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Abstract 

Software architecture plays a critical role in ensuring system quality, yet manually 

identifying architectural patterns and tactics in codebases remains time-consuming and 

error prone. While traditional tools like Archie automate parts of this process, the emergence 

of large language models (LLMs) like ChatGPT offers new opportunities for scalable, 

intelligent analysis. This work aims to investigate the capability of ChatGPT, a large 

language model (LLM), for software design analysis, specifically in detecting architectural 

patterns and tactics. We evaluated ChatGPT-4o and Archie on five open-source systems 

(Apache Storm, Flink, Spark, Gradle, and Maven) using precision, recall, F1-score, and 

accuracy metrics. The methodology involved: (1) processing entire codebases (via zipped 

uploads) and architecturally significant snippets, (2) manually validating outputs against a 

ground truth, and (3) comparing results with Archie’s established benchmarks. Results 

reveal that ChatGPT achieves 57% accuracy for pattern detection outperforming Archie 

(44.4%) in systems like Spark and Gradle, where modern patterns (e.g., Pipeline, Master-

Slave) are prevalent. However, it achieves a precision of 23% vs. Archie’s 75% for tactic 

detection, highlighting limitations in recognizing traditional architectural strategies. Both 

tools face challenges with false positives, but ChatGPT demonstrates superior adaptability to 

newer paradigms. These results suggest that LLMs can augment—but not yet replace—

traditional tools for architectural analysis. ChatGPT’s strength in pattern extraction bridges 

gaps in automation, while its tactic detection limitations underscore the need for hybrid 

approaches. This study provides empirical insights into LLMs’ role in software engineering, 

paving the way for more intelligent, collaborative architecture analysis tools.  

 
     Keywords: Software Engineering, Elements Extraction, Pattern, Tactic, ChatGPT 
Assessment, ChatGPT Evaluation. 

1      Introduction 

Software architecture is crucial in determining software systems' maintainability, 

scalability, and overall quality [1]. It encompasses architectural patterns [1], tactics [2], 
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and quality attributes [3], which collectively define the system’s structure, design, and 

behaviour. Identifying these elements in existing codebases is critical for architectural 

reviews, quality assessments, system re-engineering, and refactoring tasks. Traditionally, 

this identification process relies heavily on expert knowledge and manual analysis, which 

can be time-consuming and error-prone, such as the traditional tool Archie [4-6]. 

Recent advances in Natural Language Processing (NLP) [7] and the emergence of large 

language models [8] like ChatGPT have opened new avenues for automating software 

analysis tasks. ChatGPT [9], with its deep understanding of human language and pre-

trained knowledge of programming constructs, can assist in extracting and reasoning about 

architectural patterns and tactics directly from the source code. However, the effectiveness 

of such language models in performing these specific tasks remains relatively unexplored. 

This paper aims to evaluate the effectiveness of ChatGPT in identifying architectural 

patterns and tactics from software systems’ source code. Specifically, the study addresses 

two key research questions: 

Q1:How effective is ChatGPT in extracting architectural patterns from software 
systems’ source code? 

Q2:How effective is ChatGPT in extracting architectural tactics from software systems’ 
source code? 

By answering these questions, this research seeks to provide insights into the 
capabilities and limitations of using ChatGPT for architectural analysis, potentially 
informing the design of more intelligent, automated tools for software engineering tasks. 

Our contributions to this work are:  

 Conducting experiments to extract architectural patterns and tactics from the source 

code of five open-source systems using ChatGPT which are: Apache Storm [10], 

Apache Flink [11], Apache Spark [12], Gradle [13], and Maven [14], [15]. 

 Performing a comparative analysis of ChatGPT's performance against Archie, a 

traditional architectural analysis tool. The evaluation results for Archie, applied to 

the same five open-source systems, are detailed in our previous studies [16], [17], 

[18], [19]. 

 Measuring and evaluating ChatGPT's performance through precision, recall, and 

accuracy metrics. 

 Addressing the defined research questions by analyzing the experimental results. 

With the success of AI models like ChatGPT in programming assistance, there is growing 

interest in applying these models to more abstract areas of software development, including 

architecture. The potential to leverage AI for automating architecture-related tasks, like 

extracting design patterns and tactics, could streamline processes that are currently manual 

and time-consuming, enhancing productivity in the software architecture domain.  

While research has shown that ChatGPT can assist with coding and other technical tasks, 

limited work has been specifically focused on evaluating its ability to handle more 

conceptual elements of software architecture, such as identifying patterns or suggesting 

tactics for quality attributes. This gap represents an opportunity to extend the capabilities 

of AI models into new and impactful areas, thereby contributing novel insights to the field. 
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While there are anecdotal reports of ChatGPT’s utility in various software development 

contexts, systematic, empirical studies evaluating its effectiveness in extracting and 

applying architectural knowledge are lacking. This research can provide quantitative and 

qualitative evidence to support or challenge the current assumptions about the usefulness 

of AI in architecture decision-making, guiding future development of tools and models. 

The remainder of this paper is organized as follows: Section 2 provides an overview 
of the background and related work. Section 3 details the research methodology employed. 
Our results are presented, analyzed, and discussed in section 4. Section 5 addresses 
potential threats to validity. Finally, section 6 concludes the paper and outlines directions 
for future research. 

2      Related Work 

2.1     Background 

In this work, we address several concepts from various domains of software engineering. 

We provide an overview of the key background terminology and related research, focusing 

on concepts such as the architecture drivers and architectural elements. We also introduce 

the tools used in this study, including Large Language Models (LLMs) like ChatGPT 

and the traditional tool Archie. Additionally, we present the five software systems—

Apache Storm, Apache Flink, Apache Spark, Gradle, and Maven—selected as case studies 

for validation. These concepts and tools are discussed both in general and in the context of 

this study’s specific objectives. Architecture drivers involve quality attributes and 

functional requirements [3], context, and constraints [3]. This paper only considers quality 

attributes from the architecture drivers. Architecture elements include architectural 

patterns and architectural tactics. While architectural patterns express high-level design 

decisions, an architectural tactic is a design strategy that addresses a quality attribute [2]. 

