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Abstract 

The Halvorsen System (HS) of Variable-Order (VO) Fractional Derivatives is 
a potent instrument for fractional differential equations and chaotic systems due to 
the influence of white noise. The study focuses on The Effect of White Noise on the 
Halvorsen System of (VO) Fractional Because the Halvorsen System is extensively 
utilized in nonlinear optics, fluid dynamics, and plasma physics, the chaos can be 
employed to investigate a wide array of relevant physical processes. To analyze the 
impact of noise we deduce that noise influences and stabilizes the chaotic Halvorsen 
system. We plotted numerous 3D and 2D graphical representations to explain how 
the white noise influences the chaotically systems. We applied these schemes to 
simulate the chaotic (VO) fractional Halvorsen system. 

Keywords: Impact of White Noise; Atangana-Baleanu; Halvorsen System; Variable-
Order Fractional. 

1. Introduction 

In recent decades, fractional differential and integral operators have attracted 

significant attention as expansions of their integer-order counterparts [1]. The sequence 

of these fractional operators can be of any arbitrary value. It is essential to recognize that 

fractional operators may be defined multiple times. [2] The Caputo sense is frequently 

regarded as one of the best recognized fractional derivatives. A major disadvantage of 

this operator is its solitary kernel, despite the presence of various beneficial attributes in 

this variant. Various definitions of fractional derivatives have been devised to address 

this issue. Examples of these definitions encompass the Caputo-Fabrizio (CF) [3] and 

Atangana-Baleanu (AB) [4] derivatives. The Caputo derivative is defined by employing 

a single kernel in lieu of the conventional (CF) formulation. Conversely, it has been 

employed in the definition of (AB). The new definitions, although addressing the issue of 

the singularity of the Caputo fractional derivative, also impose many limitations on their 

use. The characteristics of the kernel function render it exceedingly challenging to derive 

an in the (CF) fractional derivative. This is a consequence of the properties of the kernel 

function. Moreover, designing and implementing this form of fractional derivative is an 

exceptionally challenging endeavor. Nevertheless, although the notion presented by (AB) 
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is user-friendly, to overcome the limitations outlined in the following section, we provide 

an innovative non-singular fractional differentiation formulation [5, 6]. 

Variable-order derivatives can simulate complicated dynamic behaviors that 

change over time, making them ideal for the Halvorsen system. This adaptability 

improves models of systems with non-constant differentiation orders, mirroring real-

world events. The following sections will discuss variable-order derivatives and their 

types, such as Caputo and Atangana-Baleanu derivatives. Halvorsen System (VO) 

Derivatives Flexibility: Non-linear Halvorsen systems benefit from variable-order 

derivatives, which can adapt to system dynamics. Existence and Uniqueness: Research 

shows that variable-order Caputo-type fractional differential equations have unique 

solutions, making them useful in complicated systems [7]. Types of derivatives Caputo 

Derivative: This derivative allows fractional orders for functions that are not classically 

differentiable. It excels at modeling memory-effect systems. Atangana-Baleanu 

Derivative: This derivative generalizes fractional calculus with a non-local kernel. It 

helps capture past states' effects on current dynamics, which is important in Halvorsen's 

system. Variable-order derivatives have many benefits, but they also complicate 

computational methods and stability analysis, which must be considered in real 

implementations. 

 A valuable mathematical tool for a more in-depth analysis of objects that vary 

over time is the discipline of (VO) fractional calculus, which investigates integration and 

differentiation operators with (VO) fractional order [8]. This field of study is a subfield 

of fractional calculus. To be more specific, the mathematical systems that are described 

by this innovative approach exhibit higher levels of precision and sensitivity [9]. We 

would like to bring to your attention the fact that developing an analytical solution to 

issues applying (VO) fractional operators is frequently a very difficult task. 

Consequently, the advancement of numerical methods for solving these systems is a 

significant area of research. The Adams-B technique has long been recognized as an 

effective and powerful numerical technique for solving fractional systems. 

[10,11,12,13,14,15,16,17]. A constant-order numerical system was established by the 

authors not too long ago. This scheme is Lagrange polynomial. We make use of this 

approach to simulate (VO) fractional differential operators. to make the numerical 

methods described in [18, 19]. 

