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Abstract 

     Data classification is a crucial aspect of knowledge discovery using machine-
learning algorithm for supervised learning approach where the goal is to predict 
the categorical labels of new instances based on past observations. This research 
presents an innovative classification technique that utilizes Rough Set Attribute 
Reduction. The proposed method introduces the Re-heat Simulated Annealing 
(Re-heat SA) algorithm as a meta-heuristic approach. Rough set theory, a 
mathematical tool dealing with uncertainty and fuzziness in data, is employed to 
uncover hidden patterns in big data through feature selection. This paper 
introduces a novel meta-heuristic classification approach that utilizes rough set 
attribute reduction to achieve optimal accuracy. Re-heat SA effectively optimizes 
the problem by controlling the dependency degree to identify the minimal reducts 
required for classification prediction using the Rosetta software. Experimental 
results demonstrate that Re-heat SA outperforms comparable classification 
algorithms in discovering classification rules. The results reveal that three datasets 
achieved 100% accuracy, four datasets achieved accuracy rates ranging from 60% 
to 99%, and six datasets achieved accuracy rates ranging from 30% to 59%. 
Additionally, this paper discusses the need for standardization concerning the 
machine learning pipeline processes as big data and its handling grows 
exponentially. 

     Keywords: Attributes reduction, big data, classification, data mining, meta-heuristic 
classification optimization, re-heat simulated annealing, rough set theory, standards  
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1      Introduction 

Classification is a fundamental task in knowledge discovery and data mining, wherein 

distinct classes within a dataset are identified using machine learning algorithms for 

supervised learning. Due to its significance in data differentiation, it has been extensively 

studied. The primary metric for evaluating classification models is accuracy, along with 

essential metrics like Precision, Recall, F1 score, and Area under ROC Curve (AUC)1. 

Various algorithms, such as statistical classification, decision trees, rule induction, fuzzy 

rule induction, and neural networks, are commonly employed for classification. In this 

research, we specifically focus on rule induction as the chosen method, which utilizes "IF-

THEN" statements to generate rules. Previous works, including the CN2 rule-based 

induction algorithm [1], Supervised Inductive Algorithm (SIA) [2], AprioriC [3], 

Grammar-based Genetic Programming algorithm (GGP) [4], ACORI [5], RIFT [6], and 

Rule Induction Using Set-Based Particle Swarm Optimization [7], have employed this 

method. However, the performance of classification algorithms can be adversely affected 

by the "Curse of Dimensionality,” particularly depending on the dataset used. To achieve 

satisfactory results, employing dimensionality reduction techniques to reduce the number 

of attributes in the dataset is essential. Attribute reduction involves identifying correlations 

among dataset attributes based on their relevance and redundancy. This process eliminates 

unnecessary and unimportant attributes, mitigating challenges posed by high-dimensional 

datasets. The attributes retained in a minimal subset are related to the decision attributes, 

significantly contributing to the performance of the classification task, and improving 

accuracy and efficiency. 

The research presented in this paper investigates the classification accuracy of a 

dataset reduction generated by the Re-heat Simulated Annealing approach, which utilizes 

rough set attribute reduction as a single-based algorithm. The objective is to find improved 

solutions by incorporating a re-heat mechanism into the original simulated annealing 

algorithm. This research contributes by presenting attribute reduction in rough set theory 

and utilizes the Re-heat Simulated Annealing algorithm to assess the quality of minimal 

reducts and classification accuracy and optimization. 

Section 2 surveys the background and related works. Section 3 sets out the necessary 

notations and basic concepts related to rough set theory. Section 4 addresses the strategy 

for mining rules and evaluating classification accuracy, outlining the methodology and 

techniques used. Section 5 presents the Re-heat Simulated Annealing algorithm, explaining 

its components like temperature control and search strategies. Section 6 outlines the 

experimental design, while Section 7 presents and analyses the experimental results. 

Section 8 proposes standardization techniques for feature selection and dimensionality 

reduction. Finally, Section 9 discusses and concludes the key findings, contributions, and 

future research directions. 

2      Related Work 

The literature extensively discusses attribute reduction and the usefulness of feature 

selection in pattern recognition. For instance, Liang et al. [8] proposed a feature selection 

algorithm called the distance discriminant (FSDD), which overcame the computational 

costs and suboptimal drawbacks associated with other methods. Guo et al. [9] introduced 

                                                 
1 https://www.analyticsvidhya.com/blog/2021/07/metrics-to-evaluate-your-classification-model-to-take-

the-right-decisions/ 
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a framework based on mutual information (MI) criterion for feature selection in high-

dimensional data, specifically addressing image classification and non-Gaussian data. 

Zhang et al. [10] proposed an improved filtering method for feature selection, utilizing 

pairwise constraints to evaluate features. These studies are just a few examples, and other 

approaches such as Genetic Algorithm (GenRSAR) [11], Simulated Annealing 

(SimRSAR) [11], Ant Colony (AntRSAR and ACORA) [12, 13], Tabu Search (TSAR) 

[14], and Scatter Search (SSAR) [15] have also been explored. 

More recently, Alsahaf et al. [16] introduced a novel framework for feature selection 

based on boosting or sample re-weighting. Zhang and Yao [17] investigated tri-level 

attribute reducts, focusing on sequential development and hierarchical deepening of 

attribute reduction. Additionally, Dokeroglu et al. [18] provided a comprehensive survey 

on recent metaheuristics for feature selection. 

