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Abstract 

     The Geometric Process is a powerful alternative to the Non-Homogeneous 
Poisson Process for modeling event occurrences across various domains, 
including engineering, finance, and epidemiology. This study focuses on 
enhancing parameter estimation for the GP when the time distribution of the first 
event follows a Maxwell distribution. To achieve this, we applied and compared 
three estimation techniques: parametric Maximum Likelihood Estimation, non-
parametric Modified Moments, and the Firefly Optimization Algorithm. Simulated 
data from a gas power plant in Mosul was used to assess the performance of these 
methods. Results demonstrated that all three methods yielded accurate estimates, 
with FFA outperforming the others in terms of Mean Squared Error. Additionally, 
the Kolmogorov-Smirnov test validated the data's adherence to the Maxwell 
distribution, confirming the model's suitability. This study highlights the GP's 
applicability in real-world scenarios, particularly in reliability engineering and 
event modeling. However, reliance on simulated data limits the findings, as it may 
not fully reflect real operational complexities. Future work should extend these 
methods to diverse datasets and explore different distributional assumptions. The 
practical implications are significant, as precise parameter estimation can enhance 
decision-making in engineering processes and resource management. On a 
broader level, the findings may influence risk assessment approaches and improve 
operational efficiency in critical infrastructure systems, contributing to societal 
gains in service reliability and delivery.  

     Keywords: Geometric Process, Maxwell Distribution, Maximum Likelihood, 
Modified Moment Method, Firefly Optimization Algorithm, Artificial Intelligence. 

1      Introduction 

Introduced the Geometric Process (GP) as an elegant and straightforward monotone 

process, perceiving it as an extension of the Renewal Process (RP), [1-2]. This modeling 
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framework serves as a potent approach to capture the sequential time intervals between 

successive event arrivals in a counting process. Let's consider a counting process denoted 

as 𝑎, and let signify the time interval, we will   N t ;t 0  to be counting process, and ix  

be the time between the (𝑖 − 1)𝑡ℎ and𝑖𝑡ℎevents, where 1 2i , ,   , then: 

                                        𝑦𝑖 = 𝑎
(𝑖−1)𝑥𝑖    , 𝑖 = 1,2, … , 𝑛                                                 (1) 

In this context, we have a series of Independent Identically Distributed (IID) random 

variables, where the random process is classified as a GP with a parameter 𝑎 if there exists 

a real number, where 𝑎 is referred to as the ratio parameter of the GP [3]. The monotonous 

behaviour of the GP relies on the value of the ratio parameter 𝑎. When 𝑎 > 1, the GP 

exhibits a decreasing trend; for 𝑎 < 1, it demonstrates an increasing trend. In the special 

case where 𝑎 = 1, the GP simplifies into a Random Process (RP) [4]. 

Given the Geometric Process  ix ;i 1 ,2 ,....,n with a ratio parameter 𝑎, we can deduce 

the following: 

                                     
𝐸(𝑋𝑖)  

𝜇

𝑎(𝑖−1)

𝑣𝑎𝑟(𝑋𝑖) =
𝜎2

𝑎2(𝑖−1)

}                                                       (2) 

where 
1E(x )   and 2

1var(x )  . Thus a,   and 2 are very important to completely 

determine the expectation and variance of GP. it is essential to consider the values of 𝑎 and 

𝜆 . Numerous research studies have delved into the properties of GP, with notable 

contributions from [5-7]. These works have explored fundamental characteristics of GP. 

Addressing the statistical inference challenge for GP, previous studies have made 

assumptions regarding the distribution of the first occurrence time. In this particular 

investigation, we adopt the assumption that the distribution of the first occurrence time in 

GP follows a Maxwell distribution (MAX) with a parameter 𝜃. In Reliability Engineering, 

the Geometric Process is used to model the time between failures or events in a system [3-

4]. In queuing theory, the Geometric Process can be used to model the arrival of customers 

at a service point or the time between arrivals [5-6].  

GP can be applied to model the spread of infectious diseases or the occurrence of rare 

events in epidemiological studies. Although, In finance, GP can be applied to model the 

time between stock price movements, the arrival of trading orders, or the occurrence of 

financial crises [7-10]. In telecommunications, GP can be used to model the arrival of data 

packets in a network or the time between dropped calls in a cellular network. Furthermore, 

in biostatistics, GP can be employed to model the time between medical events, such as 

patient arrivals at a hospital or the occurrence of adverse reactions to a drug [11-12].  