2.1.1      Architectural Drivers 

Architectural drivers are considerations that need to be made for the architecturally 
significant software system. They include requirements that influence the overall 
architecture [2-3]. They drive and guide the software architecture design. 

2.1.1.1 Quality Attributes (QAs) Quality attributes (QAs) are characteristics that are 
required by the system. They are qualifications of the functional requirements or the 
overall product, such as performance, security, usability, and reliability [2][3]. These 
qualifications should be considered with the functions of the system. For example, an 
NFR performance might describe how quickly that dialogue should appear. An NFR 
availability also might express how often this function should fail, and so on. 

2.1.1.2 Functional Requirements (FRs) they are functions of a system or 
components of a system that the system should do [1][19]. Functionality is achieved 
by assigning responsibilities to architectural elements, resulting in one of the most 
basic of architectural structures. Functional requirements are supported by non-functional 
requirements. Generally, functional requirements are expressed in the form of “system must 
do something," while non-functional requirements take the form of “system shall be a 
quality." 
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2.1.2      Architectural Elements 

Architecture elements include architectural patterns and architectural tactics.  

 
2.1.2.1 Architectural Patterns they are solutions that apply to specific problems and their 
contexts. Examples of architectural patterns include the Broker pattern [20, 21], the Layers 
pattern [20, 21], and the Pipes and Filters pattern [20][21]. Architectural patterns express high-
level design decisions and describe high-level structures and behaviors [1, 2]. 

 
2.1.2.2 Architectural Tactics they are design decisions that address quality attributes 
(NFRs). They implement strategies to achieve these requirements [2]. Examples of tactics are 
“Heartbeat” [2], “Ping/Echo” [2], “Authentication” [2], and “Authorization” [2]. In general, a 
tactic implementation includes structure and behavior and can influence architectural patterns 
in several ways when implemented together. Tactics can be implemented in the same structure 
as architectural patterns or require changes to the structure and behavior of architectural 
patterns. 

The relationship between patterns, tactics, and quality attributes is shown in Figure 1.  

 

Figure.1: A skeleton of the relationship between patterns, tactics, and quality attributes 

2.1.3      Large Language Models (LLMs) 

Large Language Models (LLMs) [8] are a class of artificial intelligence models designed to 
understand, generate, and interact with human language. Built using deep neural networks, 
LLMs are typically trained on vast amounts of text data from diverse sources, enabling them 
to learn to indicate patterns, grammar, context, and even nuances within language. One of the 
most notable advancements in natural language processing, LLMs like GPT (Generative Pre-
trained Transformer) and BERT (Bidirectional Encoder Representations from Transformers) 
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utilize architectures based on transformers. This architecture, introduced by Vaswani et al. 
[22] in 2017, allows the models to process language in a parallelized manner, capturing both 
short- and long-term dependencies across words more efficiently than previous approaches 
like recurrent neural networks (RNNs). Through fine-tuning specific tasks or continued 
training on domain-specific data, LLMs can achieve impressive accuracy across applications 
such as machine translation, summarization, sentiment analysis, question-answering, and even 
code generation. Despite their power, LLMs also pose challenges, including high 
computational costs, potential biases, and difficulties in handling domain-specific or 
uncommon languages. Nonetheless, LLMs have fundamentally transformed how machines 
process human language, driving innovation across fields like customer support, software 
development, healthcare, and more. 

 

2.1.3.1 ChatGPT-4  

ChatGPT-4 [9], part of OpenAI’s GPT-4 family, is an advanced Large Language Model 
(LLM) that builds upon the capabilities of its predecessors to offer improved language 
understanding, generation, and interaction. Released in 2023, GPT-4 is designed to handle 
complex prompts with greater accuracy and contextual awareness, making it effective for a 
wide array of applications, from creative writing to technical support and detailed analytical 
tasks. Figure 2 shows the architecture of ChatGPT. The architecture of ChatGPT-4, as 
depicted in Figure 2, consists of the following key components: 

1. Input Layer (blue color): Processes user prompts (text or multimodal inputs). 

2. Transformer Layers (orange color): Multiple layers of self-attention mechanisms 
for contextual understanding. 

3. Output Layer (green color): Generates human-like responses based on learned 
patterns. 

4. Feedback Loop (purple color: Optional fine-tuning via reinforcement learning from 
human feedback (RLHF). 

 

Figure 2: ChatGPT-4 Architecture, highlighting its transformer-based design and 

multimodal capabilities [9] 

2.1.4      The Traditional Tool: Archie 

Archie is an Eclipse plugin. It is used to determine architectural tactics, monitor 
related code, and notify developers when they modify architecturally significant parts of 
the code [4][5][6]. It is built to help automation the creation and maintenance of 
architecturally relevant trace links between code, architectural decisions, and related 
requirements. Figure 3 illustrates the Eclipse plugin interface of Archie, which includes: 
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1. Code Editor Panel (gray color): Displays source code with architecturally 
significant sections highlighted. 

2. Tactic Detection Panel (green color): Lists detected tactics (e.g., "Heartbeat," 
"Ping/Echo") with confidence scores. 

3. Pattern Visualization (blue color): Graphically represents patterns (e.g., 
"Layered Architecture") in the codebase. 

4. Notification System: Alerts developers about architectural violations. 

Figure 3: Archie tool: Eclipse plugin 

 

2.1.5      Applied Software Systems 

This section presents the five software systems used as case studies in this work: Apache 
Storm, Apache Flink, Apache Spark, Gradle, and Maven. 

