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Abstract 

     One serious natural calamity that affects ecosystems, water supplies, and 
agriculture worldwide is drought. To lessen the consequences of drought, early 
detection of its circumstances is essential. By combining Normalized Difference 
Vegetation Index (NDVI) with Enhanced-Long Short-Term Memory (E-LSTM) 
algorithm for drought prediction model, this study offers an innovative approach 
for drought prediction. NDVI, a widely used satellite-derived vegetation index, is 
used to monitor vegetation health, which correlates with drought severity. The 
drought prediction model in this study uses E-LSTM's capacity to capture long-
range dependencies to forecast drought conditions by examining temporal patterns 
of NDVI data over time with other related climate variables like temperature, 
rainfall and surface soil moisture, then results indicate its effectiveness in 
providing accurate early drought warnings. This research aims to fill the gap of 
issuing early warning for a slow onset type hazard like drought. The Root Mean 
Squared Error (RMSE) of 0.0571 is used to evaluate the model's performance.  

     Keywords: Drought Prediction, Enhanced Long Short-Term Memory (E-LSTM), 
Normalized Difference Vegetation Index (NDVI), Remote Sensing, Machine Learning. 

1      Introduction 

A frequent natural calamity, drought has a major impact on environmental health, water 

availability, and agricultural output [1]. Due to its complexity, slow appearance, lack of a 

clear commencement, and dependence on multiple factors, drought is challenging to 

forecast and measure. As a result, the severity and frequency of droughts differ over time 

and space [2]. In order to parameterize drought, different meteorological and land surface 

characteristics are considered in drought research [3]. To lessen the effects of drought, 

especially in areas where agriculture is the main economic driver, early warning is crucial 

[4]. When evaluating drought conditions, vegetation health measures like the Normalized 

Difference Vegetation Index (NDVI) have shown themselves to be reliable agents. The 

NDVI is a satellite-derived indicator that measures the health and density of vegetative 

cover, both of which are directly impacted by the availability of moisture [5]. This study 
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employs NDVI data in time-series to model and predict drought conditions through 

Enhanced-Long Short-Term Memory (E-LSTM) networks, a variant of Recurrent Neural 

Networks (RNN).  A complex method of predicting drought conditions is an NDVI-based 

Drought Prediction Model trained with E-LSTM that incorporates weather-related 

variables like temperature, rainfall, and surface soil moisture. Using the temporal learning 

capabilities of E-LSTM networks, this methodology takes advantage of the strengths of 

the main meteorological and hydrological drivers of drought as well as vegetation response 

(as measured by NDVI). Effective drought prediction is thus critical for mitigating the 

negative repercussions of droughts and fostering long-term resilience in drought-prone 

areas. As NDVI prediction can be contributed to forecast drought for early warning, 

informed decision-making tools, and real-time monitoring, the result of this research plays 

a significant role in enhancing various essential elements of drought management and 

resilience. 

This paper is organized as following. A literature review of the related work will be 

described in Section 2 to study the existing research works on applying satellite-based 

indicator for detecting drought condition and prediction to issue early warning for drought 

condition in applying E-LSTM. Materials and methods applied of the research work will 

be appeared as Section 3. The results from the research will present as Section 4. Lastly, 

the results will be interpreted and the research's practical implications will be discussed in 

section 5. The paper will conclude with the outlooks for future work to extend the accuracy 

of the prediction model and improvement to be applicable in the real-world. 

2      Related Work 

With the normalized difference vegetation index, or NDVI, changes in the region's 

vegetation cover and the trend of crop-related drought occurrence can be investigated [6].  

