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Abstract 

Human-robot interaction (HRI) which has become the fundamental need of the 

hour is born out of the necessity for studying the relation between humans and robots. 

This cutting-edge discipline is a multidisciplinary field that draws from computer 

science, robotics along with human-computer interaction and psychology. It focuses 

mainly on designing and programming machines, best known as automated machines 

or robots, which are used by humans to perform specific tasks in a timely manner and 

with higher quality. The key problem in HRI is to realize, shape, tune, and modelling 

the human-robot interaction in a flexible manner. For the sake of reflecting and 

shaping the interactions between humans and robots, HRI is based on the fusion of the 

two areas: the people's behaviour and attitudes towards using these robots, as well as 

the physical, technological, and interactive features of the robots. As the robot has 

tightly integrated from a set of sensors that collect the data from the environment and 

send them to the processor which in turn translates the collected data into information 

that can be used in the robot itself, machine learning (ML) is a well-known research 

area that focuses on the building of well-stocked knowledge systems by using 

supervised and unsupervised algorithms. From a conceptual standpoint, this research 

survey and taxonomy pursue to present an in-depth evaluation and review of the most 

current state-of-the-art papers that have already been published so far and encompass 

the use of ML algorithms in the HRI field. Thus, a total of 30research papers devoted 

to HRI were examined and analysed to give the most ML algorithms implemented in 

the field of HRI. Evidently, this study shows that the Neural and Reinforcement 

learning machine algorithms that are used mostly in the recent studies that have an 

interest in HRI use a machine learning algorithm with a supervised technique in a 

physical application. There are many challenges facing HRI using ML algorithms, 

which reduce the use of other ML algorithms such as deep and SVM learning 

algorithm. Unfortunately, these challenges limit use in social and mobile applications.  

Keywords: Artificial Neural Network (ANN); Deep Learning (DL); Deep Neural 
Network (DNN); Human-Robot Interaction (HRI); Long short-term Memory(LSTM); 
Machine Learning (ML); Recurrent Neural Network (RNN); Reinforcement Learning 
(RL); Support Vector Machine (SVM), Conventional Neural Network (CNN). 
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1. Introduction 

In this modern era, robotics is a multidisciplinary field of science that deals with 

intelligent machines, well known as robots, which are capable of performing target tasks 

autonomously or semi-autonomously [1][2]. Robots can be as basic as machines that 

follow a set of instructions, or as advanced as AI-powered systems that can learn, adapt, 

and work with people [1][2].More advanced robots can realize their surroundings, notice 

patterns, and make decisions on their own, without needing help from people. This is 

what makes them different from regular machines [1][2][3][4]. Beyond any doubt, the 

invention of this science rock the world and it is considered an IT boom that accelerates 

the globe and rapidly revolutionizes the landscape of services technology[1][2][3][4]. 

Beside it makes a significant qualitative changes in how individuals work and live, this 

science have benefitted individuals as well as the entire societies [1][3]. In the broader 

sense, the new phenomenon of this science ranging from infrastructure designing of 

robots to how human operator deal and interact with robots through the different well-

designed applications and innovative services [1][2][3]. 

Back and forth, the ultimate aim of Artificial Intelligence (AI) is building these robots[2]. 

The philosophy behind designing of reliable robots' user interfaces is to fuse the 

foundation of well-stocked Knowledge inside the Technology [2].Consequently, there is 

a need to develop software that mimics human interaction in knowledge and technology, 

capable of generating either a single solution or a prioritized list of potential solutions in 

a predetermined order for solving target problems[2]. 

Being more specific, this comprehensive survey, Human-Robot Interaction (HRI), as its 

name implies, is devoted to the design, identification and evaluation of the robotic 

systems that illustrates the communication between a human and a robot [1][2][3][4]. 

This involves all the designing process directly related to the manufacturing of the same 

robots and all the needed well-designed interactive interfaces that are used by human to 

control these robots [1].In this regard, considerable efforts have been made over the past 

decade on trying to humanize both the design and functionality behavior of social robots 

to increase their acceptance among humans. 

As shown in Figure 1, one of the most famous humanoid robots is the Advanced Step in 

Innovative Mobility (ASIMO), which was developed by Honda between 2000 and 2018 

as an forward-thinking step in creating a walking robot with impressive capabilities 

[1][5]. This company stated that the communication process takes various forms, as 

depicted in Figure 2. These forms enable the robot's system to interact more intuitively 

with the world around it by collecting complex sensor inputs that guide its movements 

and interactions [1][5][6][7][8]. As a matter of fact, depending on the workplace, this 

communication follows two models: "Remote interaction" and "Proximate interaction" 

[2][6][7][8]. The former one, “Remote interaction” is defined when the human partner 

and the robot are not linked to each other and are in a separate locations, i.e. distant 

interaction where the human partner is not physically near the robot, but controls it 

remotely from a distance, routinely through a user interface [3][7][9]. In contrast, the 

latter one, “Proximate interaction”, is defined when the human and the robot are closely 

linked together and share the same physical space (i.e. close, physical interaction)[8]. 

Since this model typically encompasses direct communication and cooperation between 

humans and robots, it demands more immediate and responsive interfaces [2][6][8][9]. 

However, the appropriate choice between the two mentioned models is based on the 
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specific application and the level of physical presence required in the HRI systems. Not 

only that, both interaction models are essential for developing multipurpose robotic 

systems that can adapt to a wide range of cooperative environments and meet diverse 

user needs.  

 

 

 

 

 

 

 

 

 

Fig. 1. Honda ASIMO Robot from 2000 through 2018 [5]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Human-Robot Interaction (HRI) 

Within these two types of interactions, it is appreciated to diagnose between the 

applications that require social, physical, and mobility interactions [10] which are already 

depicted in Figure 2. Furthermore, these types of interactions and the various HRI 

applications that determine the usage of robots are demonstrated in Table I.  
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TABLE I.  IINTERACTIONTYPES  AMONG HUMAN AND ROBOT 

Application Remote Interaction Proximate Interaction 

Mobile Robot works as a remote operator. The robot functions as a 

personal assistant. 

Physical Robot works as a remote processor. Robots include physical 

interaction. 

Social Robot works as a comrade (i.e. acts as a 

helper, partner, or companion). 

Robot includes emotive, and 

cognitive of interaction. 

It is crucially important to mention that when the cloud-hosted services are used, the 

“Remote” model can be accomplished by using attractive high-agile services and well-

built interactive interfaces which are really no more than web-based browsers accessed 

and shared remotely via the Internet [3]. On the whole, this cloud-like service is what is 

commonly known as Software-as-a-Service (SaaS); however, it is also sometimes 

referred to as “Cloudware” [3]. 

Indeed, this comprehensive survey studies the human impact when interact with the robot 

agent instead of a human [5]. Commonly, there are core distinctions among the different-

used fields of HRI and robotics; since there is often some confusion about the difference 

between them, the following bullet points shortly clarify these distinctions. The robotics 

is related with the construction of physical robots and the various techniques in which 

these robots work in the physical domain [11]. 

The big notable difference is that the HRI is actually concerned with the ways in which 

intelligent machines (i.e. robots) interact with human within the social realm [12], while, 

on the other side, the robotics are primarily address with the creation, development, 

deployment of the physical robots and the ways in which these robots function in the 

actual physical world [11]. To be more exact, in mobile interaction, the robot is often 

considered as robot assistant. For instance, the robot assistant in the manufacturing will 

be accomplished through close interaction with human as to support their works, but not 

to replace them [1][13]. 

Accounting for the interfacing ways, the interaction may be achieved by several sensing 

channels within a collaborative work environments [1][5]. As illustrated in Figure 2, 

these channels include, but are not limited to, the following: touch channels (Motion 

Capture Systems) for sensing tactile input, visual channels (RGB-D cameras) for 

capturing images, and hearing channels (microphones) for capturing sounds[1][2][9]. 

