as the negative logarithm of the likelihood function. 

8) Update the personal best positions and velocities for each particle based on the fitness 

function evaluation. 

9) Update the global best position and velocity for the entire population by considering 

the personal best positions and velocities of each particle. 
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10) Update the positions and velocities of each particle using the PSO algorithm equations. 

11) Evaluate the fitness function for the new positions of the particles. 

12) If the stopping criterion is met (e.g., maximum number of iterations reached or 

convergence criteria fulfilled), return the best solution found. Otherwise, go back to 

step 8 and continue the iterations. 

 
 

Fig. 1. Flowchart of MLE-PSO algorithm 
 

 PSO Algorithm for Parameter Estimation 

The second algorithm directly applies the PSO algorithm to estimate the parameters of the 

linear rate process. Based on swarm intelligence, the PSO algorithm enables particles to 

explore the parameter space and identify the values that optimize a fitness function. In this 

case, the fitness function is defined based on the likelihood of the observed data, 

considering the parameters of the linear rate process. The PSO algorithm iteratively 

updates particle positions and velocities to search for the parameter values that provide the 

best fit to the observed data [21]. Both algorithms offer distinct approaches to estimating 

the parameters of the linear rate process. The MMLE-PSO algorithm combines the 

advantages of the MMLE method with the optimization capabilities of PSO by 

incorporating additional information and optimizing the likelihood function. The PSO 

algorithm, on the other hand, directly explores the parameter space to find the optimal 

parameter values that maximize the fitness function [21-22]. 

In the following sections, we explain each algorithm in detail, including the steps involved, 

the initialization of parameters and particles, the update rules, and the convergence criteria. 

We also compare the performance of the two algorithms and discuss their strengths and 

limitations in estimating the parameters of the linear rate process [22-24]. In this study, we 

would like to mention in more detail how the parameters of the PSO algorithm were 

adjusted to estimate the LRP to optimize it. Although the structure of the algorithm is 
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clearly explained, the paper must state clearly the reasons of why the specific values of 

inertia weight, acceleration coefficients (𝑐1, 𝑐2), the size of the swarm and the iteration 

number were chosen. It is important especially to specify whether such values were taken 

as a standard practice in the literature, identified by trial-and-error, or optimized either in 

a grid search or sensitivity test. Additionally, commenting as to how the thoroughness of 

parameter tuning tests premature convergence, estimation error and computational cost 

would add powerful methodological candor and utility of the suggested MMLE-PSO 

construction as depicted in the algorithm. 

Algorithm 2: PSO Method 

 

1) Decide how many particles to use. 𝑁 = 50 and how many iterations there are with 

𝑖𝑚𝑎𝑥 = 100, the acceleration coefficients 𝑐1  =  𝑐2  =  1, 𝑟1 = 𝑟2 = 0.1. Additionally, 

the inertial weight’s lowest and maximum value are: 𝜃max = 0.9 and 𝜃𝑚𝑖𝑛  = 0.4.  

2) Randomly determine initial particle positions from a Unifom distribution within the 

specified range [0,1]. Each Position Represents an Estimation for the Linear Rate 

Process Parameter 𝛽. 

3) Generate initial velocities for each particle from a Unifom distribution. 

4) Evaluate the fitness function, defined as maximum percentage error (MPE), using the 

following formula: 

                                          𝑀𝑃𝐸 = ∑ [|𝑆𝑖 − 𝑆𝑗̂|/𝑆𝑖
𝑚𝑎𝑥
1≤𝑖≤𝑛 .                                                (19) 

where, 

                                           𝑆𝑖 = ∑ 𝑋𝑗
𝑖
𝑗=1  ,  and  𝑆𝑖̂ = ∑ 𝑋𝑗̂.𝑖

𝑗=1                                         (20) 

5) Derive the parameter estimator 𝛽̂ for the studied process based on the resultant MPE 

value, updating the particle velocity (𝑉𝑖) according to the following equation: 

   𝑉𝑗
(𝑖)

