

DOI: 10.15849/IJASCA.250730.11

Received 6 May 2025; Accepted 5 July 2025

Int. J. Advance Soft Compu. Appl, Vol. 17, No. 2, July 2025
Print ISSN: 2710-1274, Online ISSN: 2074-8523

Copyright © Al-Zaytoonah University of Jordan (ZUJ)

Assessing ChatGPT's Capability in Extracting

Architectural Elements from Software Systems

Hind Milhem1, Neil B. Harrison2

1Information Technology Department, Faculty of Prince Al-Hussein Bin Abdallah II For

Information Technology, The Hashemite University, Zarqa, Jordan, P. O. Box 330127

E-mail: hinda_is@hu.edu.jo
2Department of Computer Science, Utah Vally University, Orem, Utah, USA

E-mail: neil.harrison@uvu.edu

Abstract

Software architecture plays a critical role in ensuring system quality, yet manually

identifying architectural patterns and tactics in codebases remains time-consuming and

error prone. While traditional tools like Archie automate parts of this process, the emergence

of large language models (LLMs) like ChatGPT offers new opportunities for scalable,

intelligent analysis. This work aims to investigate the capability of ChatGPT, a large

language model (LLM), for software design analysis, specifically in detecting architectural

patterns and tactics. We evaluated ChatGPT-4o and Archie on five open-source systems

(Apache Storm, Flink, Spark, Gradle, and Maven) using precision, recall, F1-score, and

accuracy metrics. The methodology involved: (1) processing entire codebases (via zipped

uploads) and architecturally significant snippets, (2) manually validating outputs against a

ground truth, and (3) comparing results with Archie’s established benchmarks. Results

reveal that ChatGPT achieves 57% accuracy for pattern detection outperforming Archie

(44.4%) in systems like Spark and Gradle, where modern patterns (e.g., Pipeline, Master-

Slave) are prevalent. However, it achieves a precision of 23% vs. Archie’s 75% for tactic

detection, highlighting limitations in recognizing traditional architectural strategies. Both

tools face challenges with false positives, but ChatGPT demonstrates superior adaptability to

newer paradigms. These results suggest that LLMs can augment—but not yet replace—

traditional tools for architectural analysis. ChatGPT’s strength in pattern extraction bridges

gaps in automation, while its tactic detection limitations underscore the need for hybrid

approaches. This study provides empirical insights into LLMs’ role in software engineering,

paving the way for more intelligent, collaborative architecture analysis tools.

 Keywords: Software Engineering, Elements Extraction, Pattern, Tactic, ChatGPT
Assessment, ChatGPT Evaluation.

1 Introduction

Software architecture is crucial in determining software systems' maintainability,

scalability, and overall quality [1]. It encompasses architectural patterns [1], tactics [2],

210 Assessing ChatGPT's Capabi …

210

and quality attributes [3], which collectively define the system’s structure, design, and

behaviour. Identifying these elements in existing codebases is critical for architectural

reviews, quality assessments, system re-engineering, and refactoring tasks. Traditionally,

this identification process relies heavily on expert knowledge and manual analysis, which

can be time-consuming and error-prone, such as the traditional tool Archie [4-6].

Recent advances in Natural Language Processing (NLP) [7] and the emergence of large

language models [8] like ChatGPT have opened new avenues for automating software

analysis tasks. ChatGPT [9], with its deep understanding of human language and pre-

trained knowledge of programming constructs, can assist in extracting and reasoning about

architectural patterns and tactics directly from the source code. However, the effectiveness

of such language models in performing these specific tasks remains relatively unexplored.

This paper aims to evaluate the effectiveness of ChatGPT in identifying architectural

patterns and tactics from software systems’ source code. Specifically, the study addresses

two key research questions:

Q1:How effective is ChatGPT in extracting architectural patterns from software
systems’ source code?

Q2:How effective is ChatGPT in extracting architectural tactics from software systems’
source code?

By answering these questions, this research seeks to provide insights into the
capabilities and limitations of using ChatGPT for architectural analysis, potentially
informing the design of more intelligent, automated tools for software engineering tasks.

Our contributions to this work are:

 Conducting experiments to extract architectural patterns and tactics from the source

code of five open-source systems using ChatGPT which are: Apache Storm [10],

Apache Flink [11], Apache Spark [12], Gradle [13], and Maven [14], [15].

 Performing a comparative analysis of ChatGPT's performance against Archie, a

traditional architectural analysis tool. The evaluation results for Archie, applied to

the same five open-source systems, are detailed in our previous studies [16], [17],

[18], [19].

 Measuring and evaluating ChatGPT's performance through precision, recall, and

accuracy metrics.

 Addressing the defined research questions by analyzing the experimental results.

With the success of AI models like ChatGPT in programming assistance, there is growing

interest in applying these models to more abstract areas of software development, including

architecture. The potential to leverage AI for automating architecture-related tasks, like

extracting design patterns and tactics, could streamline processes that are currently manual

and time-consuming, enhancing productivity in the software architecture domain.

While research has shown that ChatGPT can assist with coding and other technical tasks,

limited work has been specifically focused on evaluating its ability to handle more

conceptual elements of software architecture, such as identifying patterns or suggesting

tactics for quality attributes. This gap represents an opportunity to extend the capabilities

of AI models into new and impactful areas, thereby contributing novel insights to the field.

 H. Milhem & N. Harrison 211

While there are anecdotal reports of ChatGPT’s utility in various software development

contexts, systematic, empirical studies evaluating its effectiveness in extracting and

applying architectural knowledge are lacking. This research can provide quantitative and

qualitative evidence to support or challenge the current assumptions about the usefulness

of AI in architecture decision-making, guiding future development of tools and models.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the background and related work. Section 3 details the research methodology employed.
Our results are presented, analyzed, and discussed in section 4. Section 5 addresses
potential threats to validity. Finally, section 6 concludes the paper and outlines directions
for future research.

2 Related Work

2.1 Background

In this work, we address several concepts from various domains of software engineering.

We provide an overview of the key background terminology and related research, focusing

on concepts such as the architecture drivers and architectural elements. We also introduce

the tools used in this study, including Large Language Models (LLMs) like ChatGPT

and the traditional tool Archie. Additionally, we present the five software systems—

Apache Storm, Apache Flink, Apache Spark, Gradle, and Maven—selected as case studies

for validation. These concepts and tools are discussed both in general and in the context of

this study’s specific objectives. Architecture drivers involve quality attributes and

functional requirements [3], context, and constraints [3]. This paper only considers quality

attributes from the architecture drivers. Architecture elements include architectural

patterns and architectural tactics. While architectural patterns express high-level design

decisions, an architectural tactic is a design strategy that addresses a quality attribute [2].