Usually, the sounds and speech are received through sound sensors that might be 

converted into written text via pre-prepared dialogue structure [9][14]. On the other hand, 

some possible interactions are occurred by the robot which may use  touch sensors to 

detect emotional gestures such as close proximity, punches, hugs, and caresses [14]. 

Furthermore, visual interaction may take place through a screen, usually a touch screen, 

allowing a substantial of information to be conveyed, whether visual or on the form of 

text [1][15]. It is important to realize that besides that sensors are equivalent to the 

human senses, the advanced ones can monitor some other sensations for which human 

couldn't sense [16][17][18]. 
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The well-known dataset called LISI-HHI, which stands for Learning to Imitate Social 

Human-Human Interaction was introduced to assist researchers working on multimodal 

learning by providing a detailed examination of how people act together [19] This high-

quality dataset is all about recording real-world interactions between two people in 

different communication circumstances. This dataset is a creative one because it uses 

many types of information, famous as "modalities". Advanced tools are used by the 

authors to gather the data like the following: data about where people are looking, how 

they move, what they resemble and even what they are saying; some if these tools are 

depicted in Table II. To be truthful, their effort make an important step forward to for 

teaching robots how to understand and imitate human behavior, which is a big challenge 

in the field of robotics. [19] 

TABLE II.  ADVANCED INSTRUMENTS USED FOR MULTIMODAL DATA COLLECTION [19] 

Interactions Objective Tool 

To sense and record the sounds of their voices. Microphones 

To see where people are looking. Eye Trackers 

To capture both regular video (i.e. RGB video) and 

depth information. 

RGB-D Cameras 

To track the movements of the people. Motion Capture Systems 

To measure distance.  Ultrasound Sensors 

To detect nearby objects without physical 

interaction in order to evade collisions. 

Proximity Sensors 

To capture social interaction dynamics and 

contextual behavior. 

Multimodal Sensing 

To analyze social interaction from a combination of 

visual, auditory, and motion data. 

Integrated Sensor Systems 

To capture facial expressions and body gestures.

  

Face and Gesture Detection 

Systems 

To detect touch. Force and Haptic Sensors 

To focus its vision. Adaptive Optics Sensors 

To analyze speech and linguistic patterns in social 

interactions. 

Speech Recognition Systems 

As a consequence, this scholarly-research paper is grained down into seven sections. 

After this current section reviews some fundamental concepts and terminology that form 

the theoretical background, the reminder of this paper is organized as follows: Section 2 

states the   research problem statement and then tend defined the objectives of this paper. 

Section 3 explores ML algorithms that may be used in HRI. Section 4 is where the actual 

work begins; it presents the research methodology. Section 5 surveys the literature to 

look at the recent HRI using ML studies. While Section 6 discusses the most critical 

challenges facing the acceptance of robots' presences in our life and highlights the 

findings, providing a detailed analysis of how they align with the established 

methodology and criteria, Section 7 discusses the key challenges facing HRI in the future 

and proposes potential solutions. The conclusion of this research is presented in the final 

section, Section 8. 
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2. Research Problem and Objectives 

Evidently, one of the key challenge in HRI is to design and model interactions between 

robots and humans in a way that is both flexible and adaptable to various dynamic 

environments and tasks [2][7][12]. To state the truth, rather than relying on traditional 

programming techniques, more dependable learning processes can be effectively 

employed to address challenges some of the challenges that are existing in HRI, such as 

ensuring that robots continuously improve their knowledge through repeated tasks and 

never stop learning[2][7][11]. In other words, robots can learn autonomously without 

calling for specific programming for each co-manipulation task in HRI[1][2][7]. 

To this end, machine learning (ML), a broad and essential field of AI, plays a critical role 

in HRI by enabling robots to learn and adapt to physical interactions with 

humans[2][11][16]. Through ML, robots can understand and react to human actions in 

real-time mode, improving their ability to cooperate and assist in dynamic environments 

[2][11][16][17]. Due to this, there was certainly a necessity for proposing a wide group 

of machine-learning methods and techniques in the past decade [3][16][17]. 

To delve deeper into the arguments that have elaborated so far, the central purpose of this 

research study is to introduce the latest ML methods and techniques that are used by 

robotics in the rapidly growing field of HRI, to identify and recognize the different 

shapes of human-robot interaction, and, ultimately, torise their approval among humans.  

3. Machine Learning (ML) 

To ensure that this research study is self-explanatory, this section establishes preliminary 

knowledge of the background pertaining to the concepts of HRI paradigm and draws a 

comprehensive image for both the current and future landscape of robotics research. 

Since any consistent model or system should be fully  trialed, the ML system needs a 

well-defined dataset, called training dataset, where the robot can learn how to acquire the 

data to create adequate creative knowledge [13][17][20]. It is essential to highlight that 

right training of the machine learning system is key to developing a reliable and 

trustworthy model[17][18].After the essential proper-sufficient training process or as a 

so-termed learning process, the model (i.e. system) should be examined on a great 

number of candidate samples[17][18]. The well-built trained dataset may encompass data 

that may be derived from the sensor circuits and has usually been manually defined and 

marked by humans[17][18]. An illustrative example on this when is the robot captures 

images of human faces from the sensors of a camera that gather this visual data and then 

transmit them to a controller to be further processed [16][18]. Ultimately, the controller 

interprets the emotion of that human and categorizes it into three classes: "neutral," 

"smile", or "angry" [1][2][20].  

Going further, the robotic sensor may be used to detect as signals the surrounding 

environmental conditions such as sounds, images, video, temperature, humidity, pressure, 

movement, light level, radiation, and more [18]. These signals are forwarded to the robot 

controller to detect, interpret, and analyze the applicable behavior and, in many cases, 

responding accordingly and taking the relevant behaviors and the justified actions [18]. 

Figure 3 depicts a robot, or as so called mechanical man or humanoid, that is outfitted 

with a variety of sensors and communication elements, including visual, audio, 

ultrasound, proximity, and several others. These components have a great effect in 
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helping this humanoid robot to mimic human by sensing and interacting efficiently with 

the world around it. To further simulate human-like communication and environmental 

understanding, a humanlike may be equipped with sensors for smell, taste, pressure and 

humidity measurements, and electrical sensing. It is important to note that robots 

typically require a substantial amount of information to operate effectively [3][18]. This 

extensive data is crucial for ensuring that they function correctly and can perform their 

objective tasks as intended. Without this comprehensive input, the robots may struggle to 

execute their functions accurately or efficiently [3][18]. 

 

 

 

 

 

 

 

 

Fig. 3. Humanoid Robot's Sensory and Communication Components[21] 

Computer vision, on the other hand, is one of the vital fields within HRI[1][22][23]. It 

interprets a series of 2D images captured over time, particularly when dealing with video 

data. Furthermore, Computer vision allows helping in self-localization, detection, 

mapping and tracing of individuals [22][23][24].  

As discussed, beforehand, the relevant data gathered by the robotic sensor is processed 

and translated to a more appropriate interpretation in order to discover the core features 

[20][25]. To be exact, this is what it's so-called extraction feature in machine learning 

(ML) [4][16][26]. In essence, there is undoubtedly a wide group of algorithms designed 

to extract features directly from the raw input data collected by sensors [27]. These 

features are arranged in a vector, typically called a feature vector or embedding, which is 

a row of numbers organized for further processing[4][16][26]. Not surprisingly, some 

experts and researchers commonly evaluate their data sets manually to define the most 

significant features. Moreover, the training process of an HRI model is typically preceded 

by a pre-processing phase for signals, called the preliminary processing phase[20]. This 

phase involves removing noise (i.e. filtering noise) from the signals before assembling 

the feature vector[20]. 