= 𝜃𝑉𝑗
(𝑖−1)

+ 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗
(𝑖−1)

] + 𝑐2𝑟2[𝑔𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑗
(𝑖−1)

], 𝑗 = 1,2,3, … , 𝑁.  (21) 

As well as updating sites 𝑋𝑖 depending on the equation: 

                                             𝑋𝑗
(𝑖)

= 𝑋𝑗
(𝑖−1)

+ 𝑉𝑗
(𝑖)

;  𝑗 = 1,2, … 𝑁.                                   (22) 

6) Repeat Steps 4-5 until 𝑖𝑚𝑎𝑥 is reached. 
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Fig. 2. Flowchart of PSO algorithm 

6      Simulation 

In this section, we present a comprehensive simulation study to compare two estimation 

methods for obtaining the best parameter estimate in the studied process. The study 

consists of four stages, each designed to evaluate the accuracy and performance of the 

estimation methods [25]. 

 

Stage 1: Generating Simulated Data 

 

We generated a set of simulated data using the LRP distribution with known parameters. 

These simulated data points serve as the basis for comparing the accuracy of the two 

estimation methods. The sample size and parameter values were determined based on the 

characteristics of the studied process. To ensure reliable estimates, a sufficiently large 

sample size was used. 

 

Stage 2: Estimating Parameters Using MMLE (MLE-PSO) Algorithm 

 

In this phase, we applied the MMLE method with the PSO algorithm to estimate the 

parameters of the LRP function. The algorithm was run several times and the resulting 

parameter estimates were recorded. We calculated the RMSE values for each set of 

parameter estimates. 

 

Stage 3: Estimating Parameters Using PSO Algorithm Directly 
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At this stage, we directly applied the PSO algorithm to estimate the parameters of the LRP 

function. The algorithm was run several times and the resulting parameter estimates were 

recorded. We calculated the RMSE values for each set of parameter estimates. 

 

Stage 4: Comparing Estimation Methods 

 

In this phase, we directly compared the RMSE values of the MMLE method, the LSE and 

the PSO algorithm. The method with the lower RMSE value was selected as the best 

estimation method because it indicates higher accuracy in parameter estimation. Through 

these simulation experiments, we aim to determine the most effective and accurate 

estimation method for the parameters of the Linear Rate Process. The selected method will 

provide reliable parameter estimates that can be crucial for various applications in areas 

such as reliability analysis, survival modeling, and failure rate prediction. The results of 

this study will help to improve our understanding and application of the LRP function. 

Overall, the simulation study provides researchers with a powerful tool to evaluate and 

compare the performance of different estimation methods. This evaluation will allow them 

to determine the most accurate and effective method for obtaining parameter estimates 

associated with the LRP distribution. 

 

Table 1: Evaluating simulated RMSE for LRP using MMLE, PSO and LSE methods 

 

Parameters 

 

Sample 

Size 
Methods 𝑹𝑴𝑺𝑬(𝒂̂) 𝑹𝑴𝑺𝑬(𝒃̂) 

 
{𝒂 = 𝟎. 𝟓; 𝒃
= 𝟎. 𝟔} 

20 

MMLE 

 

0.0848 0.1166* 

PSO 

 

0.0955 0.1802 

LSE 

 

0.0974 0.1384 

{𝒂 = 𝟎. 𝟔; 𝒃
= 𝟎. 𝟓} 

MMLE 

 

0.0625 0.0942* 

PSO 

 

0.1178 0.1026 

LSE 

 

0.0686 0.1162 

{𝒂 = 𝟎. 𝟔; 𝒃
= 𝟎. 𝟕} 

MMLE 

 

0.0625 0.0359* 

PSO 

 

0.1178 0.1579 

LSE 

 

0.0686 0.1633 

{𝒂 = 𝟎. 𝟓; 𝒃
= 𝟎. 𝟔} 

50 

MMLE 

 

0.0836 0.0393* 

PSO 

 

0.0838 0.0541 

LSE 

 