 

2.1.5.1 Apache Storm 
Apache Storm [10] is a free, open source, distributed real-time computation system. It can 
be used with several programming languages. It consumes streams of data and processes 
those streams in arbitrarily complex ways, repartitioning the streams between each stage 
of the computation as needed. Figure 4 shows the architecture of Apache Storm. The 
interested reader may refer to [10] for more details. 
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Figure 4: Apache Storm Architecture [10] 

 

2.1.5.2 Apache Flink 
Apache Flink [11] is an open-source framework for distributed stream 

processing. It uses machine learning for threat detection, investigation, and 
remediation applications. Flink is stateful, fault-tolerant, and performs on a large 
scale. It can run over thousands of nodes with excellent throughput and latency 
characteristics. Figure 5 shows the architecture of Apache Flink. The interested 
reader may refer to [11] for more details. 

 

 

Figure 5: Apache Flink Architecture [11] 

 

2.1.5.3 Apache Spark 
Apache Spark [12] is an open-source framework for distributed and large-scale 
data processing. It provides an interface for entire programming clusters with 
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implicit data parallelism and fault tolerance. It is a fast and general-purpose cluster 
computing system. Apache Spark provides distributed task dispatching, 
scheduling, and basic I/O functionalities. Figure 6 shows the architecture of 
Apache Spark. The interested reader can refer to [12] for more details. 
 

Figure 6: Apache Spark Architecture [12] 

 

2.1.5.4 Gradle 
Gradle [13] is an open-source build automation tool focused on flexibility and 
performance. Gradle is modelled in a customizable and extensible way in the most 
fundamental ways. It completes tasks quickly by reusing outputs from previous 
executions, processing only inputs that changed, and executing tasks in parallel. 
Gradle is the official build tool for Android and supports several languages and 
technologies. Figure 7 shows the architecture of Gradle [19]. 
 

2.1.5.5 Maven  
Maven [14] is an open-source build automation tool. It is a software project 
management and comprehension tool. Maven is based on the concept of a project 
object model (POM) [15]. It can manage a project’s build, reporting and 
documentation from a central piece of information. Figure 8 shows the 
architecture of Maven [19]. 

 

 

Figure 7: Gradle Architecture [13] 
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Figure 8: Maven Architecture [14] 

2.2     Related Work 

In a world increasingly reliant on technology, the exploration of generative AI’s 
potential in creative and technical fields is both timely and transformative. Tan [23] 
investigates how ChatGPT can aid designers in identifying and extracting key design 
concepts from narrative stories. By leveraging the AI’s natural language processing 
capabilities, designers can automate the extraction process, drawing inspiration from 
textual narratives. This method holds significant relevance in educational contexts, 
enhancing narrative-based learning in design education and showcasing the 
transformative power of generative AI in creative fields. 

As the narrative unfolds, the focus shifts to the realm of software development. 
Gilson et al. [24] delve into the application of user stories within agile software 
development, aiming to extract essential quality attributes early in the architectural 
process. By employing natural language processing (NLP) techniques, they highlight 
the importance of recognizing non-functional requirements like performance and 
security, which are often overlooked in favour of functional ones. Their approach 
enables architects to make more informed decisions, thus avoiding costly adjustments 
later in development. 

The story continues with Souvick et al. [25], who further emphasize the significance 
of NLP by automating the extraction of goals from unstructured natural language 
requirements. Their method employs predefined linguistic patterns to identify key 
goals and dependencies, streamlining the goal modeling process and ensuring an 
accurate representation of stakeholder objectives. This automated approach reduces the 
labour-intensive nature of manual goal modeling, allowing for a more efficient 
alignment of technical solutions with user needs. 

In the healthcare sector, Huang et al. [26] highlight the efficiency of ChatGPT in 
extracting critical medical information. Their research shows the model’s impressive 
accuracy across various datasets, indicating that well-structured prompts can 
significantly enhance its performance. By outperforming traditional NLP methods, 
ChatGPT offers the potential to revolutionize clinical data extraction, facilitating faster 
and more accurate decision-making in healthcare. 

The authors in [27] examine how AI can assist software architects by fostering 
collaboration throughout the design process. Through a case study focused on a bike-
sharing application, they demonstrate that while ChatGPT can support architectural 
tasks, human oversight remains vital for refining and validating outcomes. This 
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collaboration between human expertise and AI tools emphasizes a future where large 
language models aid architects in navigating complex design challenges. 

Pragyan et al. [28] focus on automating the extraction of use case components from 
user-authored scenarios related to mobile applications. They address the challenge of 
gathering requirements in early app development stages and propose a method using 
refined prompts to enhance extraction performance. By converting user scenarios into 
structured use case components, this approach aims to streamline requirements 
acquisition, helping developers refine app functionalities efficiently. 

The exploration of ChatGPT’s capabilities does not end there.  Mohajer et al.  [29] 
Investigate the effectiveness of ChatGPT in performing static analysis tasks, 
particularly focusing on detecting common bugs such as Null Dereference and 
Resource Leaks. Using Infer, a recognized static analysis tool, they compile a dataset 
from ten open-source projects, revealing that ChatGPT achieves notable precision—
up to 68.37 percent for Null Dereference and 76.95 percent for Resource Leaks. 
Moreover, it surpasses Infer’s existing performance, showcasing its ability to enhance 
static analysis processes and provide developers with improved accuracy in bug 
detection. 

Terzi et al. [30] also investigate how developers interact with ChatGPT when using 
its code suggestions. The study analyzes a substantial dataset comprising over 267,000 
lines of code, including commits, pull requests, and discussions. Key findings suggest 
that developers are more inclined to incorporate code provided by ChatGPT when they 
engage in multiple rounds of concise prompts that are specific to the problems at hand, 
rather than using longer, more detailed inputs. The research indicates that this targeted 
approach enhances the effectiveness of the interaction, as ChatGPT demonstrates the 
ability to efficiently address various types of programming issues across different 
languages. 