This study's primary goal is to estimate parameters of GP when the first occurrence time 

follows a Maxwell distribution. Section 2 gives comprehensive details on the Maxwell 

distribution. In Section 3, We derive MLE and MM and Firefly Optimization FFA 

estimators for the parameters a and λ. Section 4 presents the results of Monte Carlo 

simulations aimed at comparing the performance of the estimators discussed in Section 5. 

In Section 6, Present Criteria. In Section 7, a real data set from the Dam power stations in 

Mosul is implemented, the survival times of patients with brain cancer until death and the 

dataset, obtained from a real-time command and control system developed by Bell 

Laboratories. In Section 8, present Discussion of Implications. Finally, Conclusions. 

2      Maxwell Distribution 

The Maxwell distribution, also known as the Maxwell-Boltzmann Distribution, is a 

continuous probability distribution commonly used for modelling data sets in the fields of 
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physics, chemistry, and related areas. This distribution is characterized by increasing 

failure rates and is suitable for modelling positively skewed data sets. However, it may not 

be suitable for modelling lifetime data that have both positively and negatively skewed. 

The distribution function of the Maxwell random variable was introduced by [6]. Let 𝑋 is 

a Maxwell distribution of a random variable will be denoted by the parameter  , we will 

be indicated 𝑋~𝑀𝑎𝑥(𝜆).  Thus, 𝐸(𝑋) = 2𝜆√
2

𝜋 
  and 𝑉𝑎𝑟(𝑋) =  𝜆2

(3𝜋−8)

𝜋
, for brevity 𝑥  has the 

𝑝. 𝑑. 𝑓.  as follow: 

                      𝑓(𝑥, 𝜆) = {
4

√𝜋𝜆3
𝑥2e−(

𝑥

𝜆
)2 ; 𝑦 > 0          

0 ;  Otherwise 
                                             (3) 

3      Firefly Algorithm (FFA) 

The Firefly Algorithm was initially proposed [13-15]. This method finds optimal solutions 

to optimization problems by taking cues from the night-time activity and flashing patterns 

of fireflies. Utilizing variations in light and gravity to direct fireflies toward the brightest 

and most alluring spots, the goal function is a key component of FFA. To understand FFA 

better, consider the following principles: 

 Light Intensity and Objective Function: The light intensity of a firefly at a given 

position x in optimization problems is stated by 𝐼(𝑥), is directly proportional to the 

value of the fitness function: 𝐼(𝑥)  ∝  𝑓(𝑥). Essentially, the brightness of a firefly 

corresponds to the quality of the solution it represents. 

 Attractiveness: The intensity of a firefly's gravity, symbolized by 𝛽, is proportional 

to the intensity 𝐼(𝑟), of its light intensity. Which, in turn, varies with the distance 𝑟𝑖𝑗 

between firefly 𝑖 and firefly 𝑗. As firefly light intensity decreases with distance due 

to the absorption of light in the medium. 

 Distance and Attractiveness: In the simplest scenario, light intensity 𝐼(𝑟) diminishes 

monotonically and exponentially with distance 𝑟. This means that fireflies are more 

attracted to others that are closer and brighter, as the light intensity diminishes as 

they move further away. 

In summary, the Firefly Algorithm employs the concept of mimicking firefly behavior, 

where fireflies are drawn to brighter and more attractive locations. In the algorithm, the 

light intensity of a firefly corresponds to the fitness or quality of a solution, and their 

attractiveness is influenced by both their own brightness and the distance to other fireflies. 

This elegant approach has proven to be effective for solving optimization problems and 

finding optimal solutions. 

                                                       𝐼(𝑟)  = 𝐼0𝑒
−𝛾𝑟                                                         (4) 

Where 𝛾  expresses the light absorption coefficient, and 𝐼0  represents the original light 

intensity. It is understood in elementary physics that the intensity of light is inversely 

proportional to the square of the distance, represented by 𝑟, from the source. Therefore, the 

variation of gravity 𝛽 with distance r can be defined by: 

                                                                         𝛽(𝑟) = 𝛽0𝑒
−𝛾𝑟2                                                                    (5) 

This formula describes how the attractiveness of a firefly changes as it moves away from 

the source, with 𝛽 decreasing as 𝑟 increases due to the inverse square relationship between 

light intensity and distance 𝑋𝑖 will be as follows: 
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                                                  𝑋𝑖+1  =  𝑋𝑖
𝑡  +  𝛽0𝑒

−𝛾𝑟𝑖𝑗
2   (𝑋𝑗

𝑡  −  𝑋𝑖
𝑡) + 𝛼𝑡  𝜖𝑖

𝑡                                           (6) 

4      Estimate Parameters for GP 

In this section, we focus on the estimation challenges related to the geometric process (GP) 

when the initial arrival has a Maxwell distribution.  