NDVI is mainly used to define the area of drought and desertification as a way to monitor 

drought and NDVI can be extracted from satellite images [7]. In order to ensure sustainable 

food production, NDVI is crucial because it enables farmers to monitor crop wellness and 

locate areas where concern. Furthermore, NDVI is a crucial component of studies for 

climate change and supports researchers in comprehending how growth of plant and yield 

are impacted by environmental changes because vegetation is extremely prone to changes 

in the seasons and climate [8]. NDVI can be used to monitor drought, but it is insufficient 

to provide early warning since impact-based forecasting and early warning are required to 

obtain more current as well as historical information. Time and scale affect the connection 

between NDVI and climate parameters. Globally, temperature has a notable effect on the 

NDVI [9]. In regional scale, it was occurred that the precipitation was the main factor for 

influencing to NDVI [10]. A key factor in agricultural performance is the amount of 

moisture in the soil, which also controls how solar energy is divided into sensible and latent 

energy and how precipitation is divided into runoff and infiltration [11]. A correlation 

exists between soil moisture and NDVI because soil moisture is important for plant growth. 

Low soil moisture can cause stress and unhealthy in plants, which can lower NDVI levels. 

Consequently, NDVI can be applied to track content in soil moisture and identified regions 

that are under drought stress [12]. Remote sensing satellites that record NDVI with a spatial 

resolution of 0.03 km to 8 km include the Landsat series, the Advanced Very High-

Resolution Radiometer (AVHRR), and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) [13][14][15]. Among these satellites, satellite images 

acquired by the series of Landsat satellite are widely used. Since 1972, the Landsat 

satellites have been gathering information about the Earth's surface. Landsat is a useful 
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tool for determining NDVI and researching vegetation dynamics due to its suitable 

moderate spatial resolution, spectral bands, long-term data record, and free availability. 

Even though other satellites offer advantages, Landsat is still essential for a lot of 

applications regarding vegetation.  

One of the most important instruments on NASA's Terra & Aqua satellites is the MODIS 

(Moderate-Resolution-Imaging-Spectroradiometer). MODIS uses various spectral bands, 

including some in the thermal infrared spectrum, to estimate Earth's radiance. LST, or the 

Earth's surface temperature, is calculated using these observations. MODIS offers high 

temporal frequency (a maximum of four times every day) as well as a variety of spatial 

resolutions (between 1 and 6 km) for LST data [16]. MODIS LST is widely applied for the 

area of the agriculture monitoring and drought monitoring because of its high temporal 

resolution, wide coverage, and multiple thermal bands [17].  

A popular rainfall dataset in scientific research, especially in areas like hydrology, 

agriculture, and climate studies, is CHIRPS (Climate-Hazards-Group-InfraRed-

Precipitation with Stations) because of its high resolution, long time span, and global 

coverage. Particularly in areas with few ground-based observations, CHIRPS data is 

essential for detecting and tracking drought conditions [18]. CHIRPS data is exceptionally 

good at monitoring monthly precipitation and is appropriate for determining drought [19]. 

Monthly CHIRPS data can demonstrate to track the rainy and dry seasons by forecasting 

for onset and withdraw of rainy season because it can provide for the understanding of 

rainfall patterns [20].  

The Soil Moisture Active Passive (SMAP) project was initiated by NASA in 2015, since 

then, it has produced useful surface soil moisture (SSM) data that has been utilized 

extensively in a wide range of scientific fields. SMAP is a crucial tool for comprehending 

Earth's hydrological processes and how they interact with other systems because of its high 

resolution and nearly worldwide coverage, which enable the monitoring of SSM with 

unprecedented accuracy. The primary causes of drought are a lack of precipitation, a 

lessening in soil moisture, and an increase in temperature. Additionally, several studies 

demonstrated the effectiveness of the SMAP soil moisture in tracking agricultural drought 

and weather conditions. In order to detect drought, SSM demonstrated a dependable and 

anticipated response by gathering data on seasonal variations in evapotranspiration, land 

surface temperature, and precipitation [21]. Analyzing the normalized differential 

vegetation index's (NDVI) lagged correlation agreement with soil moisture, which can be 

helpful in providing vital evidence on drought in agriculture in worldwide and support this 

more focused, comprehensive method to global monitoring and forecasting in agriculture, 

is how the system's accuracy is determined [22]. Because soil moisture shortages can result 

in agricultural and hydrological droughts, SMAP data helps in the identification and 

monitoring of drought conditions. It performed reasonably well and had an adequate level 

of accuracy when it came to tracking drought in a particular area [24]. 