Many recent machine learning (ML) algorithms are used by robotics in HRI based on 

Deep Learning (DL), Reinforcement Learning (RL), Support Vector Machine (SVM) and 

Artificial Neural Network (ANN) [17][18]. It is essential to mention that each one of 

these stated algorithms has its remarkable strengths as well as potential drawbacks that 

are important to be considered[11][13][16][28][29]. The hierarchical relationships 

between the different types of ML algorithms are clearly depicted in Figure 4; these 
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algorithms can be categorized into various types into. The figure highlights that ML 

algorithms are grouped into four subgroups: Supervised Learning (SL), Unsupervised 

Learning (USL),Semi-Supervised Learning (SSL), and Reinforcement Learning(RL).SL 

is used when training data sets with known outputs and inputs (i.e. only labeled data) is 

used, and is therefore very beneficial in industrial processes where quality control is 

sought at work stations [18][20][30]. On the hand, the USL is especially proper for the 

cases in which training with dataset are unknown inputs and outputs (i.e. training with 

only unlabeled data);this allows the model to organize information or find out patterns 

within the data set by itself without being directly taught by human partner 

[18][30][31][32].In the cases where acquiring large amounts of unlabeled data is easier, 

more timesaving, and/or cost-effective, a collective fusion of small amount of labeled 

data added to a large amount of unlabeled data is formally referred to as SSL. It is 

crucially important to mention that the learning process in this subgroup (i.e. SSL) is 

obviously guided by this relatively small amount of labeled data. 

 

Fig.4. Machine Learning Algorithms[33] 

Broadly speaking, classification, which is a type of supervised learning, is a major 

machine learning technique frequently applied in HRI to enable robots to recognize, 

interpret, and respond to diverse human behaviors and inputs [28]. Classification is used 

to predict the most accurate label, also known as class, of a given input data. 

Classification assigns a class to a data point based on the training data [34]. Returning 

back to the example of an image captured for a human face by a given camera, the 

classifier decides the most accurate emotion of that human as one of the three classes: 

"neutral," "smile" or "angry" [18][35][22]. Back-and-forth, HRI wants ML algorithms to 

manipulate precisely any piece of information that has never been shown. Consequently, 

machine learning can give rise to algorithms used for face detection technology for 

tracking human by robot [23][24][1]. The robot is equipped with a vision system that is 

able to detect human faces through its camera input and uses these data to identify, 

locate, and, accordingly, track the movements of a target person in real time mode 



 191                                                                       Human-Robot Interaction (HRI) …             

[23][24]. The tracking activity is continuously adjusted to align with the target's position 

as it moves[1][23][24]. Whenever this occurs, the algorithm improves the data that it will 

be trained enough, but it may works badly when it comes to new problems [23][18][20].  

For the sake of reduce the human intervention during the training process, Deep learning 

(DL) is invented which is a ML for training large artificial neural networks (ANNs) 

[4][16][26]. The main idea of using DL is that it does not require manually careful 

extraction of the features; this is managed by using multi-layered neural networks, that 

have huge number of connection weights (parameters), to automatically learn 

representations of data, hence the word "deep" is used [17][18]. This stacking multi-

layered networks allows the model able to remember things for a long time. Additionally, 

deep learning (DL) is highly effective in enabling robots to adapt and progress on-

demand over time by continuously learning from new input data, further enhancing their 

ability to perform complex and large-scale tasks with minimal human intervention 

[16][17].First and foremost, since the DL algorithms are non-linear, it is considered as an 

ideal choice for the robotic applications; this is because it can learn features directly from 

the data [16][36].Despite the fact that Deep Neural Network (DNN) algorithms do not 

require human experts to extract patterns from datasets and possess a high level of self-

adaptability, they have a significant drawback: they require large volume of diverse data 

to achieve extraordinary performance without needing of human manual 

intervention[16][17][26]. This practical limitation draws the reason behind that DNN 

algorithms often require significant processing power and memory that is greatly 

associated with network architectural complexity, leading to high computational 

costs[16][17][26].This limitation is proportionally scaling with the problem size, in both 

memory and time. Furthermore, there may be issues related to data availability, which 

can make experiments less practical in applications where data are sparse, so hard to 

come by, or very costly to obtain[16][17][26]. 

Another advanced and interdisciplinary area of ML paradigms is reinforcement learning 

(RL). The robot in RL gets rewards, indicating positive or negative progress, from its 

surrounding environment to see how well it does the target task effectively 

[37][38][39][40][41]. The robot tries to do better performance by getting more positive 

rewards for good actions [42][43][44]. This is attained by obtaining more experience and 

directly engaging with the robot's surroundings. It should also be noted that, in order to 

help the robot to learn better, humans can provide it with the knowledge in the form of 

suggestions. However, the RL potential drawback is the robot may not be able to make 

accurate relations between the actions selected and the states that are observed that lead 

to greater rewards[40][42][43][44]. What is more, a lot of memory (i.e. memory-

intensive) is requested to store the values for each state[37][38]. To tackle these potential 

problems, we can avoid saving every combination of states and actions[45][38][41]. 

Instead, these combinations of pairs, states and actions, can be calculated on the spot 

when necessary [45][41]. 

To conclude this section, ML can be employed to develop robot behaviors, enhance robot 

perception, vacillate multi-robot interaction, and assist the robot in learning from 

interaction with the human[37]. HRI utilizing ML has recently attracted significant 

attention among scientists and researchers across different research foundations and 

universities around the world as a tactic to capture and encode valuable robot behaviors, 

vacillate robot training, and enhance perception [10]. 
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4. Research Methodology 

The main objective of this scholarly research paper is to provide a state-of-the-art review 

that covers a wide range of studies, from classical to novel approaches, on HRI using 

machine learning (ML). This research uses a set of previously published research papers 

selected from various journals including IEEE Explore, ACM, Scopus, and others. To 

this end, these papers highlight ongoing efforts to tackle safety concerns in HRI using 

ML, with a particular focus on collision detection and avoidance in cooperative human-

robot settings. These research studies are, in turn, for enhancing safety measures, 

designing adaptive safety mechanisms, and emerging collision avoidance strategies. 

Consequently, this research paper examines how ML techniques can be combined to 

enhance safety measures in HRI. From a criteria point of view, the set of research studies 

is selected by researching on Google Scholar using some keywords related to HRI such 

as: “Interaction Human and Robotics”, “Collaborative Human and Robotics”, “Human-

robot Interaction”, or “Interaction Human and Robotics using Machine Learning”. 

Besides that, the research comparison factors that are used in this added-value research 

paper are the type of robot sensor, HRI application, and the type of ML algorithm that is 

implemented in HRI. 

Related to the previously mentioned research methodology and criteria, the following 

section presents some research studies that are relevant and have contributed to the field 

on this topic. 

5. Survey of Research Papers on HRI with ML 

The main focus of this core section of our survey is to look at and review recent studies 

on HRI that utilize ML. A total of 30 different research papers, all involving ML 

algorithms in the context of HRI, were reviewed, examined, and analyzed. As a 

consequence of that, the analysis, along with comparison, and discussion of these 

research studies will be presented in the next section. 

To develop a new and efficient way to evaluate how humans and robots work and 

cooperate closely together to accomplish common tasks while minimizing collision 

issues, the research work in [46]is introduced. This study focuses on recognizing 

potential collisions in a shared workspace and, in turn, improving the safety measures in 

the course of HRI where the robot works alongside the humans as an efficient well-

coordinated teamwork that understands and reacts appropriately to human actions. For 

achieving this goal, the authors of this paper employee three different types of ANNs: 

- Feedforward Neural Networks (FNNs): This type is the traditional one of ANNs, 

generally used for pattern recognition and classification tasks. Since there is no any 

feedback loops, the data move in only one direction, from the input to the output. 

- Recurrent Neural Networks (RNNs): Since their architecture is based on loops that 

permit information to persist for long time, these types of networks are used for 

processing sequential data. RNNs are often applied in tasks involving natural language 

processing or time series data. 