2.1.1 Architectural Drivers

Architectural drivers are considerations that need to be made for the architecturally
significant software system. They include requirements that influence the overall
architecture [2-3]. They drive and guide the software architecture design.

2.1.1.1 Quality Attributes (QAs) Quality attributes (QAs) are characteristics that are
required by the system. They are qualifications of the functional requirements or the
overall product, such as performance, security, usability, and reliability [2][3]. These
qualifications should be considered with the functions of the system. For example, an
NFR performance might describe how quickly that dialogue should appear. An NFR
availability also might express how often this function should fail, and so on.

2.1.1.2 Functional Requirements (FRs) they are functions of a system or
components of a system that the system should do [1][19]. Functionality is achieved
by assigning responsibilities to architectural elements, resulting in one of the most
basic of architectural structures. Functional requirements are supported by non-functional
requirements. Generally, functional requirements are expressed in the form of “system must
do something," while non-functional requirements take the form of “system shall be a
quality."

212 Assessing ChatGPT's Capabi …

212

2.1.2 Architectural Elements

Architecture elements include architectural patterns and architectural tactics.

2.1.2.1 Architectural Patterns they are solutions that apply to specific problems and their
contexts. Examples of architectural patterns include the Broker pattern [20, 21], the Layers
pattern [20, 21], and the Pipes and Filters pattern [20][21]. Architectural patterns express high-
level design decisions and describe high-level structures and behaviors [1, 2].

2.1.2.2 Architectural Tactics they are design decisions that address quality attributes
(NFRs). They implement strategies to achieve these requirements [2]. Examples of tactics are
“Heartbeat” [2], “Ping/Echo” [2], “Authentication” [2], and “Authorization” [2]. In general, a
tactic implementation includes structure and behavior and can influence architectural patterns
in several ways when implemented together. Tactics can be implemented in the same structure
as architectural patterns or require changes to the structure and behavior of architectural
patterns.

The relationship between patterns, tactics, and quality attributes is shown in Figure 1.

Figure.1: A skeleton of the relationship between patterns, tactics, and quality attributes

2.1.3 Large Language Models (LLMs)

Large Language Models (LLMs) [8] are a class of artificial intelligence models designed to
understand, generate, and interact with human language. Built using deep neural networks,
LLMs are typically trained on vast amounts of text data from diverse sources, enabling them
to learn to indicate patterns, grammar, context, and even nuances within language. One of the
most notable advancements in natural language processing, LLMs like GPT (Generative Pre-
trained Transformer) and BERT (Bidirectional Encoder Representations from Transformers)

 H. Milhem & N. Harrison 213

utilize architectures based on transformers. This architecture, introduced by Vaswani et al.
[22] in 2017, allows the models to process language in a parallelized manner, capturing both
short- and long-term dependencies across words more efficiently than previous approaches
like recurrent neural networks (RNNs). Through fine-tuning specific tasks or continued
training on domain-specific data, LLMs can achieve impressive accuracy across applications
such as machine translation, summarization, sentiment analysis, question-answering, and even
code generation. Despite their power, LLMs also pose challenges, including high
computational costs, potential biases, and difficulties in handling domain-specific or
uncommon languages. Nonetheless, LLMs have fundamentally transformed how machines
process human language, driving innovation across fields like customer support, software
development, healthcare, and more.

2.1.3.1 ChatGPT-4

ChatGPT-4 [9], part of OpenAI’s GPT-4 family, is an advanced Large Language Model
(LLM) that builds upon the capabilities of its predecessors to offer improved language
understanding, generation, and interaction. Released in 2023, GPT-4 is designed to handle
complex prompts with greater accuracy and contextual awareness, making it effective for a
wide array of applications, from creative writing to technical support and detailed analytical
tasks. Figure 2 shows the architecture of ChatGPT. The architecture of ChatGPT-4, as
depicted in Figure 2, consists of the following key components:

1. Input Layer (blue color): Processes user prompts (text or multimodal inputs).

2. Transformer Layers (orange color): Multiple layers of self-attention mechanisms
for contextual understanding.

3. Output Layer (green color): Generates human-like responses based on learned
patterns.

4. Feedback Loop (purple color: Optional fine-tuning via reinforcement learning from
human feedback (RLHF).

Figure 2: ChatGPT-4 Architecture, highlighting its transformer-based design and

multimodal capabilities [9]

2.1.4 The Traditional Tool: Archie

Archie is an Eclipse plugin. It is used to determine architectural tactics, monitor
related code, and notify developers when they modify architecturally significant parts of
the code [4][5][6]. It is built to help automation the creation and maintenance of
architecturally relevant trace links between code, architectural decisions, and related
requirements. Figure 3 illustrates the Eclipse plugin interface of Archie, which includes:

214 Assessing ChatGPT's Capabi …

214

1. Code Editor Panel (gray color): Displays source code with architecturally
significant sections highlighted.

2. Tactic Detection Panel (green color): Lists detected tactics (e.g., "Heartbeat,"
"Ping/Echo") with confidence scores.

3. Pattern Visualization (blue color): Graphically represents patterns (e.g.,
"Layered Architecture") in the codebase.

4. Notification System: Alerts developers about architectural violations.

Figure 3: Archie tool: Eclipse plugin

2.1.5 Applied Software Systems

This section presents the five software systems used as case studies in this work: Apache
Storm, Apache Flink, Apache Spark, Gradle, and Maven.

2.1.5.1 Apache Storm
Apache Storm [10] is a free, open source, distributed real-time computation system. It can
be used with several programming languages. It consumes streams of data and processes
those streams in arbitrarily complex ways, repartitioning the streams between each stage
of the computation as needed. Figure 4 shows the architecture of Apache Storm. The
interested reader may refer to [10] for more details.

Milhem and Harrison 210

Figure 4: Apache Storm Architecture [10]

2.1.5.2 Apache Flink
Apache Flink [11] is an open-source framework for distributed stream

processing. It uses machine learning for threat detection, investigation, and
remediation applications. Flink is stateful, fault-tolerant, and performs on a large
scale. It can run over thousands of nodes with excellent throughput and latency
characteristics. Figure 5 shows the architecture of Apache Flink. The interested
reader may refer to [11] for more details.

Figure 5: Apache Flink Architecture [11]

2.1.5.3 Apache Spark
Apache Spark [12] is an open-source framework for distributed and large-scale
data processing. It provides an interface for entire programming clusters with

211 Assessing ChatGPT's Capabi …

implicit data parallelism and fault tolerance. It is a fast and general-purpose cluster
computing system. Apache Spark provides distributed task dispatching,
scheduling, and basic I/O functionalities. Figure 6 shows the architecture of
Apache Spark. The interested reader can refer to [12] for more details.