4.1      Maximum Likelihood Estimation (MLE) 

Let { 𝑥𝑖; 𝑖 = 1,2,… , 𝑛}   be a random variable of a GP with respect to the parameter a 

and 𝑥1~𝑀𝑎𝑥(𝜆). By considering equation (1), the following likelihood function can be 

easily written: 

                                       𝐿(𝑥, 𝜆) =  (
4

√𝜋𝜆3
)𝑛𝑎3∑ (𝑖−1)𝑛

𝑖=1 ∑ 𝑋𝑖
2𝑛

𝑖=1 𝑒
−
1

𝜆2
∑ (𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1                      (7) 

An alternate expression for the logarithm of the likelihood function in equation (7) is as 

follows: 

       𝑙𝑛 𝐿(𝑥, 𝜆) =𝑛𝑙𝑛(
4

√𝜋𝜆3
) + 3 (

𝑛(𝑛−1)

2
) 𝑙𝑛 (𝑎) + 2∑ 𝑙𝑛(𝑋𝑖)

𝑛
𝑖=1 −

1

𝜆2
∑ (𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1               (8) 

By taking the derivatives equation (8) with respect to λ and a and setting them to be equal 

to zero, the probability equations are obtained as follows: 

)9(                     
   

0 0
 

 
 

ln L(a, ) ln L(a, )
;

a

 


                                                 

So, we get: 

                       
𝜕 ln𝐿(𝑎,𝜆)

𝜕𝑎
=  3 (

𝑛(𝑛−1)

2𝑎
) −

2

𝜆2
∑ (𝑎𝑖−1𝑋𝑖)(𝑖 − 1)𝑎

𝑖−2𝑋𝑖
𝑛
𝑖=1                                    (10) 

                                         
𝜕 ln𝐿(𝑎,𝜆)

𝜕𝜆
= 

−3𝑛

𝜆
+

2

𝜆3
∑ (𝑎𝑖−1𝑋𝑖)

2𝑛
𝑖=1                                                  (11) 

By solving (10) and (11), 𝜆 equal: 

                                                𝜆 =  √
2

3𝑛
∑ (𝑎𝑖−1𝑥𝑖)

2𝑛
𝑖=1                                                              (12) 

Substituting the value of λ into equation (10) yields:  

                    3𝑛(𝑛 − 1) −
4

(√
2

3𝑛
∑ (𝑎𝑖−1𝑥𝑖)

2𝑛
𝑖=1 )

2  ∑ (𝑖 − 1)(𝑎𝑖−1𝑥𝑖)
2𝑛

𝑖=1 = 0                                 (13) 

Due to the power function of parameter 𝑎, the MLE for a, indicated as 𝑎̂𝑀𝐿𝐸,, cannot be 

determined directly from the solution of equation (13). A numerical solution is used to 

determine 𝑎̂𝑀𝐿𝐸, as shown below: 

                                                    𝑎𝑛+1 = 𝑎𝑛 − 
𝑓(𝑎𝑛)

𝑓′(𝑎𝑛)
                                                                     (14) 

𝑓 is the objective function specified in equation (13), where. The MLE estimator of 𝜆 is 

produced as follows if we replace the numerical solution of 𝑎̂𝑀𝐿𝐸, into equation (12): 

                                         𝜆̂𝑀𝐿𝐸 = √
2

3𝑛
∑ (𝑎̂𝑀𝐿𝐸

𝑖−1𝑥𝑖)
2

𝑛
𝑖=1                                                       (15) 

The MLE estimators' combined distribution is Asymptotically Normal (AN), as shown in 

[16-17]. 

                                                       (
𝛼̂𝑀𝐿𝐸
𝜆̂𝑀𝐿𝐸

)~𝐴𝑁 ((𝛼 
𝜆
), 𝐹𝐼−1)                                                  (16) 

Where 𝐹𝐼−1 stands for the Fisher information matrix in reverse. According to the Fisher 

Information Matrix: 
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𝐹𝐼 = (
−𝐸 (

𝜕2𝑙𝑛(𝐿(𝑎,𝜆))

𝜕𝑎2
) −𝐸 (

𝜕2𝑙𝑛(𝐿(𝑎,𝜆))

𝜕𝑎𝜕𝜆
)

−𝐸 (
𝜕2𝑙𝑛(𝐿(𝑎,𝜆))

𝜕𝜆 𝜕𝑎
) −𝐸 (

𝜕2𝑙𝑛(𝐿(𝑎,𝜆))

𝜕𝜆2
)
)                               (17)                                     