Recurrent neural networks (RNNs) of LSTM (Long Short-Term Memory) network type 

introduced by Hochreiter and Schmidhuber in 1997, are especially well-suited for time 

series forecasting tasks, such as weather forecasting. LSTMs can overcome vanishing 

gradient problem occurred in the traditional RNNs through a specialized architecture with 

"gates" that regulate the flow of information. These gates enable the network to identify 

long-term trends in the data by selectively remembering or forgetting historical 

information. LSTM networks have been demonstrated effective in a variety of weather 

forecasting applications. LSTM models can reliably anticipate temperature changes on a 

variety of time frames, ranging from long-term seasonal forecasts to short-term hourly 
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forecasts [25]. Moreover, the ability of LSTM networks to forecast precipitation types and 

amounts, such as rainfall, hail and snowfall, is essential for managing resources of water 

and forecasting floods [26]. LSTM networks can be used to predict the frequency and 

intensity of extreme weather events like heatwaves, droughts, and storms, which can assist 

in disaster preparedness and mitigation [27].  

The capacity of LSTM to learn time-dependent hydrological processes allowed it to 

surpass Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural 

Networks (ANNs). Temporal relationships in time-series data are essential for 

comprehending drought development, but they are not naturally captured by the majority 

of conventional machine learning models, such as RF SVM, and ANNs [28]. Traditional 

machine learning models need manual creation of lagged variables (such as past 

temperature or rainfall), which is time-consuming and frequently suboptimal, in contrast 

to LSTM, which automatically learns temporal patterns [29]. When correlations between 

variables and drought indices vary over time, SVMs and decision trees frequently perform 

poorly in terms of generalization, even if some models (such as ANN) can manage 

nonlinearity. It is found that RF and SVM were less flexible when it came to capturing 

dynamic drought evolution [30]. 

3      Problem Formulations or Methodology 

3.1 Data Collection 

The collecting of data is a fundamental stage in creating an accurate and dependable 

drought prediction model, particularly when utilizing remote sensing technology. This 

research aims to predict the NDVI value for drought early warning using LSTM of machine 

learning algorithm. To create a reliable LSTM-based drought prediction model, we used 

the Google Earth Engine (GEE) platform to collect multi-source satellite time-series data. 

Four major datasets were used in this study: Landsat 8 NDVI (LC08/C02/T1_TOA), 

CHIRPS rainfall estimations, MODIS Land Surface Temperature (LST), and SMAP 

Surface Soil Moisture. 

3.1.1  NDVI from Landsat 8 

In order to detect drought conditions, NDVI from Landsat 8 was utilized which can indicate 

vegetation stress caused by drought. Landsat-8 imagery's Normalized Difference 

Vegetation Index (NDVI), which has a great spatial resolution and spectral capabilities, 

makes it an effective tool for identifying and tracking drought situations. The red and near-

infrared (NIR) bands are utilized to determine the NDVI, which is a trustworthy measure 

of the health and vigor of vegetation. The 30-meter-resolution data provided by Landsat-

8's Operational Land Imager (OLI) makes it particularly useful for in-depth local and 

regional drought evaluations. With its 30-meter spatial resolution, Landsat 8 provides a 

good balance between coverage and detail. Because of its high spatial resolution, long-

term data consistency, and demonstrated sensitivity to vegetative stress, Landsat-8 NDVI 

is an essential tool for identifying and evaluating the effects of drought. It helps with 

agricultural, water resource management, and environmental preservation by enabling 

prompt responses to drought situations through integration with decision-support systems. 