Furthermore, Mahmoudi et al. [31] evaluate the potential of ChatGPT to automate 
systematic reviews (SRs), focusing on its capabilities in literature search, screening, 
data extraction, and content analysis. The authors developed a structured approach 
utilizing ChatGPT, divided into four modules: preparation (formulating Boolean 
search terms and collecting articles), screening (abstract screening and categorizing 
articles), filtering (full-text filtering and information extraction), and analysis (content 
analysis to identify trends and gaps in the literature). This structured methodology 
illustrates how generative AI can streamline complex processes in systematic reviews. 

Sun et. al [32] use ChatGPT for extracting pharmacovigilance events, which 
involves identifying adverse events or potential therapeutic events from medical texts. 
The study evaluates the performance of ChatGPT using various prompt strategies and 
compares it to fine-tuned models. 

Finally, KC et al. [33] use ChatGPT to extract use case (UC) components from user-
authored scenarios, particularly in the context of mobile app development. The authors 
focus on refining the prompt strategies to enhance precision and recall in identifying 
UC components from these scenarios. Their approach involves constructing a dataset 
of 50 user-authored scenarios, which are manually labelled with UC components to 
serve as ground truth. They discovered that incorporating domain-specific knowledge 
into the prompts significantly improves the quality of the extracted UC components, 
indicating that large language models (LLMs) like ChatGPT benefit from more 
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targeted prompts when handling such tasks. This work highlights the potential of 
leveraging LLMs in automating requirements acquisition processes, which is 
particularly valuable for small-scale development teams that might lack extensive 
resources for traditional requirements-gathering activities. The study demonstrates that 
although ChatGPT shows promise in extracting detailed UC components, further 
refinement in prompt engineering is crucial for optimizing its performance in real-
world applications. 

 

3. Methodology 

3.1     Overview 

Figure 9 provides an overview of the pipeline used in our work. Note that all the steps 

of Archie have been done previously in our studies [16], [17], [18], [19]. The process is 

structured into four main steps: 

1. Input Source Code (yellow color):  

o Inputs: The pipeline begins with two types of input: the complete source 

code (zipped) and selected code snippets. 

o These inputs are used as prompts for ChatGPT, initiating the process of 

identifying architectural patterns and tactics. However, only the 

complete source code (zipped) is used as input for Archie. 

2. Extract Patterns and Tactics (purple/blue for Archie/ChatGPT): 

o Archie: 

 The source code undergoes preprocessing, followed by training, 

and then detection proper. This step has been done previously in 

our studies [16], [17], [18], [19]. 

 This results in three outputs: Extracted Patterns and Extracted 

Tactics. 

o ChatGPT: 

 The input is processed through pre-trained understanding, 

analysis, and recognition stages. 

 ChatGPT produces three outputs: Extracted Patterns and 

Extracted Tactics. 

3. Compare Results (gray color): 

o The patterns and tactics identified by Archie and ChatGPT are compared 

to analyze their similarities, differences, and effectiveness in identifying 

these elements. 

4. Calculate Accuracy (compass tool): 

o The final step involves calculating the accuracy of the outputs from both 

Archie, which has been done in previous studies [16], [17], [18], [19] and 

ChatGPT to evaluate their performance in extracting architectural 

patterns and tactics from the given source code. 
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Figure 9: The overview of our work 

3.2     Prompt Engineering Strategies 

We used ChatGPT-4o (May 2024 release) via OpenAI’s web interface (UI), as the API 

version did not support file uploads during our experiments. The following settings were 

applied to ensure consistency: 

 Temperature: 0.2 (to balance creativity and determinism in architectural 

analysis). 

 Max Tokens: 4096 (to accommodate long code snippets and detailed responses). 

 Session: Fresh chat sessions for each system to avoid context contamination. 

 File Handling: Source code files (zipped or snippets) were uploaded directly to 

the UI, with prompts explicitly requesting pattern/tactic extraction (Figures 10-

12). 

 

We applied the low temperature to reduce the risks, while max tokens allowed 

comprehensive responses. The UI was chosen over the API for its file-upload capability, 

critical for processing entire codebases. 

 

In this work, we utilized specific prompts [34] to extract architectural patterns 

and tactics using ChatGPT. The first approach involved providing the entire source code 

file of each system, enabling ChatGPT to identify patterns and tactics from the entire 

codebase. In the second approach, we supplied selected code snippets and instructed 

ChatGPT to extract patterns and tactics based solely on these excerpts. Additionally, we 

tasked ChatGPT with extracting specific code snippets from the system’s source code 

and subsequently determining the architectural patterns and tactics based on the 

extracted portions. Please refer to Figures 10, 11, and 12 in Section 3.5 for further 

clarification. 
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To handle the volume and complexity of the five open-source systems, we employed a 

hybrid input strategy: 

1. Full Codebase Upload (Zipped): 

Directly uploaded entire project directories (.zip) via ChatGPT’s UI when possible (e.g., 

Gradle, Maven). The limitation of this strategy is that ChatGPT-4o’s context window 

(128K tokens) restricted analysis depth for monolithic systems (e.g., Spark). 

 

2. Code Snippet Extraction: 

For systems exceeding practical context limits, we: 

- Pre-filtered architecturally significant files (e.g., pom.xml for 

Maven, StormTopologyBuilder.java for Storm) based on both the file naming 

conventions (e.g., Manager.java, Strategy.java) and directory structure 

(e.g., /core/, /runtime/). 

- Manually extracted critical snippets (≤5K tokens) reflecting patterns/tactics (e.g., 

heartbeat logic, pipeline interfaces). 

3. Prompt Chunking for Long Files: 

Files >10K tokens (e.g., FlinkStreamExecutionEnvironment.java) were splitted into 

logical segments (e.g., methods, configuration blocks), processed with iterative prompts 

(e.g., “Analyze this segment for the Pipes and Filters pattern”), and aggregated results 

post-hoc to avoid fragmentation. 