 The study of chaotic systems that make use of variable-order fractional 

differential operators is extremely fascinating since these systems exhibit complicated 

dynamics and synchronization features. Classical fractional calculus is extended by these 

systems, which allows the order of differentiation to be changed; this means more 

flexibility and the occurrence of more complex behavior in chaotic systems. For a (VO) 

fractional derivative, which is a (VO) derivative of fractional order, the variable-order 

fractional derivatives can undergo constant modification influenced by time or other 

variables. Systems that become more dynamic in this way include the Liu system and 

chaotic systems. The addition of fractional derivatives of different orders allows them to 

behave in ways that are more complicated than they can in constant-order systems, such 

as being able to synchronize [20]. Synchronization in chaotic systems is achieved. It has 

been indicated that the active control methods can really realize synchronization in VO 

fractional chaotic systems, and the results of numerical simulation verify the correctness 

of theoretical analysis [21]. The synchronization of hyperchaotic systems with different 

fractional orders has been successfully implemented in our group, and this indicates 

possible applications in real life [22]. Applications and implications of the same the 

research in VO fractional systems is essential in particular with respect to the anomalous 
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process modeling since it gives a more close approximation to the natural phenomena 

that may be complicated [23,24]. It would appear, based on the results, that the systems 

can exhibit high multistability and hidden attractors,a thing necessary when 

understanding chaotic dynamics. While the attention given to VO fractional systems 

illustrates that such systems can indeed display complex behavior and synchronization, 

one should not lose sight of the difficulties inherent in attempting to implement such 

systems physically and the need for reliable numerical methods to carry out accurate 

studies of their dynamics. 

 The main subject of this paper is the investigation of the effects of white noise on 

the Halvorsen system of (VO) fractional derivatives. This study illustrates the efficiency 

of white noise as a robust approach for the representation of nonlinear fractional 

differential equations and chaotic systems. Some chaotic models provided by 3D and 2D 

mappings are given in order to analyze its impact due to noise dynamic performances. 

These constitute an elaboration of previous studies, including those reported in reference 

[24]. The paper is organized as follows: In Section 2, include some basic definitions of 

(VO) fractional derivatives. In Section 3, we will analyze the effect that white noise has 

on the Halvorsen system of (VO) fractional derivatives. Further, the presence of white 

noise is considered with a new VO numerical scheme appearing in Section 4. Moreover, 

we will show that the presence of white noise affects chaotical systems using various 

graphical representations both in three dimensions and in two dimensions. in Section 5 

Conclusion: the findings are summarized. 

 

2. Basic Definition 

We will employ these fundamental definitions of (VO) fractional derivatives in 

the following sections. This section provides these definitions. 

Definition 2.1The definition of (AB), as stated in reference [25], is delineated by the 

following instructions: 

 

𝐷𝑡
𝛽(𝑡)

0
𝐴𝐵𝐶 =

𝐴𝐵(ρ)

1 − ρ
∫ 𝐷𝑑(𝑢)𝐸β(𝑡) [

𝛽(𝑡)

1 − 𝛽(𝑡)
(1 − 𝑢)𝛽(𝑡)] 𝑑𝑢

1

0

.                                  (1) 

Furthermore, its integral is 

𝐼0
𝐴𝐵𝑅

𝑓
ρ

𝑢(𝑡) =
1 − ρ

𝐴𝐵(ρ)
𝑢(𝑡)𝑓(𝑡) +

ρ

𝐴𝐵(ρ)Γ(ρ)
∫ 𝑓(ψ)𝑢(ψ)(𝑡 − ψ)ρ−1𝑑ψ

𝑡

0

.        (2) 

Definition 2.2([26]). The Caputo with a different order β(𝑡)is given as. 

𝐷𝑡
𝛽(𝑡)

0
𝐶 {𝑌(𝑡)} =

1

Γ(1 − β(𝑡))
∫ (𝑡 − τ)−β(𝑡)𝑌′(τ)

𝑡

0

 𝑑τ.                                               (3) 

 

Definition 2.3([26]). White Noise in Fractional Calculus White noise in fractional 

calculus denotes a stochastic process within variable-order hyperchaotic systems. This 

noise is fundamentally defined: 

ℳ[𝜔(𝜏)𝜔(𝜏′)] = σ2δ(𝜏 − 𝜏′)                                                                           (4) 
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3. Halvorsen System Derivatives 

3.1. Classical Halvorsen system 

Within the framework of integer-order differential equations, the Halvorsen system, 

achaotic system like the Lorenz system, has been thoroughly investigated [27]. The 

following equations represent the Halvorsen system: 

 
𝑑𝑋

𝑑𝑡
= −𝐴𝑋 − 4𝑌 − 4𝑍 − 𝑌2, 

𝑑𝑌

𝑑𝑡
= −𝐴𝑌 − 4𝑍 − 4𝑋 − 𝑍2,                                             (5) 

𝑑𝑍

𝑑𝑡
= −AZ − 4X − 4Y − X2. 