The NDVI is calculated by the following equation (1) and is depends on variations in 

electromagnetic spectrum's red and near-infrared regions: 

NDVI  =  ( NIR – Red ) / ( NIR + Red )                 (1) 
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where the words 𝑅𝑒𝑑 and 𝑁𝐼𝑅, respectively, represent the observations of spectral 

reflectance in the visible red and near-infrared bands. The NDVI scale has values between 

-1 and 1. Clouds and water are usually represented by negative values, whereas bare earth 

is represented by positive values near zero. Larger amounts of vegetation are indicated by 

higher positive NDVI values, ranging from thin vegetation (0.1~0.5) to dense green 

vegetation (0.6 and above) [22]. The calculated observed NDVI values for the area of 

interest are described at Table 1. 

Table 1: Observed NDVI values from Landsat-8 

NDVI 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 

Jan 0.30 0.37 0.43 0.39 0.40 0.29 0.34 0.39 0.42 0.48 

Feb 0.29 0.25 0.34 0.33 0.33 0.30 0.29 0.36 0.32 0.42 

 Mar 0.23 0.22 0.26 0.25 0.22 0.25 0.18 0.28 0.21 0.32 

Apr 0.19 0.24 0.27 0.27 0.24 0.23 0.24 0.34 0.27 0.27 

May 0.25 0.26 0.32 0.26 0.28 0.17 0.25 0.25 0.38 0.24 

Jun 0.30 0.20 0.24 0.24 0.24 0.26 0.23 0.26 0.28 0.30 

Jul 0.13 0.25 0.26 0.25 0.24 0.33 0.23 0.27 0.36 0.28 

Aug 0.26 0.13 0.28 0.24 0.19 0.26 0.25 0.42 0.23 0.26 

Sep 0.26 0.29 0.31 0.46 0.35 0.32 0.34 0.41 0.33 0.32 

Oct 0.42 0.36 0.33 0.23 0.48 0.40 0.35 0.37 0.47 0.43 

Nov 0.50 0.47 0.55 0.52 0.52 0.60 0.49 0.52 0.52 0.65 

Dec 0.41 0.52 0.47 0.44 0.52 0.43 0.50 0.44 0.44 0.55 

The NDVI scale has values between -1 and 1. Clouds and water are usually represented by 

negative values, whereas bare earth is represented by positive values near zero. Larger 

amounts of vegetation are indicated by higher positive NDVI values, ranging from thin 

vegetation (0.1~0.5) to dense green vegetation (0.6 and above) [27]. The classification for 

the NDVI is presented as in Table 2. 

Table 2: Classification of NDVI 

Ranges of NDVI 

Values 
Severity Level Vegetation Status 

Between -1 and 0 Severe Dead Plant, Object or Water Body 

Between 0 and 0.33 Moderate Unhealthy plants 

Between 0.33 and 0.66 Mild Moderately healthy plants 

Between 0.66 and 1 No Drought Very healthy plants 

3.1.2  Rainfall from CHIRPS  

Rainfall data of Climate-Hazards-Group-InfraRed-Precipitation-with-Stations (CHIRPS) 

is ideal for drought prediction because of a number of features that correspond to the 

particular requirements of drought forecasting and monitoring. It can be used in a variety 
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of areas, even those with poor rain gauge networks, because of its quasi-global coverage 

(50°S to 50°N latitude). It can record very fine spatial variations in rainfall patterns with a 

0.05° spatial resolution, or around 5 km. Due to its wide coverage, CHIRPS enable reliable 

monitoring in areas that are frequently affected by droughts. The CHIRPS monthly rainfall 

data is appropriate for analyzing drought conditions. The monthly rainfall data were also 

extracted for 10 years of the same temporal resolution with Landsat-8 NDVI. 