 

4. Validation of Input Reduction: 

We compared outputs from full uploads vs. snippets for consistency (e.g., 

confirmed Master-Slave detection in both approaches for Flink). The mitigation of this 

strategy is that Snippets were cross-checked with system documentation to ensure 

coverage of key architectural elements. 

 

3.3     Evaluation Metrics 

In this work, we evaluate the performance of ChatGPT using recall, precision, F1-score, 

and accuracy metrics to assess the effectiveness of our experiments. For this purpose, 

we calculate the True Positives (TP), False Positives (FP), and False Negatives (FN) 

required for these metrics. However, we do not compute the False Negatives (FN) as all 

patterns and tactics were evaluated and accounted for during detection. Specifically:  

 TP (True Positives): The number of patterns and tactics correctly identified by 

ChatGPT or Archie. 

 FP (False Positives): The number of patterns and tactics incorrectly identified 

by ChatGPT or Archie. 

 FN (False Negatives): The number of patterns and tactics missed by ChatGPT 

or Archie. 

 Precision = True Positives (TP) / (True Positives (TP) + False Positives (FP)). 

 Recall = True Positives (TP) / (True Positives (TP) + False Negatives (FN)). 

 F1-score = 2 * (Precision * Recall) / (Precision + Recall). 

 Accuracy = (True Positives (TP) + True Negatives (TN)) / (TP + FP + FN + 

TN). 
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3.4     Manual Validation 

To validate the True Positives (TP), False Positives (FP), and False Negatives (FN) for 

both ChatGPT and Archie, we employed a manual, expert-driven process: 

 Ground Truth Creation: For each of the five systems (Apache Storm, Flink, 

Spark, Gradle, Maven), we collected a gold-standard set of architectural 

patterns and tactics by: 

- Reviewing official documentation (e.g., Apache Flink’s 

architectural guide [10]-[12]). 

- Consulting prior studies on these systems ([16]-[19]) and 

domain experts.  

 Tool Output Comparison:  

- For ChatGPT, we extracted patterns/tactics from its responses to 

prompts (Figures 10-12) and mapped them to the ground truth. 

- For Archie, we reused its detections from prior work ([16]-[19]) 

and verified them against the same ground truth. 

 Labeling Rules: 

- TP: A pattern/tactic detected by the tool and confirmed in the 

ground truth. 

- FP: A pattern/tactic detected by the tool but absent in the 

ground truth. 

- FN: A pattern/tactic missed by the tool but present in the ground 

truth. 

3.5     Apache Flink 

In this section, we use Apache Flink as an example to illustrate the methodology’s steps 

outlined in Section 3.1.  

 

Step 1: First, we present the prompts used to extract architectural patterns and tactics 

from the Apache Flink source code. Figures 10 and 11 demonstrate the prompts applied 

to the entire Flink source code for identifying its architectural patterns and tactics, 

respectively. Figure 12 showcases the prompts used with specific code snippets to 

extract patterns and tactics from Flink. 

 

 
Figure 10: Prompt utilizing the entire source code to identify architectural patterns 
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Figure 11: Prompt utilizing the entire source code to identify architectural tactics 

 

                        (a)                                                                                                        (b)                                                                                                   

Figure 12: Prompt using specific snippets of code (a) after providing snippets of code 

and (b) before providing snipptes of code  
 

Steps 2 and 3: After extracting the patterns and tactics, we compared the results of 

ChatGPT with those from the traditional tool Archie for Apache Flink. For pattern 

detection, Table 1 summarizes the comparison of pattern detection outcomes between 

Archie and ChatGPT in Apache Flink, while Figure 13 illustrates the percentage of 

patterns detected by each tool for Apache Flink. As observed, ChatGPT achieved a 

pattern detection rate of 55.6%, compared to Archie's rate of 44.4%.  

Pattern Detection:  
Table 1: Comparison results of the patterns detection for Apache Flink 

Architectural 

Pattern 

Also Known As Archie ChatGPT 

Pipeline Pattern Streaming 

Pipeline 
❌ ✔   

Master-Slave Pattern __ ❌   ✔   

Layered Architecture 

Event-Driven 

Architecture 

Service Component 

Pattern 

Layers 

 

Broker 

 

 

Observer/Publish- 

Subscribe 

Pipes and Filters 

Shared- Repository 

Multitier 

Architecture 

Message-Driven 

Architecture 

__ 

 

 

Tiered System 

Message Broke 

__ 

 

__ 

Common Data 

Repository 

❌ 

 

❌ 

 

 

❌ 

 

❌ 

 

✔ 

 

✔ 

 

✔ 

❌ 

 

✔ 

 

✔ 

 

 

✔ 

 

✔ 

 

❌ 

 

❌ 

 

❌ 

❌ 
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Figure 13: The patterns detection percentages for ChatGPT and Archie for Apache 

Flink 
 

Tactic Detection: Table 2 summarizes the comparison of tactic detection outcomes 

between Archie and ChatGPT in Apache Flink, while Figure 14 illustrates the 

percentage of tactics detected by each tool. ChatGPT detected 25.0% of the tactics, 

whereas Archie achieved a higher detection rate of 75.0%. This is expected, as Archie 

was specifically designed to identify traditional tactics, whereas ChatGPT is more 

capable of discovering modern tactics. 