Inverse Fisher Information Matrix results are as follows: 

                                                    𝐹𝐼−1 = [

21

44

𝑎2

𝑛3
−

3𝜆𝑎

22𝑛2

−
3𝜆𝑎

22𝑛2
𝜆2

11𝑛

]                                                      (18) 

The asymptotic distribution of 𝑎̂𝑀𝐿𝐸 and  𝜆̂𝑀𝐿𝐸 results from equation (16): 

                                                         
𝛼̂𝑀𝐿𝐸 ~𝐴𝑁 (𝛼,

21

44

𝑎2

𝑛3
 )

𝜆̂𝑀𝐿𝐸~𝐴𝑁(𝜆,
𝜆2

11𝑛
  )

}                                                     (19) 

Furthermore, the estimators 𝑎̂𝑀𝐿𝐸and 𝜆̂𝑀𝐿𝐸  are impartial, consistent, and asymptotically 

based on the asymptotic variance of each 𝑎̂𝑀𝐿𝐸and 𝜆̂𝑀𝐿𝐸 converges to zero as 𝑛 → ∞. To 

determine the fit of GP to the given data, we perform hypothesis testing considering 

equation (19). 0 11 1 H : a vs. H : a , Using the following statistical analysis: 

                                               𝑈 =
𝑛
3
2(𝑎𝑀𝐿𝐸−1)

√
21

44
   𝑎𝑀𝐿𝐸

 , 𝑤ℎ𝑒𝑟𝑒 𝑈~𝐴𝑁(0,1)                                       (20) 

4.2      Modified Moment Estimation (MME) 

Let 𝜆̂𝑀𝑀 Lam [18] provided a nonparametric estimator for the parameter 𝜆, to be adjusted 

moment estimation { 𝑦𝑖; 𝑖 = 1,2, … , 𝑛}  as: 

                                                 𝑦̂𝑖 = (𝑎̂𝑁𝑃)
𝑖−1𝑥𝑖     ; 𝑖 = 1,2, … , 𝑛                                (21) 

Where 𝑎̂𝑁𝑃  is a nonparametric least squares estimator for GP that estimates the ratio 

parameter a. This estimator was utilized in [18-19] and was consistent, unbiased, and had 

a ratio 𝑎̂𝑁𝑃 distribution that was asymptotically normal so that: 

𝑎̂𝑁𝑃 = 𝑒𝑥𝑝 (
6∑ (𝑛−2𝑖+1) 𝑙𝑛(𝑥𝑖)

𝑛
𝑖=1

𝑛(𝑛−1)(𝑛+1)
)                                (22) 

Using the sample { 𝑥𝑖;  𝑖 = 1,2, … , 𝑛} from GP with ratio a, and the Maxwell distribution 

as a guide: 

                                                         𝑚𝑖 = 
1

𝑛
∑ 𝑦̂𝑖
𝑛
𝑖=1                                                        (23) 

The initial sample represents a moment and is characterized by the following values: 

                                               𝑚𝑖 = 
1

𝑛
∑ (𝑎̂𝑁𝑃)

𝑖−1𝑥𝑖
𝑛
𝑖=1                                                 (24) 

Additionally, it shows that the anticipated of the initial population moment of the Maxwell 

distribution 𝑥𝑖 as: 

                                                       𝜇 = 2𝜆√
2

𝜋
                                                               (25) 

We will obtain the following result by equating the expectation 𝑥𝑖 with the sample value 

of the first moment represented by 𝑥𝑖 in equation (22): 

                                            𝜆̂𝑀𝑀 = 
√
𝜋

2

2𝑛
 ∑ (𝑎̂𝑁𝑃

𝑖−1𝑋𝑖)
𝑛
𝑖=1                                               (26) 
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4.3      Firefly Algorithm (FFA) 

We will estimate the GP by FFA parameters in this part. The essential stages for this 

approach are shown in the following algorithm:   

Step1: Initialization randomly {setting n out of a number n Fireflies, as well as the greatest 

degree of attraction value 𝛽0, as well as the degree of light intensity (absorption) γ, 

as well as the phase factor α, and finally the maximum number of repetitions 𝑔𝑚𝑎𝑥. 

Step2: Evaluation and computation of the goal function of the greatest brightness 𝐼0 of 

fireflies using equation (3). 

Step3: Once you have identified the optimal firefly, use equations (5) and (6) to 

progressively determine the relative brightness I and attraction degree β. Next, search 

for the firefly in the community that has the brightest light, indicating that it is the 

most ideal firefly.  

Step4: Position updating, which is an update of the fireflies' location, is done according to 

formula (6). 