3.1.3  MODIS Temperature 

Data from MODIS (Moderate-Resolution-Imaging-Spectroradiometer), LST (Land 

Surface Temperature) is useful for forecasting drought. Near-global coverage from 

MODIS makes it possible to monitor drought across large areas. Its high temporal 

frequency (observations made several times a day) makes it possible to detect the quick 

changes in LST, which is essential for tracking the beginning and development of drought. 

This is particularly useful in places where there aren't enough ground-based weather 

stations. Monthly temperature data was collected for ten years at the same temporal 

resolution. 

3.1.4 Surface soil moisture from SMAP 

Soil moisture data, particularly from missions like SMAP (Soil Moisture Active Passive), 

is exceptionally valuable for drought prediction due to its direct and immediate relationship 

with drought conditions. SMAP provides global coverage with a relatively high temporal 

resolution (2-3 days), allowing for frequent monitoring of soil moisture changes. The data 

is available at various spatial resolutions, suitable for regional and local-scale drought 

monitoring. Ten years of monthly soil moisture data were gathered with the same temporal 

resolution. 

The parameters using in this research were collected by using the Google Earth Engine 

(GEE). GEE is a robust cloud-based tool for visualizing and analyzing geographic data. It 

offers a vast collection of satellite imagery and other geospatial datasets, as well as tools 

for large-scale processing and analysis. The study area was chosen the Central Dry Zone 

in Myanmar based on its vulnerability to drought, and the time frame examined was 2015–

2024. 

3.2 Data pre-processing and Data splitting 

In order to ensure that satellite data is reliable, consistent, and appropriate for additional 

analysis, data preparation is an essential step after data acquisition. Preprocessing data is 

essential for E-LSTM algorithm for drought prediction to produce reliable and accurate 

time series prediction results. Missing data points were handled through interpolation 

methods, ensuring continuous time-series data for E-LSTM modeling. Different temporal 

resolutions are present in the datasets used in this research. To ensure consistent and 

uniform temporal resolutions for all datasets, all datasets were transformed into monthly 

datasets by taking the mean values respectively.  

Training and test sets have been created from this collected data, respectively.  The training 

set covered the period from January 2015 to December 2021, and the testing set covered 

the term of January 2022 to December 2024. 
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3.3 Methodology 

After collecting and cleaning for the preparation of the necessary dataset for drought 

prediction model, an E-LSTM neural network-based drought prediction model designed 

especially for Myanmar's Central Dry Zone. This area is especially susceptible to the 

effects of drought and is distinguished by its distinct dry and rainy seasons. In order to 

forecast future drought conditions, the model will make use of historical remote sensing 

data (Landsat 8 NDVI, CHIRPS Rainfall, MODIS Land Surface Temperature, SMAP 

Surface Soil Moisture).  

3.3.1  Study Area 

The Dry Zone Greening Department claims that the central dry zone of Myanmar is more 

than 54,000 km in size and includes 15 districts (Kanblu, Kyaukse, Magway, Meiktila, 

Minbu, Monywa, Myingyan, Nyaung-U, Oke Ta Ra, Pakokku, Sagaing, Shwebo, Thayet, 

Yamethin, Yinmarbin) with 54 townships distributed throughout the four regions of 

Magway, Mandalay, Sagaing (Lower) and Nay Pyi Taw. It is home to about 25% of the 

country's population. Compared to other regions of the country, the research area received 

less rainfall due to the Rakhine mountain ranges located along the west of the study area, 

which can cause a weakening of the southwest monsoon onset. The temperature is 

extremely high; in March, April, and May, it used to rise above 40 degrees Celsius. 

Communities in those areas are more vulnerable to drought, which may harm food security, 

resulting of variations in land use and land cover, which also contribute to aridness by 

combining high temperatures and low rainfall. The research's study area and drought risk 

level map are depicted in Fig 1(a) and (b), respectively. 

 

(a)             (b) 

Fig 1. Study Area 

The necessary parameters, namely monthly Rainfall, temperature, surface soil moisture, 

and NDVI, for predicting NDVI for the upcoming month in this research were acquired 

from the respective satellites within the same timeframe. Apart from the rainfall, 

temperature and surface soil moisture, NDVI values are calculated by using the formula 

described in above equation (1). 