Table 2: The comparison results of the tactics detection for Apache Flink 
Architectural Tactic Also Known As Archie ChatGPT 

Kerberos  __ 

__ 
✔ ✔   

Heartbeat 

Ping/Echo 

Exception Handling 

 

 

 

Authenticate 

Time Stamp 

Resource Pooling 

 

Audit Trail 

PBAC 

 

 

RBAC 

 

 

Resource Scheduling 

 

Session Management 

Load Balancing 

Restart 

 

Time-out 

Cancel 

Active Redundancy 

Checkpoint 

Retry 

Retry Logic  

 

Connectivity 

Probe 

Error Handling/ 

Fault Handling 

__ 

__ 

Resource 

Sharing 

__ 

Policy-Based 

Access Control 

Role-Based 

Access Control 

Task Scheduling 

 

Load 

Management 

__ 

System Reboot 

__ 

__ 

Data Duplication 

__ 

__ 

__ 

 

 

__ 

✔ 

✔ 

 

✔ 

 

 

✔ 

✔ 

✔ 

 

✔ 

✔ 

✔ 

 

✔ 

✔ 

✔ 

 

 

 

✔ 

✔ 

✔ 

 

✔ 

✔ 

✔  

❌ 

 

❌ 

 

 

❌ 

❌ 

❌ 

 

❌ 

❌ 

❌ 

 

❌ 

❌ 

❌ 

 

 

❌ 

❌ 

 

❌ 

❌ 

 

❌ 
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for Fault Tolerance 

Data Partitioning for 

Scalability 

Resource Pooling  

for Efficient 

Resource Use 

Circuit Breaker for 

Fault Isolation 

 

Resource 

Sharing 

__ 

 

 

✔ 

✔ 

❌ 

❌ 

 

❌ 

 

❌ 

 

❌ 

 

 

 

❌ 

❌ 

✔ 

 

✔ 

 

✔ 

 

✔ 

 

 

 
Figure 14: The tactics detection percentages for ChatGPT and Archie for Apache Flink 

 

Step 4: we calculate the accuracy of ChatGPT using recall, precision, and accuracy 

metrics to assess the effectiveness of our experiments. For this purpose, we calculate the 

True Positives (TP), False Positives (FP), and False Negatives (FN) required for these 

metrics. However, we do not compute the False Negatives (FN) as all patterns and 

tactics were evaluated and accounted for during detection. Tables 3* and 4* present the 

results for True Positives (TP), True Negatives (TN), False Positives (FP), and False 

Negatives (FN) of pattern detection for both Archie and ChatGPT. ChatGPT identified 

five patterns, demonstrating its strength in detecting modern architectural patterns, such 

as fault-tolerance strategies. In contrast, Archie identified four patterns, showcasing its 

proficiency in recognizing traditional architectural elements. 

ChatGPT missed 5 patterns (FN), whereas Archie missed 6 patterns (FP), 

highlighting its challenges in detecting modern or nuanced techniques. ChatGPT also 

falsely identified four patterns (FP), whereas Archie falsely identified five patterns. 

Since all patterns were evaluated, true negatives (TN) are not applicable in this context.  

 

 

 

                                                 
* TP/FP/FN counts were manually validated against the ground truth (see Section 3.4). TN was omitted 

as all patterns/tactics were evaluated for presence/absence. 
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Table 3: Metrics results of Archie for Flink Table 4: Metrics results of ChatGPT for 

Flink 

                                                                                                     

 

 

Tables * and 6* present the results for True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN) of tactic detection for both Archie and 

ChatGPT. ChatGPT identified six tactics, demonstrating its strength in detecting 

modern architectural tactics. In contrast, Archie identified 18 tactics, showcasing its 

proficiency in recognizing traditional architectural elements. 

ChatGPT missed 17 tactics (FN), underscoring its limitations in identifying 

foundational or traditional tactics. On the other hand, Archie missed five tactics, 

highlighting its challenges in detecting modern or nuanced techniques. ChatGPT also 

falsely identified 16 tactics (FP), whereas Archie falsely identified four tactics. Since all 

tactics were evaluated, TN are not applicable in this context.  

Table 7 presents the precision, recall, and accuracy results for both pattern and 

tactic detection using Archie and ChatGPT in Apache Flink. As observed, Archie 

achieves higher accuracy than ChatGPT in Flink, which is expected since Archie is 

specifically designed to detect traditional tactics, whereas ChatGPT excels in identifying 

modern tactics. Additionally, the results indicate that ChatGPT demonstrates greater 

accuracy in detecting architectural patterns than tactics, as shown in Figure 13. We 

followed the same approach for the remaining systems. The results for these systems 

are available online. For more details, please refer to the data availability section below 

at the end of paper. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
 

 

Archie 

Detection 

Metrics 

Architectural Patterns 

True Positives 

(TP) 

True Negatives 

(TN) 

False Positives 

(FP) 

False 

Negatives (FN) 

4 

 

0 

 

5 

 

6 

  

ChatGPT Detection 

Metrics 

Architectural 

Patterns 

True Positives (TP) 

True Negatives 

(TN) 

False Positives (FP) 

False Negatives 

(FN) 

5 

0 

 

4 

5 
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   Table 5: Metrics results of Archie                   Table 6: Metrics results of ChatGPT                                                                                                                       

 

 

 

 

 

Table 7: Metrics of pattern and tactic detection of Flink 

 

 

 

 

 

 

                                                                                             

 

 

4 Results, Analysis and Discussion 

In this section we explained the results and the comprehensive discussion of our 

method. Results are shown in Section 4.1 and the discussion is shown in Section 4.2.  

4.1     Results 

RQ1: How effective is ChatGPT in extracting architectural patterns from 

software systems’ source code? 

Approach: To address this question, we utilized ChatGPT to identify patterns from the 

complete codebase for all five systems. We began with two types of input: the complete 

source code (zipped) and selected code snippets. These inputs are used as prompts for 

ChatGPT, initiating the process of identifying architectural patterns. However, only the 

complete source code (zipped) is used as input for Archie. Once the results were 

obtained, they were organized into tables for each system, and the percentage of patterns 

detected by each tool was calculated. 

Comparison: We compared the results of ChatGPT with those from the traditional tool 

Archie across all five systems. The comparison results of pattern detection for Apache 

Storm, Spark, Gradle, and Maven are available online, see Section 7. While the 

percentage of patterns detected by each tool across all five systems is shown in Figures 

15, 16, 17, and 18. 