Step5: The algorithm comes to an end at the cycle termination criterion if the termination 

condition is satisfied; if not, it goes back to step (3). The Firefly optimization 

algorithm's flowchart looks like this. 

5      Simulation 

The performance of the FFA, MM, and MLE for parameter 𝑎 and 𝜆 is compared through 

extensive simulations with 1000 iterations. Subsequently, the simulation study investigated 

other alternative situations with varying sample sizes (𝑛 = 25, 50 and 100). The Maxwell 

parameter was adjusted to 0.5, 1.5, and 2, while the ratio parameter of the engineering 

process GP was modified to be 0.9, 0.95, 1, 1.05, and 1.10. The MLE, MM, and FFA 

estimators' performance was assessed using mean square error, or MSE. The findings 

displayed in table 1 demonstrate that the MSE values of the  𝑎   estimators drop with 

increasing sample size. Furthermore, the FFA estimator for  𝑎 consistently demonstrates 

superiority over the MM and MLE estimators based on MSE values in all cases presented 

in Table 1. 

 

Table 1: The simulated RMSE of estimator a  and  , when =2, 1.5 and 0.5 

 
𝝀 = 𝟐  𝝀 = 𝟏. 𝟓 𝝀 = 𝟎. 𝟓 

𝒂 𝑛 
 𝑎̂ λ̂ 𝑎̂ λ̂ 𝑎̂ λ̂ 

Method Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE 

0.9 

25 MLE 0.8638 0.0011 0.2820 0.0543 0.8725 0.0161 0.2377 0.0399 0.8210 0.0025 0.1194 0.0120 

MM 0.8996 0.0152 9.3220 3.5011 0.9004 0.0009 52.4376 27.4076 0.9005 0.0161 51.4218 15.8405 

FFA 0.4623 0.0138 0.0000 0.0285

* 

0.9092 0.0003* 2.1543 0.0207* 0.8241 0.0024* 0.0164 0.0153* 

50 MLE 0.0009 0.0004 0.0001 0.0585 0.0009 0.0004 0.0001 0.0241 0.0009 0.0007 0.0002 0.0186 

MM 0.0009 0.0058 3.9514 62.844

3 

0.0009 0.0057 2.9518 4.3167 0.0009 0.0057 1.0023 31.6517 

FFA 0.0009 0.0012 0.0004 0.0147

* 

0.0102 0.0003* 0.0102 0.0231* 0.0006 0.0081 0.0000 0.0158* 

100 MLE 0.0001 0.0002 0.0000 0.0607 0.0001 0.0001 0.0000 0.0259 0.0009 0.0005 0.0003 0.0075 

MM 0.0001 0.0021 1.5720 5.3725 0.0001 0.0020 1.1925 9.1936 0.0009 0.0020 3.9306 62.6904 

FFA 0.0001 0.0012 0.0000 0.0281

* 

0.0000 0.0070 0.0000 0.0258* 0.0009 0.0004* 0.0003 0.0067* 

0.8 

25 MLE 0.7642 0.0111 1.0984 0.0285 0.9895 0.0012 1.1928 0.0097 0.9406 0.0003 0.5959 0.0030 

MM 0.8000 0.0137 3.5514 0.9577 0.9508 0.0330 1.7216 0.4707 0.9508 0.0332 0.5649 0.2547 

FFA 0.0052 0.0110 1.0458 0.0062

* 

0.9508 0.0330 1.1029 0.0138 0.9508 0.0332 1.0625 0.0296 

50 MLE 0.9451 0.0002 2.1685 0.1053 0.9626 0.0004 1.4162 0.0027 0.9416 0.0003 0.5676 0.0021 

MM 0.9418 0.0082 2.3604 0.6003 0.9504 0.0124 1.5933 0.3055 0.9498 0.0118 0.5386 0.1965 
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FFA 0.9418 0.0082 1.3378 0.0501
* 

0.9504 0.0124 1.2442 0.0183 0.9498 0.0118 1.0745 0.0293 

100 MLE 0.9505 0.0000 1.8569 0.1045 0.9552 0.0002 1.1692 0.0105 0.9521 0.0001 0.5143 0.0005 

MM 0.9461 0.0039 2.3108 0.5575 0.9502 0.0043 1.5434 0.2084 0.9502 0.0041 0.5133 0.1155 

FFA 0.9641 0.0039 1.3728 0.0442

* 

0.9552 0.0043 1.1781 0.0162 0.9502 0.0041 1.0621 0.0297 

6      Criteria 

Numerous standards have been put out in this study to evaluate how well a model fits the 

data.  Four evaluation criteria are specifically looked at. As shown in the table below: 