After collection the necessary data, data cleaning, handling the missing values, performing 

the normalization process as the data pre-processing. Then creating the drought database 

to get the historical drought record for the study area by using the acquired NDVI data 

from the past in order to detect the drought conditions of the study area. Finding correlation 
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between among these four parameters for every months of the study period was also 

performed for the understanding how individual input features correlate with the target 

variable can help in feature selection for E-LSTM drought prediction model. 

3.3.2 Model Development 

The Enhanced-LSTM (E-LSTM) model architecture drought prediction consists of 

multiple layers of LSTM cells, which are intended to identify patterns that persist in the 

NDVI data in time-series. In this research, multiple time-series data of four input data were 

fed to the E-LSTM as the multivariate time-series to forecast the NDVI value for the 

upcoming month to predict drought. 

The inputs to the E-LSTM model are sequences of past monthly data for Rainfall, 

Temperature, Surface Soil Moisture and NDVI values for 10 years, and the output is a 

prediction of future drought severity. Depending on the forecasted NDVI values as 

referenced in Table 2, drought severity was categorized into different levels such as “no 

drought”, “mild drought”, “moderate drought” and “severe drought”. The workflow for the 

drought prediction model is as described in Fig 2. 

 

Fig 2. Drought Prediction Model 

In this study, the model was employed two stacked E-LSTM layers with 64 hidden units, 

each to capture complicated temporal relationships between these input values. In order to 

maximize computing efficiency and gradient stability, training of the model was conducted 

using a batch size of 16. The model was also trained for 100 epochs to allow the network 

to fine-tune its weights and reduce prediction errors, ensuring enough learning and 

convergence. In order to provide precise forecasts of the desired outcome, this 

configuration attempts to find a stability between complexity of model and computational 

efficiency. The Drought Prediction Model equipped with the E-LSTM by using timeseries 

of rainfall, temperature, soil moisture and NDVI was deployed and trained. The 

mathematical expression for E-LSTM for drought prediction model can be expressed as in 

Equation (2): 

𝑁𝑖 = [𝜎 (𝑣𝑖
𝑡 𝑅𝑡 ± 𝑏𝑖), 𝜎 (𝑣𝑖

𝑡 𝑇𝑡 ± 𝑏𝑖), 𝜎 (𝑣𝑖
𝑡 𝑆𝑡 ± 𝑏𝑖), 𝜎 (𝑣𝑖

𝑡 𝑁𝑡 ± 𝑏𝑖)]𝑅  (2) 

where Ni  - NDVI prediction for Drought,  

Rt - Rainfall of ‘t’th month 

Tt - Temperture of ‘t’th month 

St - Surface Soil Moisture of ‘t’th month 
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Nt - NDVI value of ‘t’th month 

vi
t - validation for overfitting of previous time 

bi - base of ‘i’th -1 trained value 

All the monthly input variables to the E-LSTM were applied trainable weight by softmax 

as the relative significance of input features (rainfall, temperature, soil moisture, and 

NDVI) for drought prediction is dynamically quantified by trainable weights in LSTM 

models. This enables the model to suppress noisy or irrelevant features (e.g., ignore 

temperature in winter-dominated droughts), reveal physical relationships through weight 

magnitudes (interpretability), and adjust to regional climate patterns (e.g., prioritise NDVI 

in arid regions vs. rainfall in humid zones). In doing so, the standard LSTM was enhanced 

all the time being depending on the seasonal changes with weight magnitudes to the input 

features and the prediction accuracy of the model is getting higher.   