Figure 6: Apache Spark Architecture [12]

2.1.5.4 Gradle
Gradle [13] is an open-source build automation tool focused on flexibility and
performance. Gradle is modelled in a customizable and extensible way in the most
fundamental ways. It completes tasks quickly by reusing outputs from previous
executions, processing only inputs that changed, and executing tasks in parallel.
Gradle is the official build tool for Android and supports several languages and
technologies. Figure 7 shows the architecture of Gradle [19].

2.1.5.5 Maven
Maven [14] is an open-source build automation tool. It is a software project
management and comprehension tool. Maven is based on the concept of a project
object model (POM) [15]. It can manage a project’s build, reporting and
documentation from a central piece of information. Figure 8 shows the
architecture of Maven [19].

Figure 7: Gradle Architecture [13]

Milhem and Harrison 212

212

Figure 8: Maven Architecture [14]

2.2 Related Work

In a world increasingly reliant on technology, the exploration of generative AI’s
potential in creative and technical fields is both timely and transformative. Tan [23]
investigates how ChatGPT can aid designers in identifying and extracting key design
concepts from narrative stories. By leveraging the AI’s natural language processing
capabilities, designers can automate the extraction process, drawing inspiration from
textual narratives. This method holds significant relevance in educational contexts,
enhancing narrative-based learning in design education and showcasing the
transformative power of generative AI in creative fields.

As the narrative unfolds, the focus shifts to the realm of software development.
Gilson et al. [24] delve into the application of user stories within agile software
development, aiming to extract essential quality attributes early in the architectural
process. By employing natural language processing (NLP) techniques, they highlight
the importance of recognizing non-functional requirements like performance and
security, which are often overlooked in favour of functional ones. Their approach
enables architects to make more informed decisions, thus avoiding costly adjustments
later in development.

The story continues with Souvick et al. [25], who further emphasize the significance
of NLP by automating the extraction of goals from unstructured natural language
requirements. Their method employs predefined linguistic patterns to identify key
goals and dependencies, streamlining the goal modeling process and ensuring an
accurate representation of stakeholder objectives. This automated approach reduces the
labour-intensive nature of manual goal modeling, allowing for a more efficient
alignment of technical solutions with user needs.

In the healthcare sector, Huang et al. [26] highlight the efficiency of ChatGPT in
extracting critical medical information. Their research shows the model’s impressive
accuracy across various datasets, indicating that well-structured prompts can
significantly enhance its performance. By outperforming traditional NLP methods,
ChatGPT offers the potential to revolutionize clinical data extraction, facilitating faster
and more accurate decision-making in healthcare.

The authors in [27] examine how AI can assist software architects by fostering
collaboration throughout the design process. Through a case study focused on a bike-
sharing application, they demonstrate that while ChatGPT can support architectural
tasks, human oversight remains vital for refining and validating outcomes. This

213 Assessing ChatGPT's Capabi …

collaboration between human expertise and AI tools emphasizes a future where large
language models aid architects in navigating complex design challenges.

Pragyan et al. [28] focus on automating the extraction of use case components from
user-authored scenarios related to mobile applications. They address the challenge of
gathering requirements in early app development stages and propose a method using
refined prompts to enhance extraction performance. By converting user scenarios into
structured use case components, this approach aims to streamline requirements
acquisition, helping developers refine app functionalities efficiently.

The exploration of ChatGPT’s capabilities does not end there. Mohajer et al. [29]
Investigate the effectiveness of ChatGPT in performing static analysis tasks,
particularly focusing on detecting common bugs such as Null Dereference and
Resource Leaks. Using Infer, a recognized static analysis tool, they compile a dataset
from ten open-source projects, revealing that ChatGPT achieves notable precision—
up to 68.37 percent for Null Dereference and 76.95 percent for Resource Leaks.
Moreover, it surpasses Infer’s existing performance, showcasing its ability to enhance
static analysis processes and provide developers with improved accuracy in bug
detection.

Terzi et al. [30] also investigate how developers interact with ChatGPT when using
its code suggestions. The study analyzes a substantial dataset comprising over 267,000
lines of code, including commits, pull requests, and discussions. Key findings suggest
that developers are more inclined to incorporate code provided by ChatGPT when they
engage in multiple rounds of concise prompts that are specific to the problems at hand,
rather than using longer, more detailed inputs. The research indicates that this targeted
approach enhances the effectiveness of the interaction, as ChatGPT demonstrates the
ability to efficiently address various types of programming issues across different
languages.

Furthermore, Mahmoudi et al. [31] evaluate the potential of ChatGPT to automate
systematic reviews (SRs), focusing on its capabilities in literature search, screening,
data extraction, and content analysis. The authors developed a structured approach
utilizing ChatGPT, divided into four modules: preparation (formulating Boolean
search terms and collecting articles), screening (abstract screening and categorizing
articles), filtering (full-text filtering and information extraction), and analysis (content
analysis to identify trends and gaps in the literature). This structured methodology
illustrates how generative AI can streamline complex processes in systematic reviews.

Sun et. al [32] use ChatGPT for extracting pharmacovigilance events, which
involves identifying adverse events or potential therapeutic events from medical texts.
The study evaluates the performance of ChatGPT using various prompt strategies and
compares it to fine-tuned models.

Finally, KC et al. [33] use ChatGPT to extract use case (UC) components from user-
authored scenarios, particularly in the context of mobile app development. The authors
focus on refining the prompt strategies to enhance precision and recall in identifying
UC components from these scenarios. Their approach involves constructing a dataset
of 50 user-authored scenarios, which are manually labelled with UC components to
serve as ground truth. They discovered that incorporating domain-specific knowledge
into the prompts significantly improves the quality of the extracted UC components,
indicating that large language models (LLMs) like ChatGPT benefit from more

Milhem and Harrison 214

214

targeted prompts when handling such tasks. This work highlights the potential of
leveraging LLMs in automating requirements acquisition processes, which is
particularly valuable for small-scale development teams that might lack extensive
resources for traditional requirements-gathering activities. The study demonstrates that
although ChatGPT shows promise in extracting detailed UC components, further
refinement in prompt engineering is crucial for optimizing its performance in real-
world applications.

3. Methodology

3.1 Overview

Figure 9 provides an overview of the pipeline used in our work. Note that all the steps

of Archie have been done previously in our studies [16], [17], [18], [19]. The process is

structured into four main steps:

1. Input Source Code (yellow color):

o Inputs: The pipeline begins with two types of input: the complete source

code (zipped) and selected code snippets.

o These inputs are used as prompts for ChatGPT, initiating the process of

identifying architectural patterns and tactics. However, only the

complete source code (zipped) is used as input for Archie.