3.2. The stochastic Halvorsen system of (VO) fractional derivatives 

Finding a chaotic Halvorsen system of (VO) fractional derivatives is a very difficult task 

in many real settings. This is because the existence of both nonlinearity and Stochasticity 

makes the task extremely difficult. Researchers, on the other hand, have utilized a variety 

of methods, such as (VO) fractional without for the stochastic we take into consideration 

the stochastic Halvorsen system of variable-order fractional in this working paper: 

𝐷𝑡
β(𝑡)

𝑋(𝑡)0
𝐴𝐵𝐶 = −𝐴𝑋 − 4𝑌 − 4𝑍 − 𝑌2 + σ1𝐻1(𝑡)𝑑𝐵(𝑡), 

𝐷𝑡
β(𝑡)

𝑌(𝑡)0
𝐴𝐵𝐶 = −𝐴𝑌 − 4𝑍 − 4𝑋 − 𝑍2 + σ2𝐻2(𝑡)𝑑𝐵(𝑡),      (6) 

𝐷𝑡
β(𝑡)

𝑍(𝑡)0
𝐴𝐵𝐶 = −𝐴𝑍 − 4𝑋 − 4𝑌 − 𝑋2 + σ3𝐻3(𝑡)𝑑𝐵(𝑡). 

here 𝐷𝑡
β(𝑡)

0
𝐴𝐵𝐶  is (AB) sense with variable-order , β(𝑡) = tanh(𝑡 + 1)  is variable-order 

fractional, 𝐵(𝑡) describes is the white noise (Gaussian process) and σ(𝑖) for, 𝑖 =  1; 2; 3 

denote the intensity of noise or the intensity of the stochastic environment. All the 

variables 𝑋, 𝑌, 𝑍 in the above models are non-negative. 

4. The Stochastic Halvorsen System of (VO) Fractional Atangana 

Derivative using A Numerical Scheme 

This analysis presents a numerical method for a fractional system that incorporates 

stochastic elements. The Atangana fractional derivative utilizes a variable-order 

fractional approach. Utilizing the fundamental theorem of fractional calculus, we obtain: 
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0
𝐴𝐵𝐶𝒟𝑡

𝛽(𝑡)
𝑌(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) + 𝜎𝑌(𝑡)𝑑𝐵(𝑡)                                                (7) 

𝑌(𝑡) − 𝑌(0) =
1 − 𝛽(𝑡)

𝐵(𝛼(𝑡))
𝑓(𝑡, 𝑌(𝑡))

+
𝛽(𝑡)

Γ(𝛽(𝑡))𝐵(𝛼(𝑡))
∫  

𝑡

0

 𝑓(𝜃, 𝑌(𝜃))(𝑡 − 𝜃)𝛼(𝑡)−1𝑑𝜃

+ ∫  
𝑡

0

 𝜎𝑦(𝑡)𝑑𝐵(𝑡)

                               (8) 

Where  𝐴𝐵𝐶(𝛽(𝑡)) = 1 − 𝛽(𝑡) +
𝛽(𝑡)

Γ(𝛽(𝑡))
  is a normalization function. 

At  𝑡𝑛+1, we have: 

𝑌(𝑡𝑛+1) − 𝑌(0) = 
Γ(𝛽(𝑡))(1 − 𝛽(𝑡))

Γ(𝛽(𝑡))(1 − 𝛽(𝑡)) + 𝛽(𝑡)
𝑓(𝑡𝑛, 𝑌(𝑡𝑛))

+
𝛽(𝑡)

Γ(𝛽(𝑡)) + 𝛽(𝑡)(1 − Γ(𝛽(𝑡)))
∑  

𝑛

𝑚=0

 ∫  
𝑡𝑚+1

𝑡𝑚

 𝑓(𝜃, 𝑌(𝜃))(𝑡𝑛+1 − 𝜃)𝛽(𝑡)−1𝑑𝜃

+ ∫  
𝑡𝑚+1

𝑡𝑚

 𝜎𝑌(𝑡)𝑑𝐵(𝑡).                                                                    (9)  

 

Using the Lagrange interpolation, the function 𝑓(𝜏, 𝑌(𝜏)) is approximated by: 

𝑃𝑘(𝜃) ≃
𝑓(𝑡𝑚, 𝑌𝑚)