0.0840 0.0440 

{𝒂 = 𝟎. 𝟔; 𝒃
= 𝟎. 𝟓} 

MMLE 

 

0.0536 0.0437* 

PSO 0.0604 0.0507 
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LSE 

 

0.0596 0.0884 

{𝒂 = 𝟎. 𝟔; 𝒃
= 𝟎. 𝟕} 

MMLE 

 

0.0395 0.0879* 

PSO 

 

0.0745 0.0966 

LSE 0.0398 0.1039 

 

The analysis of the numerical results in Table 1 shows the superior estimation performance 

of the MMLE method compared to the LSE and PSO methods for Linear Rate Process 

parameters. 

7      Application to Real Data 

The dataset used in this study is structured in a tabular format, typically in CSV or Excel 

files, where each row represents an individual event and each column captures specific 

variables. These features include Event ID, the date and time of the event, event duration 

in seconds, type of event, and the ID of the unit. The data were obtained from the 

operational logs of the Mosul Dam power plant, covering outage data from April 1, 2018, 

to January 1, 2019. Questionnaires were administered to assess the outage data. The 

structured logs, in which events were automatically logged, were supplemented by entries 

from maintenance report logs. Before analysis, the data were cleaned and preprocessed: 

duplicates were removed, missing values were addressed, and all data were standardized 

to ensure consistency across records. The final dataset contains 500 entries, with key 

statistics indicating an average outage time of 2.5 hours and a maximum outage time of 12 

hours. A frequency analysis further broke down the data, revealing that of the 500 events, 

300 were outages and 200 were planned maintenance events. For additional context, time 

series plots and bar plots were used to highlight distributions, establish trends, and observe 

the impact of outages on plant performance. This detailed data preparation and presentation 

approach enhances the accuracy and clarity of the conclusions drawn from the study. 

7.1    Goodness of-fit Test for Linear Rate Process with Estimated 
Parameter 

In statistical analysis, the goodness-of-fit test is a crucial method for selecting the 

distribution that best fits the data. This is particularly important for lifetime data, where 

classical tests often rely on graphical methods to assess the suitability of the data being 

analyzed.In this section, the analyzed data are subjected to a graphical test to assess their 

compatibility with the linear rate function. For this purpose, Plotting the cumulative 

number of days of operation between consecutive shutdowns against the process's 

logarithmic times yields the distribution. The data is likely to fit the function that 

establishes the temporal frequency of occurrence of a non-homogeneous Poisson process 

(NHPP) if these points align mostly linearly. Thus, the following equation may be obtained 

by taking the natural logarithm of the cumulative function that describes the temporal rate 

of occurrence inside the Linear Rate Process: 

                                                    𝑡 =  
−𝑎+√𝑎2+2𝑏𝑢

𝑏
.                                                         (23)                                                                                               

By using the programming language MATLAB\R2019b, the following figure was obtained 

the data below: t= [3 8 2 4 1 1 2 3 1 1 1 1 3 2 3 1 1 1 2 3 5 6 5 2 1 1 4 1 4 3 1 3 1 1 7 2 5 1 

2 1 1 3 3 1 6 1 2 3 3 1 3 2 1]. 
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Fig. 3. Cumulative number of days of operation between two shutdowns with their occurrence 

times on a logarithmic scale. 

 

It is evident from the scatter plot that a discernible linear trend exists, suggesting that 

modeling this dataset using the Linear Rate function may be appropriate. The fact that 

MMLE and LSE perform equally well, particularly with a sample size of 50, can be 

attributed to the inherent characteristics of these two estimation techniques. From our 

discussion of the properties of MMLE and LSE, we see that both methods seek to minimize 

the differences between the observed and predicted values but in different ways. The LSE 

method also measures the sum of squared differences and is generally useful in a wide 

range of cases, particularly when the indispensable criteria of linearity and normality are 

well implemented. Nonetheless, the MMLE method not only incorporates additional 

statistical properties but also seeks to optimize the likelihood function. As a result, it 

generally provides more robust parameter estimations, particularly when the data deviates 

from the models fitted using LSE. 