2. Extract Patterns and Tactics (purple/blue for Archie/ChatGPT):

o Archie:

 The source code undergoes preprocessing, followed by training,

and then detection proper. This step has been done previously in

our studies [16], [17], [18], [19].

 This results in three outputs: Extracted Patterns and Extracted

Tactics.

o ChatGPT:

 The input is processed through pre-trained understanding,

analysis, and recognition stages.

 ChatGPT produces three outputs: Extracted Patterns and

Extracted Tactics.

3. Compare Results (gray color):

o The patterns and tactics identified by Archie and ChatGPT are compared

to analyze their similarities, differences, and effectiveness in identifying

these elements.

4. Calculate Accuracy (compass tool):

o The final step involves calculating the accuracy of the outputs from both

Archie, which has been done in previous studies [16], [17], [18], [19] and

ChatGPT to evaluate their performance in extracting architectural

patterns and tactics from the given source code.

215 Assessing ChatGPT's Capabi …

Figure 9: The overview of our work

3.2 Prompt Engineering Strategies

We used ChatGPT-4o (May 2024 release) via OpenAI’s web interface (UI), as the API

version did not support file uploads during our experiments. The following settings were

applied to ensure consistency:

 Temperature: 0.2 (to balance creativity and determinism in architectural

analysis).

 Max Tokens: 4096 (to accommodate long code snippets and detailed responses).

 Session: Fresh chat sessions for each system to avoid context contamination.

 File Handling: Source code files (zipped or snippets) were uploaded directly to

the UI, with prompts explicitly requesting pattern/tactic extraction (Figures 10-

12).

We applied the low temperature to reduce the risks, while max tokens allowed

comprehensive responses. The UI was chosen over the API for its file-upload capability,

critical for processing entire codebases.

In this work, we utilized specific prompts [34] to extract architectural patterns

and tactics using ChatGPT. The first approach involved providing the entire source code

file of each system, enabling ChatGPT to identify patterns and tactics from the entire

codebase. In the second approach, we supplied selected code snippets and instructed

ChatGPT to extract patterns and tactics based solely on these excerpts. Additionally, we

tasked ChatGPT with extracting specific code snippets from the system’s source code

and subsequently determining the architectural patterns and tactics based on the

extracted portions. Please refer to Figures 10, 11, and 12 in Section 3.5 for further

clarification.

Milhem and Harrison 216

216

To handle the volume and complexity of the five open-source systems, we employed a

hybrid input strategy:

1. Full Codebase Upload (Zipped):

Directly uploaded entire project directories (.zip) via ChatGPT’s UI when possible (e.g.,

Gradle, Maven). The limitation of this strategy is that ChatGPT-4o’s context window

(128K tokens) restricted analysis depth for monolithic systems (e.g., Spark).

2. Code Snippet Extraction:

For systems exceeding practical context limits, we:

- Pre-filtered architecturally significant files (e.g., pom.xml for

Maven, StormTopologyBuilder.java for Storm) based on both the file naming

conventions (e.g., Manager.java, Strategy.java) and directory structure

(e.g., /core/, /runtime/).

- Manually extracted critical snippets (≤5K tokens) reflecting patterns/tactics (e.g.,

heartbeat logic, pipeline interfaces).

3. Prompt Chunking for Long Files:

Files >10K tokens (e.g., FlinkStreamExecutionEnvironment.java) were splitted into

logical segments (e.g., methods, configuration blocks), processed with iterative prompts

(e.g., “Analyze this segment for the Pipes and Filters pattern”), and aggregated results

post-hoc to avoid fragmentation.

4. Validation of Input Reduction:

We compared outputs from full uploads vs. snippets for consistency (e.g.,

confirmed Master-Slave detection in both approaches for Flink). The mitigation of this

strategy is that Snippets were cross-checked with system documentation to ensure

coverage of key architectural elements.

3.3 Evaluation Metrics

In this work, we evaluate the performance of ChatGPT using recall, precision, F1-score,

and accuracy metrics to assess the effectiveness of our experiments. For this purpose,

we calculate the True Positives (TP), False Positives (FP), and False Negatives (FN)

required for these metrics. However, we do not compute the False Negatives (FN) as all

patterns and tactics were evaluated and accounted for during detection. Specifically:

 TP (True Positives): The number of patterns and tactics correctly identified by

ChatGPT or Archie.

 FP (False Positives): The number of patterns and tactics incorrectly identified

by ChatGPT or Archie.

 FN (False Negatives): The number of patterns and tactics missed by ChatGPT

or Archie.

 Precision = True Positives (TP) / (True Positives (TP) + False Positives (FP)).

 Recall = True Positives (TP) / (True Positives (TP) + False Negatives (FN)).

 F1-score = 2 * (Precision * Recall) / (Precision + Recall).

 Accuracy = (True Positives (TP) + True Negatives (TN)) / (TP + FP + FN +

TN).

217 Assessing ChatGPT's Capabi …

3.4 Manual Validation

To validate the True Positives (TP), False Positives (FP), and False Negatives (FN) for

both ChatGPT and Archie, we employed a manual, expert-driven process:

 Ground Truth Creation: For each of the five systems (Apache Storm, Flink,

Spark, Gradle, Maven), we collected a gold-standard set of architectural

patterns and tactics by:

- Reviewing official documentation (e.g., Apache Flink’s

architectural guide [10]-[12]).

- Consulting prior studies on these systems ([16]-[19]) and

domain experts.

 Tool Output Comparison:

- For ChatGPT, we extracted patterns/tactics from its responses to

prompts (Figures 10-12) and mapped them to the ground truth.

- For Archie, we reused its detections from prior work ([16]-[19])

and verified them against the same ground truth.

 Labeling Rules:

- TP: A pattern/tactic detected by the tool and confirmed in the

ground truth.

- FP: A pattern/tactic detected by the tool but absent in the

ground truth.

- FN: A pattern/tactic missed by the tool but present in the ground

truth.

3.5 Apache Flink

In this section, we use Apache Flink as an example to illustrate the methodology’s steps

outlined in Section 3.1.

Step 1: First, we present the prompts used to extract architectural patterns and tactics

from the Apache Flink source code. Figures 10 and 11 demonstrate the prompts applied

to the entire Flink source code for identifying its architectural patterns and tactics,

respectively. Figure 12 showcases the prompts used with specific code snippets to

extract patterns and tactics from Flink.

Figure 10: Prompt utilizing the entire source code to identify architectural patterns

Milhem and Harrison 218

218

Figure 11: Prompt utilizing the entire source code to identify architectural tactics

 (a) (b)

Figure 12: Prompt using specific snippets of code (a) after providing snippets of code

and (b) before providing snipptes of code

Steps 2 and 3: After extracting the patterns and tactics, we compared the results of

ChatGPT with those from the traditional tool Archie for Apache Flink. For pattern

detection, Table 1 summarizes the comparison of pattern detection outcomes between

Archie and ChatGPT in Apache Flink, while Figure 13 illustrates the percentage of

patterns detected by each tool for Apache Flink. As observed, ChatGPT achieved a

pattern detection rate of 55.6%, compared to Archie's rate of 44.4%.