- Convolution Neural Networks (CNNs): Since this type is particularly useful at 

automatically and adaptively detecting patterns in visual data, it is usually utilized in 

image-related applications such as video analysis. 

These three ANNs helped in recognizing different objects within the workspace, filtering 

out unnecessary data, and tracking the movements and interactions of both the robot and 
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the human operators. By doing this, the system could better predict and prevent possible 

collisions between them; therefore ensuring smoother and safer collaboration. 

It is vital to ensure safety to avoid accidents and coordination problems and to better 

determine the relationships between data points, the research study referenced in 

[47]introduced a Deep Metric Learning (DML) algorithm, which is a specialized subset 

of metric learning, and metric learning is itself a subfield of the broader field of machine 

learning (ML).Evidently, the philosophy behind proposing this smart algorithm is born 

out of the necessity for developing a distance function or similarity measure that can 

effectively compare different data points and explore different relationships among them. 

It extends the old-fashioned concept of metric learning, which focuses on distance 

functions, to a broader framework that studies non-linear, complex relationships between 

data points. From a different point of view, DML is a promising methodology for 

improving human-robot collaboration, particularly in industrial communities; it fuses the 

goal of metric learning with the power of multi-layered neural networks, making it highly 

effective for specific tasks that require an automatic understanding of complex 

relationships between data points. Furthermore, this DML-based method enable robots to 

anticipate human actions and take preventive measures to enable robots to better interpret 

and predict human spatial and movement. The DML algorithm was verified, and 

evaluated across different settings. As a result, this algorithm improves HRI safety 

measures to mitigate or prevent potential hazards that may occur when humans and 

robots work closely together. 

Another research study on DML is provided by  S. Li [48], focusing on its key principles 

and deep learning architectures. In this paper, DML is used for examining some so 

critical components, such as optimization strategies, loss functions, architecture designs, 

discovering hidden relationships and patterns within data, to mention but a few. These 

components cover a wide range of applications, including image retrieval for content-

based search, few-shot learning for tasks with incomplete labeled data, handling 

imbalanced data as a learning algorithm for embedding spaces based on the relationship 

between data points. These components cover a wide range of applications, such as 

finding images based on their content (i.e. content-based search), learning from a small 

number of examples when not all data is labeled, and managing imbalanced data as a 

learning algorithm for embedding spaces according to the association between data 

points. Furthermore, the last talked algorithm is measured by the similarity features 

where similar data points are put close together and dissimilar are put farther apart. An 

example of that is recognizing faces for identifying individuals where different images of 

the same person's face are placed close together and, on the other hand, images of 

different faces of different persons are placed far away from each other. For this well-

defined reason, a learned distance function is used to guide this categorization or 

arrangement in order to figure out what looks the same and what doesn’t. So, different 

images of the same person’s face are placed close together, while images of different 

people’s faces are placed farther apart.  

It's important to note that DML should not be confused with matrix learning, which uses 

matrix factorization techniques to predict missing data or recover corrupted values based 

on observed information. This is often also called matrix completion or matrix 

factorization. It is fabricated to know a representation space where the distances between 

any two data points may reflect some significant relationships between them, such as 

similarity or dissimilarity. By learning or assuming distance metrics from existing data 
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this approach, in one way or another, is frequently used to roughly estimate the missing 

entries in a given matrix. In other words, this approach is used to fabricate new data 

based upon the already existing data. 

Based on the idea that people's knowledge arises over time when they recall what they 

have previously learned in past lessons and, conversely, declines when they are unable to 

remember (i.e. forgetting) past information, Ayub et. al. [49]discuss the concept of 

accumulated knowledge, or as so-called continual learning, through repeated interactions. 

Using this interaction rule, the authors demonstrate how a robot can develop a warm and 

natural relationship with humans over time. The robot used in their experiments is "Fetch 

mobile manipulator" and they prove that their system can recognize objects and, on top 

of that, it doesn’t stop learning -it continuously improving its learning skills over time 

and, in turn, the gained knowledge is increase dafter each repeated session of interaction. 

To help robots keeps improving its learning skills from humans over time, their system 

uses three different continual learning models: 

- Cumulative Learning Model (CLM): The robot in this model continuously learns new 

things over time while storing everything it previously learned. It keeps all the newly 

acquired information along with its prior skills, allowing it to improve and adapt 

through repeated interactions. 

- Adaptive Learning Model (ALM): Based on feedback from people and situations, the 

robot in this model works in a different way than the previous one by adapting its 

behavior as it repeatedly engages with humans. This model resembles how people 

change their habits by revisiting them periodically, based on past experiences. 

- Selective Learning Model (SLM): To avoid being overwhelmed in the long duration 

by storing too much stacked data over each other, the robot in this model doesn’t 

preserve all the prior information it receives. Instead of that, the system dynamically 

selects the most important or useful information to keep and remember, while 

discarding unnecessary or fair-bit less relevant information. 

In the field of Intelligent Transport Systems (ITSs), Munguia-Galeano et. al. 

[38]introduced a novel and valuable method to increase robot cooperation with humans 

by using a method called Contextual Q-Learning (CQL), which is based on 

Reinforcement Learning (RL). It helps the robot to reduce the number of actions it needs 

to choose from (i.e., reducing the possible alternative soft he action space size), thereby 

increasing its learning speed and making it faster at figuring out what to do. A practical 

application of this method is to help the robot use information gathered from its 

surroundings to consciously adjust its actions based on the updated situation. This 

improves the robot's ability to perform specific tasks like picking up, moving, and 

releasing objects when working together with people during human-robot interactions 

(HRIs).From a purely practical standpoint, this study showed that this method helps the 

robot to learn quickly to resolve many real-life problems with a high success rate. 

The paper referenced in [50] discusses how, with the help of Support Vector Machine 

(SVM),a robot can interpret and react to human operators' actions in real time. In the 

context of real-time vision-based Human-Robot Interaction (HRI), a robot can identify 

facial expressions, detect a person's gender, and recognize real-time facial gestures. In all 

cases, the dataset includes facial landmarks categorized as “sad,” “angry,” “smile,” 

“surprise,” and “normal,” which are used to train the SVM to generate a classifier. 
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In addition, the paper referenced in [51] explores the use of neural networks for 

classifying human-robot contact situations. It focuses on how a neural network can be 

effectively trained on measurement data gathered from various contact scenarios between 

a human subject and a collaborative robot (cobot), such as the ABB YuMi robot. For 

collaborative robots, the paper emphasizes that classifying contact situations is vital for 

developing safe HRI protocols. It is vitally important to note that physical contact 

situations are labeled as “collisions”, while anticipated interactions are labeled as 

“interactions”. Moreover, the system is designed to conclude whether contact occurred 

on the robot's upper or lower arm. 

Another study aimed at solving the problems faced in ITSsby using machine learning 

(ML) was conducted by Wang et. al. [34]who suggested a system called ML-ITMS to 

make traffic monitoring safer and more reliable. ML-ITMS stands for Machine Learning-

Assisted Intelligent Traffic Monitoring System. The main objective of this system is to 

predict and manage traffic flow more accurately and efficiently. HRI helps address 

important concerns for both consumers and service suppliers in the transport system. The 

types of sensors used in their study are summarized in Table III, which provides a clear 

summary of each sensor's purpose and how it contributes to the overall system. 

TABLE III.  SENSORS USED IN ML-ITMS [34] 

Interactions Objective Tool (types of sensors) 

To captures visual information. Camera 

To track the movements of the objects by measuring 

deflection, displacement, movement, and vibration 

that are not visible to the human eye. 

RDI (Remote Device Interface) 

To detect and measures distance and speed. Radar 

To measure distance to objects. LiDAR (Light Detection and 

Ranging): It is a remote sensor 

that uses laser light. 