7.2    Test of the Homogeneity of the Process 

The LRP is a NHPP, as the rate of accidents varies over time. This time dependency 

indicates that the process is influenced by temporal changes. Specifically, the parameter μ 

is directly coupled to time t, determining the nature of the process: 

 When μ = 0, the process is homogeneous, meaning the event rate remains constant 

over time. 

 When μ ≠ 0, the process is nonhomogeneous, implying a time-dependent 

occurrence rate. 

To determine whether the process follows a homogeneous or nonhomogeneous structure, 

the following hypothesis test is conducted [23]: 

𝐻0: 𝜇 = 0, 

𝐻0: 𝜇 ≠ 0.  

Which can be tested through the following statistics: 
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                                                      𝑍 =  
∑ 𝜏𝑖

𝑛
𝑖=1 − 

1

2
𝑛𝜏0

√𝑛𝜏0
2

12

                                                       (24) 

where ∑ 𝜏𝑖
𝑛
𝑖=1   is the sum of the accident times for a period (0, 𝜏0] and 𝑛  represents the 

number of accidents that occur in a period (0, 𝜏0]. 

The homogeneity of the dataset was evaluated using the statistical laboratory based on 

Equation (24), implemented through a custom-developed program in a programming 

language. The computed test statistic (|Z| = 64.4486) significantly exceeds the critical value 

(1.96) at a significance level of 0.05. Consequently, the null hypothesis of homogeneity is 

rejected in favor of the alternative hypothesis, confirming that the process under study is 

heterogeneous. 

7.3    Estimation Estimation of Linear Rate Operation Occurrence Rate 
for real data 

Real data were used to comprehensively evaluate the effectiveness of the MMLE, LSE, 

and PSO techniques in estimating the parameters of the linear rate process under 

investigation. Comparisons were then made with the conventional MLE. This dataset 

includes the count of outage times for units at the Mosul Dam power plant, recorded from 

April 1, 2018, to January 1, 2019, and pertains to two consecutive units of the power plant. 

The parameter estimation algorithm was executed using the MATLAB/R2019b 

programming language. 

7.4    Statistical Validation of RMSE Results 

RMSE offers an effective estimation accuracy metric but statistical validation methods 

increase the confidence in the obtained results. This section employs confidence intervals 

(CIs) and hypothesis testing and sensitivity analysis to reinforce interpretations obtained 

from the RMSE assessment. 

 

 Confidence Interval (CI) for RMSE 

 

The range specified by a confidence interval can predict the actual range of estimation 

error. The calculation of a 95% confidence interval for RMSE values involves using 

standard error of RMSE on a sample of repeated simulation or cross-validation results. 

 

                                                 𝐶𝐼 = 𝑅𝑀𝑆𝐸  𝑍𝛼

2
−
+ ×

𝜎

√𝑛
                                                  (25) 

where 𝑅𝑀𝑆𝐸: is the mean RMSE over multiple runs, 𝑍𝛼

2
: is the critical value for a standard 

normal distribution (e.g., 1.96 for a 95% confidence level), 𝜎: is the standard deviation of 

RMSE values, and 𝑛: is the number of RMSE samples. 

 

 Hypothesis Testing for Method Comparison 

 

To validate whether the MMLE-PSO method significantly outperforms LSE and PSO, we 

conduct a paired t-test comparing RMSE distributions: 

 

Null Hypothesis (𝑯𝟎) 
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There is no significant difference in RMSE between MMLE-PSO and the alternative 

method (LSE or PSO). 

 

Alternative Hypothesis (𝑯𝑨) 

The MMLE-PSO method provides significantly lower RMSE than the alternative method. 

We compute the test statistic: 

                                                   𝑡 =  
𝑋̅1− 𝑋̅2

√
𝑠1

2

𝑛1
+ 

𝑠2
2

𝑛2

  ,                                                             (26) 

where 𝑋̅1, 𝑋̅2  are the mean RMSE values for two methods, 𝑠1, 𝑠2  are their standard 

deviations, and 𝑛1, 𝑛2  are the sample sizes. A p-value < 0.05  indicates statistically 

significant improvement in MMLE-PSO. 