Pattern Detection:
Table 1: Comparison results of the patterns detection for Apache Flink

Architectural

Pattern

Also Known As Archie ChatGPT

Pipeline Pattern Streaming

Pipeline
❌ ✔

Master-Slave Pattern __ ❌ ✔

Layered Architecture

Event-Driven

Architecture

Service Component

Pattern

Layers

Broker

Observer/Publish-

Subscribe

Pipes and Filters

Shared- Repository

Multitier

Architecture

Message-Driven

Architecture

__

Tiered System

Message Broke

__

__

Common Data

Repository

❌

❌

❌

❌

✔

✔

✔

❌

✔

✔

✔

✔

❌

❌

❌

❌

219 Assessing ChatGPT's Capabi …

Figure 13: The patterns detection percentages for ChatGPT and Archie for Apache

Flink

Tactic Detection: Table 2 summarizes the comparison of tactic detection outcomes

between Archie and ChatGPT in Apache Flink, while Figure 14 illustrates the

percentage of tactics detected by each tool. ChatGPT detected 25.0% of the tactics,

whereas Archie achieved a higher detection rate of 75.0%. This is expected, as Archie

was specifically designed to identify traditional tactics, whereas ChatGPT is more

capable of discovering modern tactics.

Table 2: The comparison results of the tactics detection for Apache Flink
Architectural Tactic Also Known As Archie ChatGPT

Kerberos __

__
✔ ✔

Heartbeat

Ping/Echo

Exception Handling

Authenticate

Time Stamp

Resource Pooling

Audit Trail

PBAC

RBAC

Resource Scheduling

Session Management

Load Balancing

Restart

Time-out

Cancel

Active Redundancy

Checkpoint

Retry

Retry Logic

Connectivity

Probe

Error Handling/

Fault Handling

__

__

Resource

Sharing

__

Policy-Based

Access Control

Role-Based

Access Control

Task Scheduling

Load

Management

__

System Reboot

__

__

Data Duplication

__

__

__

__

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

❌

Milhem and Harrison 220

220

for Fault Tolerance

Data Partitioning for

Scalability

Resource Pooling

for Efficient

Resource Use

Circuit Breaker for

Fault Isolation

Resource

Sharing

__

✔

✔

❌

❌

❌

❌

❌

❌

❌

✔

✔

✔

✔

Figure 14: The tactics detection percentages for ChatGPT and Archie for Apache Flink

Step 4: we calculate the accuracy of ChatGPT using recall, precision, and accuracy

metrics to assess the effectiveness of our experiments. For this purpose, we calculate the

True Positives (TP), False Positives (FP), and False Negatives (FN) required for these

metrics. However, we do not compute the False Negatives (FN) as all patterns and

tactics were evaluated and accounted for during detection. Tables 3* and 4* present the

results for True Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN) of pattern detection for both Archie and ChatGPT. ChatGPT identified

five patterns, demonstrating its strength in detecting modern architectural patterns, such

as fault-tolerance strategies. In contrast, Archie identified four patterns, showcasing its

proficiency in recognizing traditional architectural elements.

ChatGPT missed 5 patterns (FN), whereas Archie missed 6 patterns (FP),

highlighting its challenges in detecting modern or nuanced techniques. ChatGPT also

falsely identified four patterns (FP), whereas Archie falsely identified five patterns.

Since all patterns were evaluated, true negatives (TN) are not applicable in this context.

* TP/FP/FN counts were manually validated against the ground truth (see Section 3.4). TN was omitted

as all patterns/tactics were evaluated for presence/absence.

221 Assessing ChatGPT's Capabi …

Table 3: Metrics results of Archie for Flink Table 4: Metrics results of ChatGPT for

Flink

Tables * and 6* present the results for True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN) of tactic detection for both Archie and

ChatGPT. ChatGPT identified six tactics, demonstrating its strength in detecting

modern architectural tactics. In contrast, Archie identified 18 tactics, showcasing its

proficiency in recognizing traditional architectural elements.

ChatGPT missed 17 tactics (FN), underscoring its limitations in identifying

foundational or traditional tactics. On the other hand, Archie missed five tactics,

highlighting its challenges in detecting modern or nuanced techniques. ChatGPT also

falsely identified 16 tactics (FP), whereas Archie falsely identified four tactics. Since all

tactics were evaluated, TN are not applicable in this context.

Table 7 presents the precision, recall, and accuracy results for both pattern and

tactic detection using Archie and ChatGPT in Apache Flink. As observed, Archie

achieves higher accuracy than ChatGPT in Flink, which is expected since Archie is

specifically designed to detect traditional tactics, whereas ChatGPT excels in identifying

modern tactics. Additionally, the results indicate that ChatGPT demonstrates greater

accuracy in detecting architectural patterns than tactics, as shown in Figure 13. We

followed the same approach for the remaining systems. The results for these systems

are available online. For more details, please refer to the data availability section below

at the end of paper.

Archie

Detection

Metrics

Architectural Patterns

True Positives

(TP)

True Negatives

(TN)

False Positives

(FP)

False

Negatives (FN)

4

0

5

6

ChatGPT Detection

Metrics

Architectural

Patterns

True Positives (TP)

True Negatives

(TN)

False Positives (FP)

False Negatives

(FN)

5

0

4

5

Milhem and Harrison 222

222

 Table 5: Metrics results of Archie Table 6: Metrics results of ChatGPT

Table 7: Metrics of pattern and tactic detection of Flink

4 Results, Analysis and Discussion

In this section we explained the results and the comprehensive discussion of our

method. Results are shown in Section 4.1 and the discussion is shown in Section 4.2.

4.1 Results

RQ1: How effective is ChatGPT in extracting architectural patterns from

software systems’ source code?

Approach: To address this question, we utilized ChatGPT to identify patterns from the

complete codebase for all five systems. We began with two types of input: the complete

source code (zipped) and selected code snippets. These inputs are used as prompts for

ChatGPT, initiating the process of identifying architectural patterns. However, only the

complete source code (zipped) is used as input for Archie. Once the results were

obtained, they were organized into tables for each system, and the percentage of patterns

detected by each tool was calculated.

Comparison: We compared the results of ChatGPT with those from the traditional tool

Archie across all five systems. The comparison results of pattern detection for Apache

Storm, Spark, Gradle, and Maven are available online, see Section 7. While the

percentage of patterns detected by each tool across all five systems is shown in Figures

15, 16, 17, and 18.