Archie Detection 

Metrics 

Architectural 

Tactics 

True Positives (TP) 

True Negatives (TN) 

False Positives (FP) 

False Negatives (FN) 

18 

 

0 

 

4 

 

5 

           

ChatGPT Detection 

Metrics 

Architectural 

Tactics 

True Positives (TP) 

True Negatives (TN) 

False Positives (FP) 

False Negatives (FN) 

6 

 

0 

 

16 

 

17 

Metrics Archie ChatGPT 

 

Precision 

Recall 

F1-score 

Accuracy 

 

0.71% 

0.67% 

0.69% 

52.38% 

 

0.35% 

0.33% 

0.34% 

20.75% 
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Results: As observed in Figures 15, 16, 17, and 18, ChatGPT achieved a pattern 

detection rate of 42.9%, compared to Archie's rate of 57.1% in Apache Storm. In 

contrast, ChatGPT outperformed Archie in Spark, detecting patterns at a rate of 75.0% 

compared to Archie's 25.0%. Similarly, ChatGPT achieved a pattern detection rate of 

72.7% in Gradle, surpassing Archie's 27.3%. ChatGPT also led with a 60.0% detection 

rate in Maven, while Archie achieved 40.0%. The F1-scores for these comparisons are 

provided in Tables 8-12, demonstrating the balance between precision and recall for 

each tool. 
     Fig. 15. The pattern detection percentages for  

ChatGPT and Archie for Apache Storm                                      Fig. 16. The pattern detection 

percentages               

                                                                                                     for ChatGPT and Archie for Apache 

Spark 

                                                                                       
   Fig. 17. The pattern detection percentages for                             Fig. 18. The pattern detection 

percentages  

              ChatGPT and Archie for Gradle                                           for ChatGPT and Archie for Maven 

                                                                                                                                                                                                            

RQ2: How effective is ChatGPT in extracting architectural tactics from software 

systems’ source code? 

Approach: To address this question, we utilized ChatGPT to identify tactics from the 

complete codebase. We began with two types of input: the complete source code (zipped) 

and selected code snippets. These inputs are used as prompts for ChatGPT, initiating the 

process of identifying architectural tactics. However, only the complete source code 

(zipped) is used as input for Archie. 

Comparison: We compared ChatGPT's results with those from the traditional tool 

Archie across all five systems. The tactics detection results for Apache Storm, Spark, 

Gradle, and Maven are available online; see Section 7. The percentage of tactics 

detected by each tool across all five systems is shown in Figures 19, 20, 21, and 22. 
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Results: As illustrated in Figures 19, 20, 21, and 22, ChatGPT achieved a tactic 

detection rate of 22.7% in Apache Storm, while Archie outperformed it with a rate of 

77.3%. In Spark, both ChatGPT and Archie detected tactics at an equal rate of 50.0%. 

Likewise, ChatGPT identified tactics at a rate of 33.3% in Gradle, whereas Archie 

achieved 66.7%. However, in Maven, ChatGPT led with a detection rate of 66.7%, 

surpassing Archie's 33.3%. The F1-scores for these comparisons are provided in Tables 

8-12, demonstrating the balance between precision and recall for each tool. 

    Fig. 19. The tactic detection percentages for                                Fig. 20. The tactic detection 

percentages ChatGPT and Archie for Apache Spark.                                       for ChatGPT and Archie 

for Apache Storm                                      

 

            

 

Fig. 21. The tactic detection percentages for                              Fig. 22. The tactic detection percentages 

for  

          ChatGPT and Archie for Gradle                                                   ChatGPT and Archie for Maven 
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4.1.1    F1-score, 

To illustrate ChatGPT’s challenges, we highlight representative failures from our 

experiments: 

1. False Positive: 

o System: Apache Storm 

o ChatGPT Output: Detected "Microservices Architecture" in Storm’s 

topology. 

o Ground Truth: Storm uses the pipeline pattern (confirmed via 

documentation [10]). 

o Root Cause: ChatGPT merged distributed processing with 

microservices due to superficial similarities in decentralization. 

2. False Negative (Missed Tactic): 

o System: Apache Flink 

o Missed Tactic: "Checkpointing" for fault tolerance (a well-documented 

Flink feature [11]). 

o ChatGPT Output: Ignored checkpointing code snippets unless explicitly 

prompted with the tactic name. 

o Root Cause: Over-reliance on explicit keyword matching in prompts. 

3. Misclassified Pattern: 

o System: Gradle 

o ChatGPT Output: Labeled the build script DSL as "Interpreter Pattern." 

o Ground Truth: Gradle uses a declarative pipeline model, not an 

interpreter structure. 

o Root Cause: Misinterpretation of domain-specific language (DSL) 

flexibility as a design pattern. 

These examples underscore ChatGPT’s limitations in contextual reasoning and 

domain-specific knowledge, suggesting opportunities for fine-tuning or hybrid 

approaches. 

4.2     Discussion 

Tables 8, 9, 10, and 11 present the pattern and tactic detection metrics across Storm, 

Spark, Gradle, and Maven. Table 12 summarizes the overall detection metrics for both 

Archie and ChatGPT across all systems. As detailed in Section 3.4, all metrics (precision, 

recall, F1-score, accuracy) were derived from manual validation against a ground truth. 

The results indicate that Archie performs better in tactic detection compared to pattern 
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detection, with higher precision, recall, F1-score, and accuracy in most cases. 

ChatGPT generally performs better in pattern detection, especially in Gradle and Maven, 

with higher precision and recall. Both tools struggle with false positives and false 

negatives, particularly in tactic detection, where the number of missed tactics (FN) is 

high. ChatGPT has a higher precision in pattern detection, indicating fewer false 

positives, but its recall, F1-score, and accuracy vary significantly across different 

frameworks. 
 