 

 Sensitivity Analysis for Robustness 

 

A sensitivity analysis examines how RMSE values change under varying conditions. We 

perform: 

1. Varying Sample Sizes (𝑛): We evaluate RMSE stability when increasing sample 

sizes from 20 to 100 to check if MMLE-PSO remains superior. 

2. Parameter Perturbation: We introduce small variations in input parameters (a,b) 

and observe RMSE fluctuations. 

3. Noise Injection:We introduce Gaussian noise to test RMSE stability against real-

world uncertainties. 

 

 Use of MANOVA for Multivariate Comparison 

 

The multivariate analysis of variance (MANOVA) is simply the multivariate variant of 

analysis of variance (ANOVA). It majorly aims at determining whether the means of 

vectors of two or more groups vary significantly on a set of dependent variables. In 

particular, the null hypothesis that the group mean vectors are distributed through the same 

multivariate distribution is what is being tested by MANOVA, i.e. the joint effect on the 

combination of the dependent variables of the independent variable or variables is being 

tested. The use of MANOVA depends on a number of significant statistical assumptions 

which have to be met in order to make the results valid. First, the multivariate normality 

presupposes that the dependent variables are normally distributed together within a group 

within the independent variable(s). Second, linearity presupposes the existence of linear 

relationships between any two pairs of dependent variables, among pairs of covariates, and 

of any dependent variable with the covariate in all of the groups. Lastly, there is 

homogeneity of covariance matrices which states that the variance-covariance matrix of 

the dependent variable will be common to all groups, thus the dispersion and 

interdependence within the dependent variables between groups remains essentially the 

same [26-28]. 

 

 Results and Interpretation 

 

Table 2: Statistical Validation of RMSE: Confidence Intervals, Hypothesis Testing, 

Multivariate, and Sensitivity Analysis 

Method 
Mean 

RMSE 
95%CI 

p-value (vs. 

MMLE-

PSO) 

Hypothesis 

df 
Error df Sig. 
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MMLE-

PSO 
0.0253 

[0.0221, 

0.0285] 
0 8.000 72.797 0.001 

LSE 
0.0652 

[0.0604, 

0.0700] 
< 0.01 9.000 107.000 0.002 

PSO 
0.3429 

[0.3205, 

0.3653] 
< 0.001 9.000 88.000 0.001 

 

A statistical analysis conducted through 95% confidence intervals shows that MMLE-PSO 

delivers error variance performance which outranks other methods examined. The 

comparative statistical analysis through t-test proves that MMLE-PSO delivers superior 

results to LSE (p < 0.01) and PSO (p < 0.001). The sensitivity analysis verifies that MMLE-

PSO maintains stable performance because it handles different sample sizes n, input 

changes and noise environments with consistency. 

8      Analysis and Discussion of Result 

To compare the efficiency of the parameter estimation methods used in the linear rate 

method, the RMSE, which is determined by formula (4), was chosen as the criterion. With 

the help of a program specially developed for this purpose using the MATLAB\R2019b 

programming language, the estimated number of downtimes for the units within the Mosul 

Dam power plants was calculated. This analysis covered the period from April 1, 2018 to 

January 1, 2019 and concerned two consecutive units of the studied power plant. The 

standard RMSE was calculated by evaluation and the results are presented in the table 

below. 

 

Table 3: RMSE values for parameter estimation methods in linear rate 

Method RMSE 

MMLE-PSO 0.0253 (Best performance) 

LSE 0.0652 

PSO 0.3429 (Highest error) 

 

The estimation technique MMLE-PSO provided the most accurate solution because it 

produced an RMSE result of 0.0253. MMLE-PSO produced better results than LSE due to 

its lower RMSE 0.0253 yet maintained a 2.58 times better performance than LSE and 

showed an RMSE 0.3429 which was highest among the methods tested. MMLE-PSO 

successfully demonstrates its efficacy in error reduction while delivering precise parameter 

estimations for the Linear Rate Process according to the results. 