To monitor environmental conditions (e.g., 

temperature, humidity, wind speed, and pressure). 

Environmental Sensors 

To capture sound and vocal commands. Microphone 

To provide tactile feedback and measure forces. Force Sensors 

To provide movement measurement and direction. Motion Sensor 

To measure and record the torque on rotating systems. Torque Sensor 

To measure location and displacement. Position Sensor 

To measure speed of robot movement. Velocity Sensor 

Ottakath et. al. [24] proposed an innovative model using deep learning for social distance 

measurement and mask, which can be integrated into both stationary robots and mobile 

ground devices. Their proposed approach aims to develop safety and ensure adherence to 

health guidelines across diverse robotic platforms. 

Malik et al. [52] examined an industrial case study to address the complexities of 

collaborative production systems by exploring the potential of utilizing digital twins. 

Their study investigates various forms of digital twins throughout the lifecycle of a 
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collaborative robot system. By analyzing these digital twins, the authors demonstrate 

how they can enhance system performance, improve integration, and streamline 

operations in collaborative environments. 

Yan et al. [53] designed an improved, smaller, and lighter version an optimization 

techniques for detection and harvesting apples. This model is called "YOLOv5s", where 

the abbreviations "YOLO", "s", and "5" stands for "You Only Look Once", "smaller", 

and "the 5th version", respectively. YOLO is a well-known AI algorithm that uses 

Conventional Neural Networks (CNNs) for object detection. Furthermore, extensive real-

time experiments in detecting apples accurately and quickly are conducted by the authors 

to validate the system's effectiveness. Both high speed and precision accurately on the 

way of recognizing and harvesting apples are noted, and, consequently, this work has 

significant implications for advancing automation in agriculture. This apples' 

lightweight-solution can be extended for cultivation and harvesting other plants. Not only 

that, this deep learning-based object detection algorithm for this agricultural solution can 

be extended for developing more well-organized and intelligent picking robots for real-

time detection of other objects. From an alternative perspective, this applicable and 

practical solution is an important step forward to in the advancing of other practical 

applications where real-time object recognition is critical. This is particularly relevant to 

the security systems, autonomous driving, military manufacturing, and other robotics-

related domains. A further point to note is that, in addition to YOLOv5s, there are three 

more advanced models with slightly higher accuracy: YOLOv5m, YOLOv5l, and 

YOLOv5x, where the notions 'm,' 'l,' and 'x' stand for medium, large, and extra-large, 

respectively. 

Barstuğan and Osmanpaşaoğlu [54] made a robotic hand with a 3D printer. It was 

attached to a robot arm, and each finger had its own motor to move it. People wore 

special gloves with sensors that told the motors where their fingers were. The glove sent 

messages to the robot very fast, so the robot could move more smoothly. This helped the 

robot hand pick up (i.e. hold or grasp) move and release the objects. The robot arm was 

moved using pictures processed by a computer. The authors used two versions of the 

YOLO program, YOLOv4 and YOLOv5, to see which one was better at finding the 

gloves. They also used 5G communication to make the robot faster and more responsive. 

This project showed how robots can be controlled by humans in a simple way. In other 

words, this project tried to make robots better at understanding people’s movements in 

real time. As a consequence, their project can be useful for robots in places like factories 

or hospitals.  

Instead of using a big and expensive robot, Ahmad et. al. [55] proposed a small robot 

system for a medical condition called Twin-to-twin Transfusion Syndrome (TTTS). Their 

research study looks at how to automatically find the placenta's position using pictures 

from a very small camera used during fetal surgery. By looking at just one picture taken 

during fetal endoscopy, the authors of this paper successfully used deep learning, 

especially CNN, to guess and manage where the placenta is. Since their approach uses a 

simple, single-camera setup, this makes it more accessible and reasonably less costly 

than complex systems. Generally speaking, their CNN model was well-educated enough 

to accurately estimate how the placenta is located and oriented from just using one 

camera image during the surgery. Undeniably, this research study is important because it 

helps in buildinga starting point for making fetal endoscopy easier and partly automated 

in the near future. This means that in the years to come, physicians or surgeons might be 
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able to use tools and techniques from this study to perform these so complicated 

procedures with less manual effort and more knowledge. In a wider sense, this could lead 

to safer and healthier experiences for both obstetricians and patients during fetal 

surgeries.  

A new method of teaching robots, called Interactive Reinforcement Learning (IRL), is 

proposed by Akkaladevi and colleagues [39]. Their method helps robots learn how to 

work together with humans in a complete assembly process. The learning process of their 

method contains two major steps. In the first step, called Task Modeling, the robot is 

well-trained enough to understand the basic requirements of the learning tasks that need 

to be accomplished. These tasks are part of a well-organized list known as task-based 

procedures, which include various guidelines and options for these tasks. The human, 

referred to as the operator, plays a role in feeding the input data into the Reinforcement 

Learning (RL) network and helps identify the precise actions the robot should take 

accordingly. In the second step, called Reinforcement Learning Implementation (RLI), 

the robot's actions are optimized to the greatest possible extent based on the feedback of 

the cooperative environment. The human partner provides positive or negative feedback, 

known as a reward, depending on the degree of collaboration and the time required in 

completing the task to be accomplished. This step is repeated iteratively to allow the 

robot to improve its performance. It continues until the human operator is entirely 

convinced that the robot has become effective and suited to work in a real-time 

environment, or in so-called real-time HRI scenarios. 

For the purpose of enhancing teamwork coordination between humans and robots and 

build long-lasting trust in HRI, Chen et al. [56]created a special kind of computational 

trust-aware model that focuses on trust that arises over time. They designed a method to 

help the robot learn from its experiences. This method is called Partially Observable 

Markov Decision Process (POMDP). Over time the robot becomes better at making 

decisions and, in turn, adjusts its actions according to the trust feedback that are defined 

by the human partner.  This means that when the human gives more trust to the robot, the 

robot can work better and become more effective in working alongside humans. 

When both the human's and robot's arms have similar stiffness levels, they can work 

together more smoothly and efficiently as a tuned teamwork. Based on this ground, Chen 

et al. [57] outlined a well-built method to discover what the human intends to do with 

his/her arms when working beside a robot. The authors use a special device, called Myo 

armband, for measuring the stiffness of the human arm and compare that with the 

stiffness of the robot's arm. The word "Myo" is derived from another related Greek word 

"myos", meaning "muscle," and it is used now in relation to various muscle activities 

associated with modern technologies. Since this armband is worn on the human's wrist, it 

recognizes the different positions and movements of the wrist and decodes it into well-

formalized control signals. Consequently, what the human intends to do can be detected 

by this device. Then the authors apply one of the ML neural learning algorithms which is 

used to help the system better recognize the wrist configurations. To conclude this talked 

study, their method has a significant impact in advancing the wheel of the collaboration 

between humans and robots to become more effective and, in turn, in making the robot 

work alongside the humans as part of an efficient, well-tuned team. 

A new way to control how a robot reacts to forces during HRI is presented by the 

research study of X. Chen et al. referenced in [58].Their new method is based on 

approximately calculating the stiffness of the person's arm and then adjusting the robot’s 



 Mohammad Adawy et al.                                                                                           198 

control parameters to correspond to this estimated stiffness. After estimating the human 

arm's impedance, a Linear Quadratic Regulator (LQR) is used to calculate the robot arm's 

admittance model, so it matches the human arm's impedance. With this adjustable 

control, the robot arm can work smoothly with the human arm by responding to the force 

applied by the human hand. In other words, as the robot keeps adjusting, it can work 

more smoothly and naturally with the person, making teamwork easier and more 

effective. This helps them work closely together more efficiently. A neural network is 

also used to handle unknown movements and ensure the controller works well. At the 

end, tests were done to check if this method is enough effective. 