Archie Detection

Metrics

Architectural

Tactics

True Positives (TP)

True Negatives (TN)

False Positives (FP)

False Negatives (FN)

18

0

4

5

ChatGPT Detection

Metrics

Architectural

Tactics

True Positives (TP)

True Negatives (TN)

False Positives (FP)

False Negatives (FN)

6

0

16

17

Metrics Archie ChatGPT

Precision

Recall

F1-score

Accuracy

0.71%

0.67%

0.69%

52.38%

0.35%

0.33%

0.34%

20.75%

223 Assessing ChatGPT's Capabi …

Results: As observed in Figures 15, 16, 17, and 18, ChatGPT achieved a pattern

detection rate of 42.9%, compared to Archie's rate of 57.1% in Apache Storm. In

contrast, ChatGPT outperformed Archie in Spark, detecting patterns at a rate of 75.0%

compared to Archie's 25.0%. Similarly, ChatGPT achieved a pattern detection rate of

72.7% in Gradle, surpassing Archie's 27.3%. ChatGPT also led with a 60.0% detection

rate in Maven, while Archie achieved 40.0%. The F1-scores for these comparisons are

provided in Tables 8-12, demonstrating the balance between precision and recall for

each tool.
 Fig. 15. The pattern detection percentages for

ChatGPT and Archie for Apache Storm Fig. 16. The pattern detection

percentages

 for ChatGPT and Archie for Apache

Spark

 Fig. 17. The pattern detection percentages for Fig. 18. The pattern detection

percentages

 ChatGPT and Archie for Gradle for ChatGPT and Archie for Maven

RQ2: How effective is ChatGPT in extracting architectural tactics from software

systems’ source code?

Approach: To address this question, we utilized ChatGPT to identify tactics from the

complete codebase. We began with two types of input: the complete source code (zipped)

and selected code snippets. These inputs are used as prompts for ChatGPT, initiating the

process of identifying architectural tactics. However, only the complete source code

(zipped) is used as input for Archie.

Comparison: We compared ChatGPT's results with those from the traditional tool

Archie across all five systems. The tactics detection results for Apache Storm, Spark,

Gradle, and Maven are available online; see Section 7. The percentage of tactics

detected by each tool across all five systems is shown in Figures 19, 20, 21, and 22.

Milhem and Harrison 224

224

Results: As illustrated in Figures 19, 20, 21, and 22, ChatGPT achieved a tactic

detection rate of 22.7% in Apache Storm, while Archie outperformed it with a rate of

77.3%. In Spark, both ChatGPT and Archie detected tactics at an equal rate of 50.0%.

Likewise, ChatGPT identified tactics at a rate of 33.3% in Gradle, whereas Archie

achieved 66.7%. However, in Maven, ChatGPT led with a detection rate of 66.7%,

surpassing Archie's 33.3%. The F1-scores for these comparisons are provided in Tables

8-12, demonstrating the balance between precision and recall for each tool.

 Fig. 19. The tactic detection percentages for Fig. 20. The tactic detection

percentages ChatGPT and Archie for Apache Spark. for ChatGPT and Archie

for Apache Storm

Fig. 21. The tactic detection percentages for Fig. 22. The tactic detection percentages

for

 ChatGPT and Archie for Gradle ChatGPT and Archie for Maven

225 Assessing ChatGPT's Capabi …

4.1.1 F1-score,

To illustrate ChatGPT’s challenges, we highlight representative failures from our

experiments:

1. False Positive:

o System: Apache Storm

o ChatGPT Output: Detected "Microservices Architecture" in Storm’s

topology.

o Ground Truth: Storm uses the pipeline pattern (confirmed via

documentation [10]).

o Root Cause: ChatGPT merged distributed processing with

microservices due to superficial similarities in decentralization.

2. False Negative (Missed Tactic):

o System: Apache Flink

o Missed Tactic: "Checkpointing" for fault tolerance (a well-documented

Flink feature [11]).

o ChatGPT Output: Ignored checkpointing code snippets unless explicitly

prompted with the tactic name.

o Root Cause: Over-reliance on explicit keyword matching in prompts.

3. Misclassified Pattern:

o System: Gradle

o ChatGPT Output: Labeled the build script DSL as "Interpreter Pattern."

o Ground Truth: Gradle uses a declarative pipeline model, not an

interpreter structure.

o Root Cause: Misinterpretation of domain-specific language (DSL)

flexibility as a design pattern.

These examples underscore ChatGPT’s limitations in contextual reasoning and

domain-specific knowledge, suggesting opportunities for fine-tuning or hybrid

approaches.

4.2 Discussion

Tables 8, 9, 10, and 11 present the pattern and tactic detection metrics across Storm,

Spark, Gradle, and Maven. Table 12 summarizes the overall detection metrics for both

Archie and ChatGPT across all systems. As detailed in Section 3.4, all metrics (precision,

recall, F1-score, accuracy) were derived from manual validation against a ground truth.

The results indicate that Archie performs better in tactic detection compared to pattern

Milhem and Harrison 226

226

detection, with higher precision, recall, F1-score, and accuracy in most cases.

ChatGPT generally performs better in pattern detection, especially in Gradle and Maven,

with higher precision and recall. Both tools struggle with false positives and false

negatives, particularly in tactic detection, where the number of missed tactics (FN) is

high. ChatGPT has a higher precision in pattern detection, indicating fewer false

positives, but its recall, F1-score, and accuracy vary significantly across different

frameworks.

Table 8: Metrics of pattern and tactic detection of Storm

Table 9: Metrics of pattern and tactic

detection of Spark

Table 10: Metrics of pattern and tactic

detection of Gradle

Table 11: Metrics of pattern and tactic detection of Maven

Metrics Archie ChatGPT

Precision

Recall

F1-score

Accuracy

0.75%

0.67%

0.71%

55.0%

0.29%

0.26%

0.27%

16.0%

Metrics Archie ChatGPT

Precision

Recall

F1-score

Accuracy

0.45%

0.45%

0.45%

30.0%

0.58%

0.57%

0.58%

40.0%

Metrics Archie ChatGPT

Precision

Recall

F1-score

Accuracy

0.57%

0.50%

0.53%

36.0%

0.48%

0.42%

0.45%

29.0%

Metrics Archie ChatGPT

Precision

Recall

F1-score

Accuracy

0.36%

0.28%

0.31%

19.0%

0.67%

0.52%

0.59%

41.0%

227 Assessing ChatGPT's Capabi …

Table 12: The final Metrics of pattern and tactic detection for both Archie and

ChatGPT

5. Threats to Validity

This section outlines the potential threats to the validity of the findings in this study.

While the research explores the capabilities of ChatGPT in architectural analysis, certain

limitations could impact the robustness, reliability, and generalizability of the results.