 

Table 4: Comparison of Parameter Estimation Methods for the LRP 

Method Pros Cons 

MMLE-PSO 

 

- High estimation accuracy (lowest 

RMSE). 

- Faster convergence due to PSO’s 

optimization. 

- Robust against noisy and small 

sample data. 

- Suitable for real-time event 

monitoring 

- Dependent on PSO 

hyperparameters 

- Computational cost increases in 

high-dimensional models. 

 

- Risk of local optima in highly 

irregular likelihood surfaces. 

 

 

- Effective for multidimensional 

parameter search. 

- Less accurate than MMLE-PSO 

(higher RMSE). 
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PSO 

- No need for derivatives or gradient 

calculations. 

- Good convergence for well-posed 

problems. 

- Slower convergence in poorly 

structured search spaces. 

- Can suffer from premature 

convergence to suboptimal 

solutions. 

LSE 

-Simple and computationally efficient. 

- Works well when data follows a 

linear relationship. 

- Easy to interpret results. 

- Less accurate for non-linear 

processes. 

- Sensitive to outliers. 

- Assumes homoscedasticity and 

normality, which may not hold for 

NHPP. 

8.1    Enhanced Discussion on MMLE-PSO Performance and 
Limitations 

MMLE-PSO shows better results than LSE or PSO through single-use in LRP parameter 

estimation due to its superior performance benefits. The accuracy and computational 

efficiency improvements from MMLE-PSO need evaluation in relation to its both 

advantageous aspects as well as possible downsides. 

 

 Cases Where MMLE-PSO Outperforms Other Methods 

 

1. Accuracy of Parameter Estimation 

 

Table 3 demonstrates that MMLE-PSO delivers the smallest value of 0.0253 for mean 

RMSE compared to LSE 0.0652 and PSO 0.3429, thus producing the best estimation 

results. MMLE-PSO produces highly accurate parameter estimates through its overlapping 

statistical advantages of MLE and the optimization strengths of PSO algorithm. MMLE-

PSO maintains lower error variance according to the 95% confidence interval results which 

demonstrates its dependable character. 

 

2. Computational Efficiency 

 

MMLE-PSO needs fewer iterations to converge than standard MLE because of its Newton-

Raphson algorithm implementation that operates at 𝑂(𝑛2)  to 𝑂(𝑛3) . The efficient 

parametric set search of MMLE-PSO stands out from traditional PSO because it capitalizes 

on the nature of the likelihood function to direct its swarm toward the most appropriate 

parameter set. MMLE-PSO delivers practical computational performance with 

𝑂(𝑚. 𝑛 log 𝑛) complexity in well-conditioned situations thus making it a suitable tool for 

handling large datasets. 

 

3. Robustness in Noisy and Small-Sample Scenarios 

 

The MMLE-PSO method shows static behavior when test parameters change including 

sample size variation and data noise intensity and measurement uncertainties. The accuracy 

of MMLE-PSO remains steady regardless of non-constant error variance because it does 

not show the bias that LSE exhibits while the MMLE-PSO performs reliably when MLE 

fails in small-sample conditions. MMLE-PSO demonstrates impressive performance in 

real-world applications because it shows reliability for failure prediction models especially 

during reliability assessment of the Mosul Dam power plant dataset. 
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 Limitations of MMLE-PSO and Potential Challenges 

 

1. Dependence on PSO Hyperparameters 

The optimization efficiency of MMLE-PSO depends on proper adjustment of PSO 

hyperparameters (swarm size 𝑚, inertia weight 𝜔, and acceleration coefficients 𝑐1, 𝑐2) 

because the method combines statistical inference with PSO. Extremely poor parameter 

values for optimization settings result in slowly converging search or unsatisfactory 

estimation results particularly when dealing with intricate search spaces. Scientists need to 

create adaptive PSO mechanisms which automatically modify hyperparameters while 

optimization occurs. 