A variety of time spans were used to train the model:12-months, 24-months, 36-months, 

48-months, 60-months, 72-months, 84-months, 96-months, 108-months and 120-months, 

respectively. A validation set consisting of 30% of the trained data was utilised to track the 

model's performance accuracy. After training the Drought Prediction Model with different 

time spans, a drought database for the study area was created as shown in Table 3. The 

predicted NDVI for drought can be seen as the last row in the database, and can also be 

known whether it was predicted or observed by the control Boolean variable named 

“isPrediction.” If this Boolean variable value “FALSE” means that this data is not 

predicted, otherwise it is predicted. 

Table 3: A Drought Database for the Study Area 

 

4 Model Evaluation 

The NDVI prediction results for every January of the study period from 2015 to 2024 by 

the E-LSTM drought prediction model. The evaluation for the model was performed on 

the results for every January, as the weather condition is not too wet or dry, and it is a 

favorable condition to assess the vegetation condition, especially for the study area in this 

research. It is significant that for most years, the predicted NDVI values closely follow 

observed trends. In contrast, 2020 shows a notable discrepancy, with an actual value of 

0.29 compared to a forecasted value of 0.4247. It was an outlier for 2020 and possibly due 

to environmental or anthropogenic anomalies (e.g., drought, land-use change, global 

date temperature rainfall soil_moisture drought_score createdAt isPrediction __v

2015-01 36.54 0.12 30.33 0.3 2025-05-15T11:34:29.978Z FALSE 0

2015-02 41.25 4.39 20.34 0.29 2025-05-15T11:34:29.980Z FALSE 0

2015-03 48.45 3.59 26.11 0.23 2025-05-15T11:34:29.982Z FALSE 0

2015-04 53.58 17.19 28.37 0.19 2025-05-15T11:34:29.983Z FALSE 0

2015-05 46.67 90.66 66.25 0.25 2025-05-15T11:34:29.985Z FALSE 0

2015-06 42.35 123.8 100.3 0.3 2025-05-15T11:34:29.986Z FALSE 0

2015-07 36.21 360.49 213.24 0.13 2025-05-15T11:34:29.988Z FALSE 0

2015-08 27.41 160.23 225.66 0.26 2025-05-15T11:34:29.989Z FALSE 0

2015-09 39.51 181.4 217.8 0.26 2025-05-15T11:34:29.991Z FALSE 0

2015-10 37.03 157.85 211.49 0.42 2025-05-15T11:34:29.992Z FALSE 0

2015-11 37.09 45.92 141.29 0.5 2025-05-15T11:34:29.995Z FALSE 0

2015-12 35.47 2.56 70.28 0.41 2025-05-15T11:34:29.997Z FALSE 0

2016-01 35.29 0.21 33.75 0.37 2025-05-15T11:34:29.998Z FALSE 0

2016-02 27.55 4.5 26.21 0.25 2025-05-15T11:34:30.000Z FALSE 0

2016-03 47.37 5.07 22.27 0.24336845 2025-05-15T11:34:30.002Z TRUE
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pandemic effects. To assess the predictive accuracy of the E-LSTM model, common 

performance metric of Root Mean Squared Error (RMSE) was applied that is the standard 

deviation of the prediction error. It is calculated by taking the square root of the total of the 

square differences between the actual value (X) and the anticipated value (Y). The 

mathematical presentation for RMSE is in Equation (3). 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑁

𝑖=1
      (3) 

It is evident that, with the exception of January 2020, the results for each January during 

the ten-year study period of 2015-2024 are quite comparable with the observed NDVI 

values as shown in Figure 3. 

 

Fig 3. Comparison Chart for Predicted and Observed NDVI values 

It was because the year 2020 had unprecedented meteorological conditions, such as record 

temperatures, wildfires, and ocean heat, according to the World Meteorological 

Organization. The model captures the majority of the wider drought patterns and offers a 

reliable foundation for NDVI estimates across time. The predicted NDVI values by E-

LSTM was also compared with the values by the standard LSTM with same input 

parameters for same time span as in Table 4 and it is found that the RMSE for the standard 

LSTM was 0.104. 