 

Table 2: The simulated RMSE of estimator a  and  , when =2, 1.5 and 0.5 

No. Criteria 
1  MSE [22] ∑ (𝑋𝑘−𝑋̂𝑘)

2𝑛
𝑖=1

𝑛
  

2 R-square (𝑅2) [23] 1 −
∑ (𝑋̂𝑘−𝑋𝑘)

2𝑛
𝑖=1

∑ (𝑋𝑘−𝑦𝑖̅)
2𝑛

𝑖=1

    

3 AIC [24] −2 𝑙𝑜𝑔 𝑀𝐿𝐹 + 2𝑚    

4 MAE [24] ∑ |𝑋̂𝑘−𝑋𝑘|
𝑛
𝑖=1

𝑛−𝑚
  

7      Real data   

In this section, three real-world case studies are analyzed to demonstrate the practical 

applicability and effectiveness of the proposed method. 

7.1  Case I (Mosul Gas Power Plant) 

The data processing and estimating procedures were demonstrated using a real data set 

from the Mosul gas power plant, which helped to validate the GP estimators with the 

Maxwell distribution suggested in this study. This collection consists of 43 data points, 

identified as U1, that show the intervals between consecutive failures of a gas power plant 

in Mosul City, Nineveh Governorate, Iraq. The suggested model was then fitted to the 

observed data {𝑥1, 𝑥2, … , 𝑥𝑛} are: 

𝑋̂𝑖 = 

{
 

 
𝜇̂𝑀𝐿 𝑎̂𝑀𝐿       by a GP with ML estimators 
𝜇̂𝑀𝑀 𝑎̂𝑁𝑃      by a GP with MM estimators
𝜇̂𝑀𝐿𝑆 𝑎̂𝑁𝑃      by a GP with MLS estimators

𝑋̅𝑛

                       (27) 

where 𝜇 represent the estimate of the mean rate of occurrence.  

Let 𝑆 𝑘  = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 , 𝑘 = 1,2, … , 𝑛, then the fitted value of 𝑆𝑘  is 𝑆̂𝑘 = ∑ 𝑥̂𝑗
𝑘
𝑗=1  . 

The plot of may be used to compare the effectiveness of RP, MLE, MM, and FFA 

estimators for the data set 𝑆𝑘 and 𝑆̂𝑘 against 𝑘, 𝑘 = 1,2, … , 𝑛, where: 

                                            𝑀𝑆𝐸 =
1

𝑛
∑ (𝑋𝑘 − 𝑋̂𝑘)

2𝑛
𝑘=1                                                 (28) 

To evaluate the data set's underlying distribution {𝑥1, 𝑥2, … , 𝑥𝑛}, When compatible with a 

Maxwell distribution, the following linear regression model is taken into account [20-22]: 

                                     𝑙𝑛 𝑋𝑖 =  𝛽 − (𝑖 − 1) 𝑙𝑛 𝑎 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑛                         (29) 
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where 𝛽 = 𝐸(𝑙𝑛 𝑦𝑖) , and 𝜀𝑖  refer to the error term, if 𝑒𝜀𝑖  is distributed the Maxwell 

distribution, the data set {𝑥1, 𝑥2, … , 𝑥𝑛} can be modelled using the Maxwell distribution. 

Then, the ratio parameter a is estimated by equation (20), and 𝜀𝑖 estimated by: 

                                      𝜀𝑖 = 𝑙𝑛 𝑋𝑖 − 𝛽 + (𝑖 − 1) 𝑙𝑛 𝑎                                                   (30) 

Where 𝛽̂ =  
2

𝑛(𝑛+1)
 ∑ (2𝑛 − 3𝑖 + 2) 𝑙𝑛𝑥𝑖

𝑛
𝑖=1    

We use a plot to compare 𝑒𝜀𝑖 our data against the quintiles of the Maxwell distribution in 

order to determine whether it follows the Maxwell distribution. Take note of how closely 

the data points resemble a straight line. As a result, we may infer that the 1st, 2nd, and 3rd 

units of data from the Mosul gas power facility are well described by the Maxwell 

distribution. Doing a Kolmogorov-Smirnov goodness-of-fit test confirms this finding. (KS 

= 0.6274 and the related P-Value = 0.2652) on unit data from the Mosul gas power plant, 

this conclusion is supported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.  The cumulative data value logarithm is represented by the diffusive form. 

The parameters a and λ were estimated using MLE, MM, and FFA estimators, and the 

MSE, MAE, AIC and 𝑅2 values was calculated for each approach. In addition, the U-test 

results show that the 𝑈1 data follows the GP distribution when the dataset was modeled 

using the GP with Maxwell distribution, and these results are presented in Table 3. 