"Sawyer" is a type of collaborative robot, better known as cobot, created by Rethink 

Robotics, mainly to work alongside with people in industrial settings. It’s often used in 

factories, but because it’s flexible and can do complex tasks with human partners, it's 

also popular in research on human-robot teamwork. The authors in [59] presented a 

cognitive system that helps the robot coordinate actions and decisions during joint tasks 

with humans. This system uses connected neural networks, which function like small 

local systems with specific tasks. The authors tested this cobot in a real construction 

project, where it worked alongside a person. At each step, the robot decided and verbally 

announced which part to assemble next, then took the right action to put it in place. The 

two-dimensional Action Execution Layer helped show both the objects and the actions 

together. The outcomes showed that this cobot made good decisions, even in different 

work environments or when some parts were missing. 

The authors in [40] described a system that uses reinforcement learning(RL) to help 

humans and robots work closely together as a teamwork. This system is made to work 

fast and lower the chance of errors, helping to complete predefined tasks more quickly. It 

learns by itself, figuring out both how to look at things and how to make decisions at the 

same time. The system was tested on a packaging task and showed that it could help 

humans and robots work closely together better than other methods that use guided 

learning, where seeing and deciding are learned separately. Two key advantages of this 

approach are that it avoids the need for detailed labeling of movement data and allows 

learning to happen in real time. 

The research paper outlined in [60] suggested an emotion recognition system for a 

humanoid robot. This system (i.e. robot) is outfitted with a camera to capture facial 

images of users, enabling it to identify their emotions and respond accordingly. The 

emotion recognition system, utilizing a Deep Neural Network (DNN), is well-trained 

enough to recognize six fundamental emotions: happiness, sadness, fear, disgust, anger, 

and surprise. Furthermore, this proposed system works in a sequence of four phases that 

form its roadmap framework. First, a Convolution Neural Network (CNN) is employed 

to extract visual features throughout the training process, or as a so-titled learning 

process, conducted on a vast dataset of static images. Next, a Long Short-Term Memory 

(LSTM) recurrent neural network is used to evaluate the relationship between changes in 

facial expressions across image sequences and the six aforementioned fundamental 

emotions. Third, the proposed model integrates CNN and LSTM to power the strengths 

of both techniques. Finally, the emotion recognition system's performance is enhanced 

through transfer learning, which involves applying knowledge gained from solving 

related but different problems. 

To improve safety and efficiency, to enable the robot to automatically adjust the level of 

physical assistance, and to dynamically enhance and fine-tune real-time human-robot 
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collaboration for smoother and more natural interaction, the research study referenced in 

[42]proposed a reinforcement learning (RL) controller that combines auxiliary control 

with variable admittance control. This combination lets the robot dynamically regulate its 

behavior according to the user's desired actions and basic requirements. This predictive 

controller aims to optimize the response time of memory networks (i.e., reducing latency) 

and anticipate human intention, particularly in environments where real-time flexibility is 

crucial, such as in sensitive factory settings that require close cooperation between robots 

and humans. This means that robots can respond more effectively to human movements, 

making collaboration safer and more efficient. Ultimately, the proposed adaptive 

impedance controller was validated using real-time joint torque and force sensors, 

indicating that it achieves smooth, low-effort operation with a minimum-jerk trajectory. 

The paper referenced in [43]discusses an approach using a Model-Based Reinforcement 

Learning (MBRL) controller to support humans in performing teamwork tasks with 

robots. In this proposed approach, a set of Artificial Neural Networks (ANNs) is well- 

trained enough to learn and understand the way humans and robots interact closely 

together. These ANNs are, furthermore, designed to account for any uncertainties that 

may arise during this interaction and teamwork collaboration. The system can adjust 

stiffness and damping in real-time by using these learned models; this helps in reducing 

the physical effort required from the human. What's more, the well-stocked knowledge 

gained after these neural networks learn how humans and robots work closely together is 

then fed into a Model Predictive Controller (MPC), which helps make decisions on how 

to act. After this important step, a technique, called Cross-Entropy Method (CEM) is then 

used by the MPC. This technique, in somehow or another, helps in optimizing actions by 

selecting whichever the best one out of the possibilities. An important point to mention is 

that their system is continuously adjustable, making the collaboration between the human 

and robot easier and smoother for the human. 

The research work in [44], reported that an adaptive impedance control system was 

created where humans and robots can work closely together and collaborate more 

effectively in accomplishing some given such as passing tools and jointly moving or 

lifting heavy objects. This system allows the robot to modify its motion and control its 

impedance parameters in real-time mode without needing any earlier knowledge about 

the task to be accomplished. Instead of relying on a detailed understanding of how the 

system acts and behaves, Reinforcement Learning (RL) is used to help the robot to 

compute and pick up the right set of parameters. These parameters are generally chosen 

to reduce costs related to the task’s goals. After the robot has learned the right 

parameters, it fine-tunes them further by considering any disagreement from the human 

partner. The system is designed to estimate the human's motion reference by using a 

simplified model of the contact dynamics and identifying the system's behavior through a 

process called system identification. This method helps the robot to actively contribute to 

the task while remaining flexible to changes in the environment or task itself. The authors 

of this research also presented impressive experimental results that demonstrate how well 

the robot performs using this method. 

The authors of the research paper referenced in [61]introduce bilateral control as a 

method that allows both the human and the robot to jointly effect each other’s 

movements. They also introduce imitation learning as a machine learning (ML) technique 

in which a robot learns to perform certain tasks by observing and imitating human 

actions. By this technique, the robot watches pre-recorded demonstrations, registers the 
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actions, and then attempts to redo the behavior autonomously or collaboratively with the 

human. Based on practical real-time feedback, they indicate how imitation learning and 

bilateral can be used together to design framework that is used to expand and coordinate 

the collaboration between both humans and robots in numerous learning tasks. Because 

their research study demonstrated that robots could adjust their actions in real-time mode 

to match human movements based on the prediction of human actions, their framework 

helps in making human-robot interaction smoother and more efficient. Furthermore, this 

real-time adjustment in collaborative settings enhances coordination that produce better 

teamwork, improving how well the human can work alongside a robot, minimizing 

interruptions or errors, reduces the cognitive and physical load on human operators, and 

improving the overall coordination between human and machine. 

Since the Recurrent Neural Networks (RNNs) issued successfully in detecting patterns of 

the actions that happen over time, like human actions and movements, the study in [62] 

introduced a method using this type of networks to predict how humans move during 

some collaborative shared tasks. The authors' aiming this research paper is to bridge the 

gap between understanding human movements and making sure those robots can respond 

efficiently as human. By observing their actual practices and then predicting their next 

movements, the authors use Deep Learning (DL) to analyze how people move in 

assembly tasks and accordingly help robots to plan and take correct real-time actions. 

They empirically demonstrated that their proposed approach works well in an industrial 

environment by using engine assembly setting to help in forecasting what the human 

operator will do next and then tell the robot to respond accordingly. By employing this 

tactic, the robots can better anticipate and assist in performing the required tasks, 

enabling smoother collaboration between both robots and humans. 

A new approach, called the Dynamic Neural Fields approach, is presented by the 

research paper introduced by Wojtak et al. [63]. Because the authors try to use 

calculations similar to that of human brains, their proposed approach helps the robots 

think and act like humans. Their approach contains a special key component called a 

neural integrator that works by collecting information from the surrounding environment. 

The authors tried to make this component work as the human brain and to function in a 

way similar to how the human brain works and acts. This component analyzes different 

possible actions that the robot could take. A dominant example of this is when a robot 

senses something by using its sensor where the robot's neural integrator studied the 

various actions that may be taken. The final selected robot's action is chosen after making 

a race between these actions looking for the best one. This racing of competing against 

each other to find the best one is called competitive dynamics and it similar to how the 

human reacts after sensing something and then decides to do a selected action, like, for 

instance, moving an arm or turning the head. Like that, the robot's neural integrator is 

connected with different groups of "neurons" to carry out this competition for picking up 

the most important or the strongest action between the available ones. 