 

Table 8: Metrics of pattern and tactic detection of Storm 

 

 

 

 
 

 

 

 

Table 9: Metrics of pattern and tactic 

detection of Spark 

 

 

 

 
 

 

 

 

Table 10: Metrics of pattern and tactic 

detection of Gradle 

 

 

 

 

 

 

 

Table 11: Metrics of pattern and tactic detection of Maven 

 

 

 

 

 

 

 

Metrics Archie ChatGPT 

 

Precision 

Recall 

F1-score 

Accuracy 

 

0.75% 

0.67% 

0.71% 

55.0% 

 

0.29% 

0.26% 

0.27% 

16.0% 

 

Metrics Archie ChatGPT 

 

Precision 

Recall 

F1-score 

Accuracy 

 

0.45% 

0.45% 

0.45% 

30.0% 

 

0.58% 

0.57% 

0.58% 

40.0% 

 

Metrics Archie ChatGPT 

 

Precision 

Recall 

F1-score 

Accuracy 

 

0.57% 

0.50% 

0.53% 

36.0% 

 

0.48% 

0.42% 

0.45% 

29.0% 

 

Metrics Archie ChatGPT 

 

Precision 

Recall 

F1-score 

Accuracy 

 

0.36% 

0.28% 

0.31% 

19.0% 

 

0.67% 

0.52% 

0.59% 

41.0% 
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Table 12: The final Metrics of pattern and tactic detection for both Archie and 

ChatGPT  

 

5. Threats to Validity 

 

This section outlines the potential threats to the validity of the findings in this study. 

While the research explores the capabilities of ChatGPT in architectural analysis, certain 

limitations could impact the robustness, reliability, and generalizability of the results. 

These threats are categorized into three main types: construct validity, focusing on the 

design and measurement of the study; internal validity, addressing factors that could 

influence the interpretation of results; and external validity, concerning the applicability 

of findings to broader contexts. Each category highlights specific challenges and areas 

for improvement, ensuring a balanced evaluation of the study's strengths and limitations.  

 Construct Validity: One of the threats of this work is that the effectiveness of 

ChatGPT heavily depends on prompt quality, and variations in prompt design might 

influence results. The lack of detailed discussion about prompt optimization could 

affect reproducibility. We mitigate this by Using a standardized prompt evaluation 

framework to ensure consistency and reproducibility. The also paper might not cover 

all possible architectural patterns, tactics, and QAs comprehensively, potentially 

leading to biased results. We mitigate this threat by consulting domain experts to ensure 

the selected patterns, tactics, and QAs represent a comprehensive and balanced subset 

of architectural elements. Another limitation is that our reliance on ChatGPT’s UI (not 

API) may limit automation potential, though settings like low temperature (0.2) 

mitigated variability. Future work should explore API-based batch processing.  

 Internal Validity: One of the internal threats of this work is that the choice of 

five open-source systems might not generalize to other types of software systems, 

limiting the scope of the findings. We mitigate this threat by selecting one project from 

a different domain, so we cover most of the software engineering domains. The method 

for manually verifying TP/FP/FN (detailed in Section 3.4) may introduce subjectivity, 

as ground truth labeling relies on expert interpretation of documentation and prior 

studies. We mitigated this by: 

 Using multiple authoritative sources (e.g., system documentation, peer-reviewed 

studies) to establish ground truth. 

 Cross-validating Archie’s outputs with our prior work ([16]-19]). 

Framework Detection 

Type 

Precision Recall F1-score Accuracy 

ChatGPT 

 

ChatGPT 

 

Archie 

 

Archie 

 

Pattern 

detection 

Tactic 

detection 

Pattern 

detection 

Tactic 

detection 

0.50-

0.80                

0.23-

0.67 

0.25-

0.67 

0.33-

0.77 

0.43-

0.69           

0.21-

0.53 

0.23-

0.57 

0.26-

0.71 

0.46-

0.74 

0.22-

0.59 

0.24-

0.62 

0.29-

0.74 

30%- 

57% 

12%-

41% 

14%-

44% 

17%-

59% 
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 External Validity: One of the generalizability threats is that the findings are 

based on specific open-source projects, and the results may not be applicable to 

proprietary or less-structured codebases. We have future work to expand the study to 

include proprietary systems and unstructured codebases to assess generalizability. 

Another threat is that since the study evaluates ChatGPT (a specific LLM), the results 

may not generalize to other LLMs or AI-based tools for architectural analysis. We have 

another task in the future to evaluate the performance of other LLMs and AI-based 

tools to provide a broader perspective.  
 

6. Conclusion 
 This work explored the effectiveness of ChatGPT, a modern large language model, 

in identifying architectural patterns and tactics, within software systems, comparing its 

performance to that of the traditional tool Archie. The findings highlight the unique 

strengths and limitations of both tools. While ChatGPT demonstrated promise in 

detecting modern patterns (e.g., achieving 57% accuracy in pattern detection), its 

performance lagged in tactic identification (23% precision), underscoring key 

limitations:  

1. Input Constraints: 

o ChatGPT’s token limit necessitated fragmented code analysis, risking 

incomplete context. 

o Manual snippet selection introduced potential selection bias in large 

systems (e.g., Spark). 

2. Specialization Gap: 

o Archie’s rule-based approach excelled in tactic detection (75% recall) 

but struggled with newer patterns. 

o ChatGPT’s generative nature led to false positives (e.g., misclassifying 

generic code as patterns). 

3. Validation Subjectivity: 

o Ground truth reliance on documentation may omit undocumented tactics. 

 

 

 Future work could focus on enhancing ChatGPT's training data to improve its 

recognition of traditional tactics, as well as integrating the capabilities of both tools to 

create a hybrid solution. Such advancements could pave the way for more intelligent, 

automated systems that bridge the gap between natural language understanding and 

software engineering tasks, ultimately contributing to improved software 

maintainability and scalability.  
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