 

Table 3: Parameter, MSE, MAE, AIC, 𝑅2 and U-test estimations. 

Unite n Method 𝒂̂ 𝜆̂ 

Criteria 
Stat. 

Test 

MSE AIC MAE 𝑹𝟐 U 
P-

value 

U1 43 

MLE 1.0366 0.9303 0.4609 36.6950 0.1425 0.3650 

0.6274 0.2652 
MM 1.0412 0.6580 0.4676 37.7075 0.1450 0.5124 

RP 1 1.2467 0.4968 39.6252 0.4267 0.4244 

FFA 0.9973 0.0001 0.2224 26.1866 0.1311 0.3474 

 

From Fig. 2 can be seen, that the GP with the MLE, MM and FFA estimator more fairly 

follow real data than the RP. 
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Figure 2.  Number of failures plot against 𝑆𝑘 and 𝑆̂𝑘 

7.2  Case II (Survival Times of Patients with Brain Cancer until Death) 

The actual data represents the survival times of patients with brain cancer until death, 

which were obtained from the patient registry at the Imam Hussein (peace be upon him) 

Centre for the Treatment of Oncology and Blood Diseases in the Holy Governorate of 

Karbala, if a random sample of 100 patients was taken and their survival period was 

determined. Until death (in years) [23-25]. 

The parameters a and 𝜆 were estimated using MLE, MM, and FFA estimators, and the 

MSE, MAE, AIC and 𝑅2  values was calculated for each approach. In addition, the U-test 

results show that the 𝑈2 data follows the GP distribution when the dataset was modelled 

using the GP with Maxwell distribution, and these results are presented in Table 4. 

 

Table 4: Parameter, MSE, MAE, AIC, 𝑅2 and 𝑈2-test estimations. 

Unite n Method 𝒂̂ 𝜆̂ 

Criteria 
Stat. 

Test 

MSE AIC MAE 𝑹𝟐 U 
P-

value 

𝑈2 100 

MLE 2.0366 1.9303 1.4609 37.6950 1.1425 1.3650 

0.4274 0.1652 
MM 2.0412 1.7580 1.4676 38.7075 1.1450 1.5124 

RP 1.2 2.2467 1.4968 40.6252 1.4267 1.4244 

FFA 1.9973 0.0004 1.2224 27.1866 1.1311 1.3474 

 

Figure 3 demonstrates that the GP model, when combined with the MLE, MM, and FFA 

estimators, aligns more closely with the real data compared to the RP estimator, 

highlighting its superior performance in capturing the underlying trends. 
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Figure 3.  Number of failures plot 

7.3   Case III (Real-Time Command and Control System Developed by 

Bell Laboratories) 

In this section, real-world data is utilized to evaluate the performance criteria of the 

proposed model. The dataset, obtained from a real-time command and control system 

developed by Bell Laboratories, serves as the basis for comparing the model's goodness of 

fit. The evaluation results are summarized in the table below. 

 

Table 5: Parameter, MSE, MAE, AIC, 𝑅2 and 𝑈3-test estimations. 

Unite 
Size 

n 
Method 𝒂̂ 𝜆̂ 

Criteria 
Stat. 

Test 

MSE AIC MAE 𝑹𝟐 U 
P-

value 

𝑈3 40 

MLE 2.0363 1.8203 2.4609 36.6950 2.1425 2.3651 

0.2274 0.0652 
MM 2.0415 1.6480 2.4676 39.7075 2.1450 2.5125 

RP 1.5 2.1567 2.4968 35.6252 2.0267 2.4245 

FFA 1.9965 0.1104 2.2224 25.1866 1.0311 2.3474 

 

Figure 4 demonstrates that the GP model, when combined with the MLE, MM, and FFA 

estimators, aligns more closely with the real data compared to the RP estimator, 

highlighting its superior performance in capturing the underlying trends. 
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Figure 4.  Number of failures plot 

This paper compared the results of the GP model employing the Maxwell distribution with 

actual performance data in three cases. FFA estimator outperformed here with less Mean 

Squared Error (MSE) and more R-squared values as compared to MLE and MM in Case I 

(failure data). The GP model considered was found to perform better than the 

inhomogeneous Poisson process in Case II (survival times of brain cancer patients) and 

FFA estimator provide the best fit with the help of MSE and AIC. Also, in Case III having 

command and control system data the FFA estimator provided best performance measure 

of MSE and MAE. The findings presented in Tables 3, 4, and 5 provide substantial 

evidence for validity of the proposed FFA estimator in the parameter estimation of GP 

models improving its solutions adoption in various fields. 