ℎ
(𝜃 − 𝑡𝑚−1) −

𝑓(𝑡𝑚−1, 𝑌𝑚−1)

ℎ
(𝜃 − 𝑡𝑚),                    (10) 

where Eq. (10) is replaced in Eq. (9) to obtain: 

𝑌𝑛+1(𝑡) =𝑦0 +
Γ(𝛽(𝑡))(1 − 𝛽(𝑡))

Γ(𝛽(𝑡)(𝑡))(1 − 𝛽(𝑡)(𝑡)) + 𝛽(𝑡)(𝑡)
𝑓(𝑡𝑛, 𝑌(𝑡𝑛))

+
𝛽(𝑡)

Γ(𝛽(𝑡)(𝑡)) + 𝛽(𝑡)(𝑡)(1 − Γ(𝛽(𝑡)(𝑡)))
∑  

𝑛

𝑚=0

 

×(
𝑓(𝑡𝑚, 𝑌𝑚)

ℎ
∫  

𝑡𝑚+1

𝑡𝑚

  (𝜃 − 𝑡𝑚−1)(𝑡𝑛+1 − 𝜃)𝛽(𝑡)−1𝑑𝜃

−
𝑓(𝑡𝑚−1, 𝑦𝑚−1)

ℎ
∫  

𝑡𝑚+1

𝑡𝑚

  (𝜃 − 𝑡𝑚)(𝑡𝑛+1 − 𝜃)𝛽(𝑡)−1𝑑𝜃)

+ ∫  
𝑡𝑚+1

𝑡𝑚

 𝜎𝑦(𝑡)𝑑𝐵(𝑡).

         (11) 

Integrating (9) and replacing in (11), the following approximation is obtained 
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𝑌𝑛+1(𝑡) = 𝑌0 +
Γ(𝛽(𝑡))(1 − 𝛽(𝑡))

Γ(𝛽(𝑡))(1 − 𝛽(𝑡)) + 𝛽(𝑡)
𝑓(𝑡𝑛, 𝑌(𝑡𝑛))

+
1

(𝛽(𝑡) + 1)((1 − 𝛽(𝑡))Γ(𝛽(𝑡)) + 𝛽(𝑡)
∑  

𝑛

𝑚=0

 

× (ℎ𝛽(𝑡)𝑓(𝑡𝑚, 𝑌𝑚)((𝑛 + 1 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 𝛽(𝑡))

− (𝑛 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 2𝛽(𝑡)))

− ℎ𝛽(𝑡)𝑓(𝑡𝑚−1, 𝑌𝑚−1)((𝑛 + 1 − 𝑚)𝛽(𝑡)+1 − (𝑛 − 𝑚)𝛽(𝑡)

× (𝑛 − 𝑚 + 1 + 𝛽(𝑡))))

+𝛽(𝑡)𝜎𝑦(𝑡)(𝑐𝑛)(𝐵(𝑡𝑛+1) − 𝐵(𝑡𝑛))

        (12) 

Finally, we obtain the following numerical representation of the system (6): 

𝑋𝑛+1(𝑡) = 𝑋0 +
Γ(𝛽(𝑡))(1 − 𝛽(𝑡))

Γ(𝛽(𝑡))(1 − 𝛽(𝑡)) + 𝛽(𝑡)
𝑓(𝑡𝑛, 𝑋(𝑡𝑛))

+
1

(𝛽(𝑡) + 1)((1 − 𝛽(𝑡))Γ(𝛽(𝑡)) + 𝛽(𝑡)
∑  

𝑛

𝑚=0

 

× (ℎ𝛽(𝑡)𝑓(𝑡𝑚, 𝑋𝑚)((𝑛 + 1 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 𝛽(𝑡))

− (𝑛 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 2𝛽(𝑡)))

− ℎ𝛽(𝑡)𝑓(𝑡𝑚−1, 𝑋𝑚−1)((𝑛 + 1 − 𝑚)𝛽(𝑡)+1 − (𝑛 − 𝑚)𝛽(𝑡)

× (𝑛 − 𝑚 + 1 + 𝛽(𝑡))))

+𝛽(𝑡)𝜎𝑦(𝑡)(𝑐𝑛)(𝐵(𝑡𝑛+1) − 𝐵(𝑡𝑛))

              (13) 

 

𝑍𝑛+1(𝑡) = 𝑍0 +
Γ(𝛽(𝑡))(1 − 𝛽(𝑡))