The research described in [32] introduces a framework that helps robots in deeper 

understanding what their  human partner thinking or planning to do when they are both 

working closely together as a cooperative partnership. This framework uses two 

approaches to guesstimate and interpret human intentions, Unsupervised Learning (USL) 

approach alongside a probabilistic approach. The former approach helps the robot to 

learn patterns on its own by itself without needing direct instructions from human 

partners. The latter approach, on the other hand, is generally used by this framework to 



 201                                                                       Human-Robot Interaction (HRI) …             

help the robot in estimating or calculating what the person’s goals are or understand 

human actions. So the robot needs to make smart guesses based on the information it can 

see because it assumes that it doesn’t always know what the human wants to do. 

Furthermore, this probabilistic approach can be used with social cues including eye 

contact, pointing, body language, and gestures. These cues help robots understand what a 

person means or wants. Overall, both of these approaches help the robot to better 

sophisticated understanding and cooperate with the human partner's intentions during 

cooperative activities that have some uncertainty, such as working together on a project 

or playing on the same game. In short, this proposed framework is increasingly important 

to build a better partnership between humans and machines. 

The research study referenced in [64]introduced a way to improve actions in tasks where 

people and robots work closely together with constant physical contact. Their study 

emphasizes the importance of the work environment in these tasks. The method aims to 

improve ergonomics and efficiency. By considering the work environment, robots can 

better assist humans. This leads to safer interactions and higher trust levels between robot 

and human partners, as well as more effective collaboration between both humans and 

robots. 

The authors of [65] demonstrated a neural computational framework based on gradient 

optimization of the robot's target state. Their framework includes Convolution Variation 

Autoencoders (ConvVAEs) and RNN with LSTM architecture. Their setup learns to 

connect target images with actions the robot should take. It helps robots change their 

goals automatically. This makes human-robot teamwork more effective by allowing 

robots to understand and respond to their surroundings better. 

As described in [66], the research introduced a method to watch how tired people's 

muscles get when they work with robots. A ML program learns how the strength of a 

person’s muscles relates to how much power is used in their arm. The study looks at how 

people and robots can work better together, and, hence, HRI is enhanced. A detailed 

model of muscles and bones, referred to as musculoskeletal, is used to reach the goals of 

this research study. This model helps in understanding muscle tiredness during tasks to 

be accomplished. In the end, the approach seeks to improve the comfort and efficiency of 

users while interacting with robots. 

In the research study mentioned in the reference [67], the authors came up with a new 

fuzzy-controller method that combines two important ideas in order to help human 

workers perform heavy industrial tasks with more safely and efficiently:  

- Fuzzy-impedance control: A fuzzy controller is a type of controller that works like 

how people think and make decisions, handling uncertainty and using approximate 

educated guesses instead of exact answers. It's often used in robots, factory machines, 

and home devices, especially when creating a perfect math formula is too difficult to 

solve or can't be done. On the other hand, Fuzzy-impedance control is a technique that 

helps machines or robots move smoothly and safely, even when they are handling 

parts or objects with uncertain or changing weights. 

- Safety rules: These built into this method are designed to keep operators safe while 

they work in companion with robots.  

By integrating these two ideas, the approach not only enhances operational efficiency but 

also prioritizes worker safety. What's more, the combinations of fuzzy-impedance control 
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and safety rules helps ensure that everything runs smoothly, reduces the risk of accidents, 

and improve the interaction between humans and machines. Their new method is 

particularly useful in big industrial settings where people often have to handle large and 

heavy parts that they might not be familiar with. By using this method, operators can get 

better assistance and control over these parts, making their work easier and safer.  

Sometimes there may be some differences between how robots and people think about 

some tasks that need to be accomplished, even when they are both presented with the 

same information or circumstances. For this well-defined reason, the research study 

referenced in [41]proposed a way to compare how an autonomous system, like a robot, 

and a human partner understand tasks differently and figure out why they may not see 

things the same way. Then, this said study also analyzes, investigates, and compares what 

might happen because of these variations in perception and, for that reasoning, allows 

users to give their constructive guidance and feedback to guide the robot in making 

model adjustments and enhancements. This study combines two leading concepts: 

Reinforcement Learning (RL) and explanation-based coaching. The latter concept is 

mainly used by the system to give clear and simple justifications for its suggestions, 

making it easier for human partner to understand. On that account, figuring out this 

mismatch between the two, humans and robots, can significantly help in understanding 

why it happens and what might go wrong, hence improving their decision-making. 

Finally, to wrap up this section, the study mentioned in [68]introduced a special type of 

neural network called a deep Long Short-Term Memory (LSTM) network. By analyzing 

patterns found in the stored data, this type of network is designed to expect what a person 

plans to do in long-run without being directly told. The authors used several LSTM 

layers stacked on top of each other, where each added layer contributes in making the 

model retaining more information over long periods of time; otherwise, this information 

may be forgotten too quickly. This arranging in a way or another has a great effect in 

allowing their model to solve the difficulty in memorizing more information and, hence, 

their model becomes better at understanding the complex patterns and relationships 

found in the data which helps in making it more effective at guessing a person's 

objectives and predicting intentions.  

6. Results, Data Analysis, Comparison, and Discussion 

To enable robots to adaptability and efficiently interact with people, it is necessary to 

apply ML techniques, allowing robots to perform target tasks and operate autonomously 

without direct human intervention while learning from humans. This mix of autonomy 

and adaptability learning from people is especially important for making robots, or any 

an autonomous system, work smoothly with humans in different places. To analyze data 

from different environments and to produce high-level information, the main research 

studies about HRI mentioned in the previous section are reviewed. These research studies 

use unsupervised and supervised learning methods. From a broader standpoint, it is worth 

emphasizing that most of these studies focus on approximating the basic interaction 

between humans and these intelligent machines (i.e. robots). For this well-defined 

motivation, Table IV provides a summary of these reviewed studies, where it is evident 

that the Neural learning algorithm and Reinforcement algorithm have 37% and 23% of 

the occurrences, respectively. 
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TABLE IV.  STUDIES COMPARISON IN HUMAN-ROBOT INTERACTION (HRI) 

Serial Ref. Year Human and Robot 

Interaction 

Machine Learning 

Algorithm 

1  [46] 2024 Proximate Neural 

2  [47] 2023 Proximate Deep 

3  [49] 2023 Proximate Continual 

4  [54] 2023 Remotely Deep 

5  [38] 2023 Proximate Reinforcement 

6  [34] 2022 Remotely SVM 

7  [24] 2022 Proximate Deep 

8  [52] 2021 Proximate Digital Twins 

9  [53] 2021 Proximate Deep 

10  [55] 2020 Proximate POMDP 

11  [39] 2020 Proximate Reinforcement 

12  [56] 2020 Proximate Neural 

13  [57] 2020 Proximate Neural 

14  [58] 2020 Proximate Neural 

15  [59] 2020 Proximate Neural 

16  [40] 2020 Proximate Reinforcement 

17  [60] 2020 Proximate Deep 

18  [42] 2020 Proximate Reinforcement 

19  [43] 2020 Proximate Reinforcement 

20  [44] 2020 Proximate Neural 

21  [61] 2020 Proximate Imitation 

22  [62] 2020 Proximate Deep 

23  [63] 2020 Proximate Neural 

24  [32] 2020 Proximate Clustering and Bayesian  

25  [64] 2020 Proximate Neural 

26  [65] 2020 Proximate Neural 

27  [66] 2019 Proximate Reinforcement 

28  [67] 2019 Proximate Neural 

29  [41] 2019 Proximate Reinforcement 

30  [68] 2019 Proximate Neural 

According to the statistical analysis of this table (i.e. Table IV), it is observed that the 

identified occurrences in the investigation are present in 20% of research studies in HRI 

use Deep learning methods. Additionally, about 3% employ Continual, SVM, Digital 

Twins, POMDP, Imitation and Clustering and Bayesian learning methods. These findings 

pave the way for creating robots that are easier to understand and respond better in many 

different situations. 
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Additionally, 28 of the 30 research studies listed in the table (i.e., 93.33%) focus on 

proximate interactions, meaning that direct and/or close physical interaction between 

humans and robots is typically required in the context of HRI. This put emphasis on the 

importance of designing robots that can function effectively in close collaboration with 

humans where they share the same space; such as in personal assistance, education, and 

healthcare.     