 

2. Computational Cost in High-Dimensional Models 

 

MMLE-PSO uses fewer computational steps than Newton-Raphson MLE yet its 

operational complexity escalates when the parameter dimensions increase. The 

computational process for PSO with high-order NHPP models becomes slower with 

increased covariates because it needs larger swarm sizes and many additional iterations for 

convergence to occur. High-dimensional optimization efficiency could be increased 

through the combination of gradient-based optimization techniques with MMLE-PSO. 

 

3. Risk of Local Optima in Non-Smooth Likelihood Functions 

 

In certain cases where the likelihood surface is highly irregular, PSO-based methods may 

converge to local optima instead of the global maximum. This limitation is less pronounced 

in MMLE-PSO due to its likelihood-guided search, but it cannot be entirely eliminated. 

Future improvements may involve incorporating adaptive mutation operators or 

hybridizing PSO with gradient-based refinements to ensure global optimality. 

 

 Summary and Future Directions 

 

MMLE-PSO achieves superior results compared to LSE and standard PSO because it 

provides enhanced accuracy levels and faster convergence speed as well as improved 

robustness for parameter estimation. MMLE-PSO operates best in conditions where 

hyperparameter optimization requirements are minimal and when dealing with high-

dimensional models alongside smooth to non-smooth likelihood surfaces. Theiguiente 

study should analyze flexible PSO methods and hybrid optimization structures along with 

scalability methods to enhance MMLE-PSO performance for big predictive modeling 

projects in reliability engineering. 
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Fig. 4. Estimations of the mean rate of occurrence of power operation compared with the 

real data. 

 

Figure 4 evaluates the ability of MMLE-PSO to predict mean occurrence rates, compared 

with actual power operation observations at the Mosul Dam facility. MMLE-PSO 

demonstrates its capacity to accurately detect natural event patterns in the underlying data, 

as its estimated values closely match the actual data observations throughout the period. 

MMLE-PSO outperforms both LSE and PSO in terms of prediction quality and 

convergence speed, providing optimal estimates for complex event-based systems, 

particularly power outages. MMLE-PSO establishes a strong correlation between 

forecasted and actual values, optimizing precision and operational efficiency while 

minimizing prediction errors over time, which results in improved predictive 

dependability. Unlike LSE and PSO, MMLE-PSO remains consistent despite fluctuations 

in the event occurrence rate, whereas both LSE and PSO exhibit substantial deviations. 

The RMSE analysis confirms that MMLE-PSO outperforms LSE and PSO, achieving the 

lowest RMSE value of 0.0253, thus establishing it as the best technique for reliability 

engineering event occurrence rate estimation. MMLE-PSO offers exceptional value for 

power system predictive maintenance due to its effectiveness in generating accurate real-

time results. Future research should explore adaptive learning technologies, such as 

Bayesian optimization and deep learning, to further enhance real-time precision estimates 

and improve the robustness of this method for deployment in dynamic industrial 

environments. 

9      Conclusion  

This study employs the MMLE-PSO framework to estimate the parameters of Linear Rate 

Processes, which are used for outage predictions at the Mosul Dam power plant. MMLE-

PSO offers superior parameter accuracy and computational efficiency due to its 

combination of statistical inference and metaheuristic optimization features, compared to 

LSE and MLE methods. By optimizing data efficiency, MMLE-PSO enhances data 

processing capabilities for complex structures and large datasets. It also provides adaptive 

optimization capabilities that accelerate convergence rates and reduce prediction errors, as 

demonstrated by computer simulations. MMLE-PSO performs optimally for real-time 

event monitoring, delivering excellent predictive results for time-dependent systems. As a 

result, it becomes an essential tool for reliability engineering and predictive analytics 

applications. MMLE-PSO, when tested with graphical goodness-of-fit measures, shows 

favorable results for estimating outage frequencies through the NHPP parameter method. 

Future research should explore different adaptive learning systems, Bayesian inference, 

and deep optimization integration approaches to further improve parameter estimation 

across diverse industrial datasets. 
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