Γ(𝛽(𝑡))(1 − 𝛽(𝑡)) + 𝛽(𝑡)
𝑓(𝑡𝑛, 𝑍(𝑡𝑛))

+
1

(𝛽(𝑡) + 1)((1 − 𝛽(𝑡))Γ(𝛽(𝑡)) + 𝛽(𝑡)
∑  

𝑛

𝑚=0

 

× (ℎ𝛽(𝑡)𝑓(𝑡𝑚, 𝑍𝑚)((𝑛 + 1 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 𝛽(𝑡))

− (𝑛 − 𝑚)𝛽(𝑡)(𝑛 − 𝑚 + 2 + 2𝛽(𝑡)))

− ℎ𝛽(𝑡)𝑓(𝑡𝑚−1, 𝑍𝑚−1)((𝑛 + 1 − 𝑚)𝛽(𝑡)+1 − (𝑛 − 𝑚)𝛽(𝑡)

× (𝑛 − 𝑚 + 1 + 𝛽(𝑡))))

+𝛽(𝑡)𝜎𝑦(𝑡)(𝑐𝑛)(𝐵(𝑡𝑛+1) − 𝐵(𝑡𝑛))

            (14) 

5. The Impact of White Noise on the Halvorsen System  

This section covers the (VO) fractional derivatives system of Halvorsen. A novel 

numerical method investigates the system with and without white noise. We numerically 

investigate the effect of white noise on the variable orders of chaotic dynamics through 

simulations. As seen in Figure 1(A-F), The Halvorsen System of Variable-Order 

Fractional Derivatives When the noise is absent (i.e., σ = 0), there are several types of 

simulations of the system (6). the following phase portrait behavior: (A) X-Y plane 

phase portrait at σ = 0; (B) X-Z plane phase portrait at σ = 0; (C) X-Y-Z plane phase 
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portrait at σ = 0; (D) X-time plane time series at σ = 0; (E) Y-time plane time at σ = 0; 

(F) Z-time plane time at σ = 0. Figure 2(A-F), The Halvorsen System of Variable-Order 

Fractional Derivatives When the noise is present (i.e., σ = 1), there are several types of 

simulations of the system (6). the following phase portrait behavior: (A) X-Y plane 

phase portrait at σ = 1; (B) X-Z plane phase portrait at σ = 1; (C) X-Y-Z plane phase 

portrait at σ = 1; (d) X-time plane time series at σ = 1; (E) Y-time plane time at σ = 1; (F) 

Z-time plane time at σ = 1. As Figure 3(A-F) illustrates, there are more effective types of 

white noise when the noise is strong. However, noise adversely affects the system, and 

the chaotic behavior flattens as the noise level increases. finally Figure 4(A-F). 

Comparison between the time series the system behaves differently when the noise is 

absent or present. 

 

  

  (A)     (B) 

 

 

        (C)     (D) 
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        (E) (F) 

Figure 1. (A–F) shows a 3D and a 2D profile when there is no noise present 

(i.e., 𝜎 =  0) for the system (6). 
 

 

  

                        (A)     (B) 
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        (C)     (D) 

 

  

        (E)     (F) 

Figure 2 (A–F) illustrates a 3D and a 2D profile for the system (6) when 

there is noise present. (i.e., 𝜎 =  1). 
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        (A)     (B) 

 

 
 

        (C)     (D) 

 
 

        (E)     (F) 

Figure 3 (A–F) illustrates a 3D and a 2D profile for the system (6) when 

there is noise present. (i.e., 𝜎 =  2). 
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     (A)     (B) 
Figure 4: (A–B) Comparison between the time series When the noise is absent and present at σ =

0.5σ = 0. 
 

6. Conclusion  

In summary, (VO) differential operators are a useful tool for simulating stochastic 

fractional differential equations. This research illustrates that white noise substantially 

affects the dynamics of the Halvorsen system. This paradigm enhances the stability of 

modeling nonlinear fractional differential equations and chaotic systems. The 

simulations are presented in Section 4, along with numerical solutions for the Halvorsen 

system. The chaotic behavior of the system (ABC) fractional is significantly influenced 

by white noise, as illustrated in Figures 2–3. This has allowed us to highlight the impact 

of multiplicative noise on the chaotic simulation of the system and the stability of those 

solutions. The utilized numerical approaches have demonstrated good outcomes. This 

study improves the understanding of the intricate interplay between chaos and noise in 

complex systems. In the future, we may analyze disease systems using a novel analytical 

method that includes additive noise [28, 29, 30, 31, 32]. 
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