8      Discussion of Implications  

In this section, we provide a comprehensive analysis of the scenarios, which are 

systematically categorized into three distinct parts to illustrate the broader implications and 

insights derived from the study. 

8.1      Reliability Engineering in Power Plants 

Reliability of equipment is critical in a gas power plant in order to support continuous 

energy production. Using distribution of intervals between failure of critical components 

such as turbines and generators, Maxwell coupled with GP framework provides a good fit. 

Using historical data, trends like increased time between failures could be observed and 

deduced to be as a result of equipment degradation of improved maintenance strategies. 

By virtue of the GP model, it is possible to predict future failure times to a t, which can be 

used for the proper scheduling of maintenance intervals. This helps to avoid prolonged 

machines inactivity, lower costs and increase operational performance. For instance, if the 

model predicts that failure rate within the next month will be high in particular equipment; 

maintenance can be scheduled to avoid equipment breakdowns. 

8.2      Resource Management in Telecommunications 

 

Based on the characteristics of telecommunications networks, incoming data packets can 

be modeled by counting processes the analysis of inter-arrival times which is important for 

achieving network benefits. The use of the GP framework together with Maxwell 

distribution means that instead of waiting for the packets to arrive at a certain moment and 
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analyses packet arrival times to look for a bottleneck, network engineers can use the same 

to discover that a bottleneck exists romance. 

By applying the GP framework with the Maxwell distribution, network engineers can 

identify patterns in packet arrival times and detect potential bottlenecks. For instance, 

suppose the model shows that packet frequency increases during rush hour; then it might 

suggest that a new bandwidth or infrastructure is required. 

These capabilities resources also allow for an optimal resource planning by being to 

provide a predictive based future importance. Expected traffic is another consideration that 

can be handled by allocating additional bandwidth and servers before peak time to avoid 

added latency and improve user experience at times of increased load. 

8.3      Epidemiological Studies 

In epidemiological investigations, it is important to establish the time periods between 

cases of contagious diseases so as to develop good control measures. 

Ultimate spacing of incidents including COVID-19 can then be modeled by employing the 

GP with Maxwell distribution. The method used in this approach enables the determination 

of patterns of spread of diseases; and evaluating the impact of measures placed to check its 

spread. 

However, a short period between cases may point to a surge of the numbers, and these 

require immediate reactions like testing, launches of vaccination drives or enhanced 

measures towards containing the virus. On the other hand, an extension of periods may be 

explained by effective treatments that enable the gradual easing of restrictions. Such an 

approach helps make appropriate decisions promptly and in accordance with statistical data 

to prevent diseases efficiently. 

In each of these contexts, there is direct immediate application from the GP with Maxwell 

distribution and learning these notations yield useful insights that can help enhance 

reliability, efficiency and responsiveness across various applications and disciplines. In 

this respect, organizations can use sophisticated modeling approaches to create value, 

optimize operations, improve utilization of resources and, consequently, improve results 

in engineering, telecommunications, and public health. 

9      Conclusion  

This study investigates the estimation of the frequency of occurrence of the GP when the 

time distribution of the first occurrence follows the Maxwell distribution. Three different 

methods for estimating the parameters of the GP were proposed and compared, namely the 

parametric MLE, the non-parametric MM and FFA. The simulation results and the analysis 

of real data have shown that the FFA estimator outperforms the MM and MLE estimators 

in terms of accuracy and efficiency. In addition, analysis of a real data set from a gas-fired 

power plant in Mosul showed that the GP model with the Maxwell distribution provides a 

better fit to the data than the inhomogeneous Poisson process. We also developed a test 

statistic to check whether the data fit a GP. Our results suggest that the GP model with the 

Maxwell distribution is a viable approach for modeling events in different domains. 

Based on the future work needed to further the GP with the Maxwell distribution, I suggest 

using various datasets from real-life application areas such as telecommunications and/or 

healthcare to increase generalization. A time comparison can reveal temporal trends and 

analysis with an alternate distribution such as Weibull, Log-Normal, or the use of Hybrid 

Models may provide a deeper insight of the system under analysis. 



 

13                                                       Rate of Occurrence Estimation in Geometric… 

Use in machine learning and Bayesian inference would help enhance parameters, results 

forecasting, and accuracy. Internal and external cross-validation coupled with intense 

cooperation with practitioners in the respective industries would guarantee the credibility 

of the findings and their practical relevance, respectively, thereby bringing efficiency to 

the calculations made in various applications. 
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