These threats are categorized into three main types: construct validity, focusing on the

design and measurement of the study; internal validity, addressing factors that could

influence the interpretation of results; and external validity, concerning the applicability

of findings to broader contexts. Each category highlights specific challenges and areas

for improvement, ensuring a balanced evaluation of the study's strengths and limitations.

 Construct Validity: One of the threats of this work is that the effectiveness of

ChatGPT heavily depends on prompt quality, and variations in prompt design might

influence results. The lack of detailed discussion about prompt optimization could

affect reproducibility. We mitigate this by Using a standardized prompt evaluation

framework to ensure consistency and reproducibility. The also paper might not cover

all possible architectural patterns, tactics, and QAs comprehensively, potentially

leading to biased results. We mitigate this threat by consulting domain experts to ensure

the selected patterns, tactics, and QAs represent a comprehensive and balanced subset

of architectural elements. Another limitation is that our reliance on ChatGPT’s UI (not

API) may limit automation potential, though settings like low temperature (0.2)

mitigated variability. Future work should explore API-based batch processing.

 Internal Validity: One of the internal threats of this work is that the choice of

five open-source systems might not generalize to other types of software systems,

limiting the scope of the findings. We mitigate this threat by selecting one project from

a different domain, so we cover most of the software engineering domains. The method

for manually verifying TP/FP/FN (detailed in Section 3.4) may introduce subjectivity,

as ground truth labeling relies on expert interpretation of documentation and prior

studies. We mitigated this by:

 Using multiple authoritative sources (e.g., system documentation, peer-reviewed

studies) to establish ground truth.

 Cross-validating Archie’s outputs with our prior work ([16]-19]).

Framework Detection

Type

Precision Recall F1-score Accuracy

ChatGPT

ChatGPT

Archie

Archie

Pattern

detection

Tactic

detection

Pattern

detection

Tactic

detection

0.50-

0.80

0.23-

0.67

0.25-

0.67

0.33-

0.77

0.43-

0.69

0.21-

0.53

0.23-

0.57

0.26-

0.71

0.46-

0.74

0.22-

0.59

0.24-

0.62

0.29-

0.74

30%-

57%

12%-

41%

14%-

44%

17%-

59%

Milhem and Harrison 228

228

 External Validity: One of the generalizability threats is that the findings are

based on specific open-source projects, and the results may not be applicable to

proprietary or less-structured codebases. We have future work to expand the study to

include proprietary systems and unstructured codebases to assess generalizability.

Another threat is that since the study evaluates ChatGPT (a specific LLM), the results

may not generalize to other LLMs or AI-based tools for architectural analysis. We have

another task in the future to evaluate the performance of other LLMs and AI-based

tools to provide a broader perspective.

6. Conclusion
 This work explored the effectiveness of ChatGPT, a modern large language model,

in identifying architectural patterns and tactics, within software systems, comparing its

performance to that of the traditional tool Archie. The findings highlight the unique

strengths and limitations of both tools. While ChatGPT demonstrated promise in

detecting modern patterns (e.g., achieving 57% accuracy in pattern detection), its

performance lagged in tactic identification (23% precision), underscoring key

limitations:

1. Input Constraints:

o ChatGPT’s token limit necessitated fragmented code analysis, risking

incomplete context.

o Manual snippet selection introduced potential selection bias in large

systems (e.g., Spark).

2. Specialization Gap:

o Archie’s rule-based approach excelled in tactic detection (75% recall)

but struggled with newer patterns.

o ChatGPT’s generative nature led to false positives (e.g., misclassifying

generic code as patterns).

3. Validation Subjectivity:

o Ground truth reliance on documentation may omit undocumented tactics.

 Future work could focus on enhancing ChatGPT's training data to improve its

recognition of traditional tactics, as well as integrating the capabilities of both tools to

create a hybrid solution. Such advancements could pave the way for more intelligent,

automated systems that bridge the gap between natural language understanding and

software engineering tasks, ultimately contributing to improved software

maintainability and scalability.

References

[1] Carey, J. & Carlson, B. (2002). Framework Process Patterns: Lessons Learned

Developing Application Frameworks, Addison-Wesley, (2002).

[2] Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice,

Addison-Wesley, (2012).

[3] Johnson, R.E. (1997). How frameworks compare to other object-oriented reuse

techniques, Communications of the ACM, 40(10), 39-42, (1997).

[4] Mirakhorli, M. (2014). Preserving the Quality of Architectural Tactics in Source

Code, The Institutional Repository at DePaul University, College of Computing and

Digital Media, (2014).

229 Assessing ChatGPT's Capabi …

[5] Mirakhorli, M., and Cleland-Huang, J. (2016). Detecting, Tracing, and

Monitoring Architectural Tactics in Code, IEEE Transactions on Software

Engineering, Volume: 42, Issue 3, pp 205-220, (2016).

[6] Mirakhorli, M., Fakhry, A., Grecho, A., Wieloch, M., & Cleland-Huang, J.

(2014). Archie: A Tool for Detecting, Monitoring, and Preserving Architecturally

Significant Code, Proceedings of the 22nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, pp 739-742, Hong Kong, China, (2014).

[7] https://www.datacamp.com/blog/what-is-natural-language-processing.

[8] https://www.ibm.com/topics/large-language-models.

[9] https://openai.com/index/hello-gpt-4o/

[10] https://storm.apache.org, (last accessed 2024/10/9).

[11] Apache Flink, flink.apache.org, (last accessed 2024/10/9).

[12] https://spark.apache.org, (last accessed 2024/10/9).

[13] https://docs.gradle.org/current/ userguide/userguide.html, (last accessed

2024/10/9).

[14] https://maven.apache.org/what-is-maven.html, (last accessed 2024/10/9).

[15] https://maven.apache.org/guides/introduction/ introduction-to-the-pom.html,

(last accessed 2024/10/9).

[16] Milhem, H., Weiss, M., & Somé, S. (2020). Modeling and Selecting

Frameworks in terms of Patterns, Tactics, and System Qualities. In: 32nd Proc of

International Conference on Software Engineering and Knowledge Engineering

(SEKE 2020), USA, July 2020. (Best Paper Award).

[17] Milhem, H., Weiss, M., & Somé, S. (2019). Extraction of Architectural Patterns

from Frameworks and Modeling their Contributions to Qualities, In: 26th Proc. of

Conf. on Patterns Language of Programs (PLoP), Ottawa, Canada, October 2019.

http://www.hillside.net/plop/2019/index.php?nav=program.

[18] Milhem, H., Weiss, M., & Somé, S. (2020). Modeling and Selecting

Frameworks in terms of Patterns, Tactics, and System Qualities, International Journal

of Software Engineering and Knowledge Engineering (ijSEKE), 2020.