Table 4: Comparison of predicted NDVI values by Standard and Enhanced LSTMs 

  Predicted NDVI  

(LSTM) 

Predicted NDVI  

(E-LSTM) 

Observed NDVI 

2016-Jan 0.406 0.363 0.37 

2017-Jan 0.516 0.449 0.43 

2018-Jan 0.466 0.437 0.39 

2019-Jan 0.438 0.377 0.4 

2020-Jan 0.516 0.425 0.29 

2021-Jan 0.429 0.369 0.34 

2022-Jan 0.500 0.408 0.39 

2023-Jan 0.440 0.374 0.42 

2024-Jan 0.440 0.395 0.48 

2025-Jan 0.550 0.450 0.48 



 

279                                                                        Normalized Difference Vegetation … 

5. Results and Discussion 

A wide range of drought-related variables obtained from the remote sensing datasets can 

be fed into deep learning or machine learning models like the E-LSTM to increase the 

predictive accuracy of the models and teach them complicated, non-linear correlations. The 

model was trained with different time spans, and the predicted NDVI values were close to 

the observed NDVI values over time. The model can capture multiple facets of drought 

development thanks to the synergy between diverse indicators, producing predictions that 

are more accurate and dependable. It can be said that the predicted NDVI values for most 

of years closely match the trends that have been noticed. Over the course of the decade, 

the anticipated NDVI exhibits comparatively consistent behavior. Moreover, the Drought 

Risk Mapping Tool can be provided to decision-makers in the disaster management and 

agricultural sectors to ensure the prevention and mitigation of drought risk measures based 

on the results from research work as shown in Fig 4. This mapping tool can provide not 

only a prediction of the NDVI value for the drought severity of the coming month but also 

access to the historical records of the drought severity from its drought database to perform 

the necessary analysis by the decision makers. 

 

Fig 4. Drought Risk Mapping Tool for Study Area 

The E-LSTM model demonstrated superior performance in predicting NDVI values, with 

an RMSE of 0.059. Long-term patterns and variations in NDVI data, which correlate to 

different phases of drought development, were taken by the model. The E-LSTM model 

showed a substantially lower error rate than conventional techniques, especially for 

medium and severe drought situations. Predicted and observed drought conditions for 

different time periods were visually compared, and the accuracy was great, particularly in 

areas that had protracted dry spells, mainly in the central parts of the research region. 

We also carried out a sensitivity analysis to determine how different hyperparameters 

affected the model's performance. It was discovered that two crucial elements in improving 

the model's prediction power were the ideal number of E-LSTM units and the learning rate. 

6. Conclusion 

The integration of Landsat-8 for detailed vegetation monitoring, MODIS for frequent 

vegetation and temperature updates, CHIRPS for accurate rainfall estimates in a potentially 

data-sparse region, and SMAP for vital soil moisture information can get better accuracy 

and efficacy of the models for drought prediction in the study area for this research, the 
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Central Dry Zone of Myanmar, which is susceptible to agricultural drought and 

experiences distinct dry seasons. This will support improved agricultural planning and 

water resource management. 

This study shows how E-LSTM networks and NDVI data together with climate variables 

can be combined to accurately predict drought. In predicting drought conditions, the model 

in this research performs better than conventional statistical and machine learning 

techniques, offering a reliable instrument for early warning systems. To further improve 

the model's accuracy and resilience, future research will concentrate on incorporating other 

environmental factors like land-use land cover and evapotranspiration. Furthermore, real-

time drought monitoring and prediction are made possible by the operational integration 

of real-time satellite data into the system. In conclusion, the use of more than one parameter 

in E-LSTM models for drought prediction improves the precision, resilience, and 

generalizability of the forecasts; it also better captures complex relationships and temporal 

dynamics; and it yields more reliable early warnings and observations. A comprehensive 

awareness of drought conditions is made possible by this multi-parameter approach, which 

enhances readiness and decision-making. 
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