Figure 5 ensures that the total number of HRI research studies involved in using machine 

learning algorithms was 30. Among them, 11 research papers concentrated on using 

Artificial Neural Network (ANN) algorithms, while 7 and 6 research papers interested in 

exploring for both Reinforcement and Deep learning methods, respectively. However, in 

the reviewed studies, Continual, SVM, Digital Twins, POMDP, Imitation and Clustering 

and Bayesian algorithms were each employed in a single research study, respectively 

 

Fig.5: HRI Research Interest ML 

As represented in the comparative breakdown of Figure 5, it is relatively clear that these 

significant results show that most recent studies that interest in HRI are focused on the 

Neural networks, Deep and Reinforcement machine learning algorithms on a physical 

application and approximate interaction. These outcomes demonstrate that neural 

networks and deep learning are crucial in enhancing how robots interact with humans, 

enabling robots to become smarter than before and more capable of understanding and 

responding to their human partners more effectively. 

Again, these findings give sufficient sound evidence that there are many challenges with 

using HRI and machine learning algorithms, which makes it harder to use other methods 

like SVM. These challenges, in various ways, limit the use of these algorithms in social 

and mobile applications. Furthermore, this research demonstrates that despite the 

complexities involved in robot design, a robot's intelligence and performance can be 

significantly enhanced based on the learning methods used. 

From another point of view, Table V reveals that the majority of interactions in the 30 

research papers referenced in this table, accounting for 84%, were conducted through 
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phone applications make up 3%, with a particular emphasis on tablet devices that 

facilitate user interaction through graphical buttons displaying information about device 

usage processes. It's important to note that voice control is becoming popular as an easy-

to-use way to interact. So, people can use their voices to give orders to control devices, 

making it easier and more convenient to operate robots without needing to use physical 

controls. In other significant cases, visual sensors have been present in most research 

studies on HRI through machine learning to gather detailed and complex visual data that 

will later be analyzed to enhance the effectiveness of robotic systems.  

TABLE V.  TYPES OF SENSORS USED IN HRI APPLICATIONS 

Serial Ref. Application Data Sensing 

1  [46] Physical Visual 

2  [47] Physical Visual/Touch 

3  [49] Mobile Visual 

4  [54] Physical Touch 

5  [38] Physical Visual/Voice 

6  [34] Physical Visual 

7  [24] Social Visual 

8  [52] Physical Visual 

9  [53] Physical Visual 

10  [55] Physical Visual/Touch 

11  [39] Physical Touch 

12  [56] Social Voice 

13  [57] Physical Motion/Touch 

14  [58] Physical Motion/Touch 

15  [59] Physical Touch 

16  [40] Physical Touch 

17  [60] Physical Visual 

18  [42] Physical Force/Torque 

19  [43] Physical Torque 

20  [44] Physical Torque 

21  [61] Physical Force/Position 

22  [62] Physical Force/Torque/Position 

23  [63] Physical Visual 

24  [32] Social Visual 

25  [64] Social Visual 

26  [65] Physical Visual 

27  [66] Physical Force/Touch 

28  [67] Physical Force/Position/Velocity 

29  [41] Physical Force/Torque/Motion 

30  [68] Physical Visual/Force/Motion 
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7. HRI using ML Challenges and Potential Solutions 

Humans use natural languages to accurately express their emotions and feelings whereas 

robots employ machine learning algorithms and Artificial Intelligence (AI) [1][2][17] 

Thus, natural language remains important for human-robot [2][17].To this aim, the 

interaction between a human operator and a robot needs to handle complex, variable, 

non-deterministic, and partially unknown environments. To deal with complex situations 

that may be difficult to interpret and understand, it is essential to exist communication, 

acceptable social responses, and good knowledge [1][2][17]. Because various artificial 

intelligence techniques are essential and necessary to allow the robot to understand and 

express feelings as part of the process interaction between humans and robots [66][1]. 

Thus, one of the biggest challenges with HRI is designing robots that can understand and 

respond to human emotions [69][1]. So, there is a need to understand the behavior of a 

human in interpreting and solving day-to-day problems and trying to come up with new 

algorithms that imitate humans[2][17].Furthermore, Nature Inspired Computing (NIC) 

refers to the fusion of nature, by itself, and AI to address and find practical solutions for 

the multifaceted problems that related to collecting, analyzing, and interpreting 

information related to the nature[17].Overall, one suggested practical solution to get 

around this problem is using more advanced sensors which can interpret body language, 

facial expressions, and the tone of the human voice. 

Moreover, designing smart robots to work in unpredictable settings and environments 

such as public and large locations is another crucial challenge. Humans are characterized 

by flexibility and adapting to any environment, but robots are not. To overcome this 

problem a feasible and reliable solution is using more complex and advanced machine 

learning algorithms that enable robots to learn and adapt smartly to new settings. 

One of the biggest and most important challenges in designing robotics is teaching them 

how to understand and imitate the people acts by themselves without needing instructions 

from human workers. This is very hard because human behavior is very complicated and 

changes a lot over time. Robots, as intelligent machines, in this way need to learn not just 

basic actions, but also the small, detailed ways people interact with each other. This, in a 

way or another, is vital for making robots cooperate better with humans.[1][2][19] 

Despite  robots cover many aspects, visible or invisible, of our life, they may be 

unacceptable by many humans in social roles due to their fear of losing their jobs, the 

privacy of their information, and ethical considerations, in addition to ensuring the safety 

of interaction between humans and robots and establishing trust between them 

[1][69][70]. This serious challenge, make a mean of unconfidently and, therefore, rated 

as some of the most extreme challenges which become unquestionably challenges to 

meet [1][69][70]. 

Aside from the above-mentioned discussion that has been presented in this research 

paper, most HRI systems that using ML algorithms are alike on average in terms of their 

performance where an algorithm may be the best choice for some types of problems, but 

at the same time, it may become to be a less suitable option for other kinds of problems. 

Then again, since most real-world problems have different needs and requirements 

depending on the industry and type of service, there isn't a practical one-size-fits-all 

algorithm that works well for every situation. This makes it challenging to find the true 

algorithm that adequately fits these specific needs [17]. 
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8. Conclusion 

Evidently, Human-to-robot interaction (HRI) has recently garnered a lot of attention in 

the academic community, in labs, in technology companies, and through the media. 

Given this interest, it is advisable to present a survey of studies in HRI that use machine 

learning (ML) to serve as an educational program for those outside the field and to 

encourage the community of academic and industrial researchers to initiate discussion of 

a unified view of HRI in this field. The main objective of this research study is to provide 

a review of the latest technology that includes most of the HRI studies using ML. Thus, a 

total of 30 research papers devoted to HRI were surveyed, evaluated, and analyzed to 

give the most ML algorithms implemented in the field of HRI. The comparison was 

made according to a set of factors including the types of robot sensors, HRI application 

and ML algorithm name, HRI type and algorithm types that is implemented in HRI type 

that is implemented in HRI. The reported results show that most recent studies that 

interest in HRI are focused on the supervised ML algorithms, including Neural Network 

and Reinforcement algorithms, and they can be applied in real-world tasks where robots 

interact physically with human workers. Besides helping to fill gaps in the literature, 

these added-value results may serve as a ground for further research in robotics 

development and AI enhancement. 
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