[19] Milhem, H. (2020).

https://ruor.uottawa.ca/bitstream/10393/40831/1/Bani_Milhem_Hind_Ahmad_Isma

il_2020_thesis.pdf, thesis, University of Ottawa, 2020.

[20] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).

Pattern- Oriented Software Architecture: A System of Patterns, vol. 1, John Wiley

and Sons, (1996).

[21] Buschmann, F., Henney, K., and Schmidt, D.C. (2007). Pattern-Oriented

Software Architecture, vol. 4, Wiley, (2007).

[22] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L- ., & Polosukhin, I. (2017). Attention is all you need. In Advances in Neural

Information Processing Systems (NeurIPS), 30.

[23] Tan, L. (2023) Using ChatGPT to extract design concepts from stories, in Derek

Jones, Naz Borekci, Violeta Clemente, James Corazzo, Nicole Lotz, Liv Merete

Nielsen, Lesley-Ann Noel (eds.), The 7th International Conference for Design

Education Researchers, 29 November - 1 December 2023, London, United

Kingdom[https://doi.org/10.21606/drslxd.2024.05].

[24] F. Gilson, M. Galster & F. Georis. (2019). Extracting Quality Attributes from

User Stories for Early Architecture Decision Making, 2019 IEEE International

Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany,

2019, pp. 129-136, [doi: 10.1109/ICSA-C.2019.00031].

http://www.datacamp.com/blog/what-is-natural-language-processing
http://www.ibm.com/topics/large-language-models
https://openai.com/index/hello-gpt-4o/
http://www.hillside.net/plop/2019/index.php?nav=program
https://ruor.uottawa.ca/bitstream/10393/40831/1/Bani_Milhem_Hind_Ahmad_Ismail_2020_thesis.pdf
https://ruor.uottawa.ca/bitstream/10393/40831/1/Bani_Milhem_Hind_Ahmad_Ismail_2020_thesis.pdf

Milhem and Harrison 230

230

[25] Das, Souvick and Deb, Novarun and Cortesi, Agostino & Chaki, Nabendu.

(2024). Extracting goal models from natural language requirement specifications.

Journal of Systems and Software. [211.111981. 10.1016/j.jss.2024.111981].

[26] J. Huang, D. M. Yang, R. Rong, K. Nezafati, C. Treager, Z. Chi, S. Wang, X.

Cheng, Y. Guo, L. J. Klesse, G. Xiao, E. D. Peterson, X. Zhan, & Y. Xie (2024). A

critical assessment of using ChatGPT for extracting structured data from clinical

notes. npj Digital Medicine, 7(1), 1-13. [https://doi.org/10.1038/s41746-024-

01079-8].

[27] Ahmad, A., Waseem, M., Liang, P., Fehmideh, M., Aktar, M. S., & Mikkonen,

T. (2023). Towards Human-Bot Collaborative Software Architecting with

ChatGPT. arXiv. [https://doi.org/https://arxiv.org/abs/2302.14600v1].

[28] KC, Pragyan and Slavin, Rocky and Ghanavati, Sepideh and Breaux, Travis &

Bokaei Hosseini, Mitra. (2024). An Analysis of Automated Use Case Component

Extraction from Scenarios using ChatGPT. [10.48550/arXiv.2408.03395].

[29] Mohajer, Mohammad and Aleithan, Reem and Shiri Harzevili, Nima and Wei,

Moshi and BoayeBelle, Alvine and Pham, Hung & Wang, Song. (2024).

Effectiveness of ChatGPT for Static Analysis: How Far Are We?. [151-160.

10.1145/3664646.3664777].

[30] Terzi Anastasia, Bibi Stamatia, Tsitsimiklis Nikolaos, & amp; Angelidis

Pantelis. (2024). Using code from ChatGPT: Finding patterns in the developers’

interaction with ChatGPT [Data set]. https://b2share.eudat.eu.

[31] Mahmoudi, Hesam and Chang, Doris and Lee, Hannah and Ghaffarzadegan,

Navid & Jalali, Mohammad. (2024). A Critical Assessment of Large Language

Models for Systematic Reviews: Utilizing ChatGPT for Complex Data Extraction.

SSRN Electronic Journal. 10.2139/ssrn.4797024.

[32] Z. Sun, G. Pergola, B. C. Wallace, and Y. He (2024). Leveraging ChatGPT in

Pharmacovigilance Event Extraction: An Empirical Study. arXiv.

[https://doi.org/https://arxiv.org/abs/2402.15663v1]

[33] KC, P., Slavin, R., Ghanavati, S., Breaux, T., & Hosseini, M. B. (2024). An

Analysis of Automated Use Case Component Extraction from Scenarios using

ChatGPT. arXiv. https://doi.org/https://arxiv.org/abs/2408.03395v1.

[34] White, Jules and Fu, Quchen and Hays, Sam and Sandborn, Michael and Olea,

Carlos and Gilbert, Henry and Elnashar, Ashraf and Spencer-Smith, Jesse &

Schmidt, Douglas. (2023). A Prompt Pattern Catalog to Enhance Prompt

Engineering with ChatGPT. [10.48550/arXiv.2302.11382

https://b2share.eudat.eu/
https://doi.org/https:/arxiv.org/abs/2408.03395v1

231 Assessing ChatGPT's Capabi …

Notes on contributors

Hind Milhem holds a Doctor of Software Engineering

degree from Ottawa University, Canada in 2020.She also

received her B.Sc. and M.Sc. (Computer Science) from

Yarmouk University, Jordan in 2007 and 2009,

respectively. She is currently an assistant professor in the

Information Department in IT faculty at The Hashemite

University, Zarqa, Jordan. Her research includes software

architecture design, architectural patterns, architectural

tactics, software evaluation, and artificial intelligence.

She published six papers in international journals and

conferences. She also has five papers under processing

and is waiting for the final decision on their acceptance.

From 2019 till now, she has been a reviewer (PC member)

at the International Journal of Software Engineering and

Knowledge Engineering (IJSEKE) and SEKE

conference. She can contacted at email:

hinda_is@hu.edu.jo.

Neil Harrison is a professor and chair of the Department

in Computer Science Utah Valley University. He is the

author of numerous articles on software patterns, software

architecture, and agile software, and is the co-author of

the seminal book, "Organizational Patterns of Agile

Software Development." He is the namesake of the "Neil

Harrison Shepherding Award", given at pattern

conferences for outstanding shepherding. He is a Hillside

Group member and has served on its board of directors.

He was formerly a Distinguished Member of the

Technical Staff at Bell Laboratories/Avaya Labs. He has

computer science degrees from Brigham Young

University, Purdue University, and the University of

Groningen.

mailto:hinda_is@hu.edu.jo