To contribute to this discussion, the main objective of this research is to evaluate the 

performance of the Re-heat Simulated Annealing (Re-heat SA) algorithm in estimating the 

accuracy of a classification method based on rule induction. Simulated Annealing (SA), 

originally proposed by Kirkpatrick et al. [19], is a widely used and effective algorithm for 

solving optimization problems. It leverages principles from thermodynamics and performs 

a stochastic search in the neighbourhood space [20]. Our proposed Re-heat SA algorithm 

introduces a re-heat mechanism to enhance the extraction of knowledge or patterns from 

large databases. 

The first aim of our feature selection approach is to reduce data dimensionality and 

eliminate noise, while the second aim is to enhance mining performance in terms of 

predictive accuracy, learning speed, and simplicity and comprehensibility of mining 

models. 

Rough Set Theory (RST) provides a fundamental concept for discovering patterns in 

inconsistent data [21, 22]. Pawlak [22] introduced RST as a mathematical tool for 

identifying minimal subsets in data, particularly in the presence of uncertain and 

incomplete data. One major application of RST is attribute reduction, which is considered 

a theoretical research problem classified as NP-hard.  

Janecek et al. [24] studied the impact of feature selection on classification accuracy 

using email and drug discovery datasets. Assareh et al. [25] explored the accuracy of 

different combinations of six classification algorithms on high-dimensional cancer 

proteomic datasets. Hayward et al. [26] presented a performance evaluation of logistic 

regression techniques on a clinical database of cancer patients, emphasizing the 

significance of attribute selection in improving classifier performance. Xia et al. [27] 

proposed GBNRS, a novel NRS method, which demonstrated superior performance and 

classification accuracy compared to existing NRS methods. Li and Cui [28] developed a 

parallel attribute reduction processing algorithm for classification, resulting in improved 

time efficiency. 

The Re-heat SA algorithm optimizes the search space by dynamically resetting the 

temperature when no improvement in solution quality is observed after a certain number 

of iterations. This mechanism enhances the algorithm's flexibility in accepting temporarily 

worse solutions for subsequent exploration of better solutions. The proposed approach is 

evaluated on well-known UCI datasets [29]. It introduces a novel meta-heuristic 

classification approach that uses rough set attribute reduction for optimal accuracy. The 

Re-heat Simulated Annealing (SA) algorithm effectively controls the dependency degree 

to identify minimal reducts required for classification prediction using Rosetta software. 
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Experimental results show that Re-heat SA outperforms comparable classification 

algorithms in discovering classification rules. 

3      Rough Set Theory  

Rough Set Theory (RST) is a technique that employs set approximation to analyse and 

extract patterns from the classification space. Pawlak is credited with introducing RST as 

a mathematical tool for discovering subsets of reducts [21, 22]. RST has found applications 

in various domains, including knowledge discovery from data, data reduction, data 

significance evaluation, decision rule generation, and data-driven inference interpretation 

[31]. 

In the context of data mining, RST plays a significant role in identifying common 

patterns in large datasets characterized by uncertainty and incompleteness. Importantly, 

RST can extract useful information from the data without requiring additional external 

information. This makes it valuable for analysing datasets with limited or missing data. 

Attribute reduction is a key aspect of RST, as it enables the identification and retention 

of the most informative attributes while discarding others with minimal loss of information 

[12, 31, 32]. Informative attributes are most predictive of the class attribute or have high 

relevance to the target variable. RST facilitates the calculation of reducts in an information 

system, which refers to the minimal subsets of attributes that still preserve the 

discriminatory power needed for classification. 

The ability of RST to find minimal reducts contributes to its effectiveness as a method 

for attribute reduction. By identifying minimal reducts, RST allows for the generation of 

more general decision rules, which aids in understanding and interpreting the data. 

Attribute reduction in RST is considered a crucial aspect in solving problems related to 

feature selection and dimensionality reduction. 

In summary, RST is a valuable technique in data mining and pattern recognition due 

to its capability to identify common patterns in uncertain and incomplete data. It provides 

a mathematical framework for attribute reduction, enabling the extraction of informative 

attributes and the generation of more general decision rules. 

3.1      Fundamental Rough Set Concepts  

A dataset can be represented as an Information System for formal analysis, denoted by I = 

(U, A). Here, U represents the universe containing a non-empty set of finite objects, and A 

is a non-empty finite set of attributes. For every attribute a ∈ A, there exists a mapping U 

→ Va, where Va represents the domain of attribute a[18]. 

Let us introduce the concept of an indiscernibility relation over a subset of attributes 

P ⊆ A, which is denoted by IND(P): 

Definition 1: For a subset of attributes P ⊆ A, the indiscernibility relation IND(P) is 

associated with the equivalence relation as for any two objects x, y ∈ U, x IND(P) y if and 

only if for every attribute a ∈ P, x(a) = y(a). 

This definition implies that two objects x and y are indiscernible with respect to the 

attributes in P if their attribute values are the same for each attribute in P. 

The segment of U generated by IND(P) is denoted by U/P and can be calculated as: 
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Definition 2: For a subset of attributes P ⊆ A, the segment of U generated by IND(P) is 

denoted as U/P and can be calculated as: U/P = { [x]P | x ∈ U } where [x]P represents the 

equivalence class of x with respect to IND(P). 

Now, let us define rough sets PX and P'X based on the information system I = (U, A), 

where X ⊆ U: 

Definition 3: Let X ⊆ U. The P-lower approximation and P-upper approximation of set X 

are defined as the P-lower approximation of X, denoted by LX(P), is the set of objects in 

U/P that are indiscernible from X with respect to the attributes in P: LX(P) = { x ∈ U/P | 

[x]P ∩ X ≠ ∅ } 

The P-upper approximation of X, denoted by UX(P), is the set of objects in U/P that have 

at least one member in X: UX(P) = { x ∈ U/P | [x]P ∩ X ≠ ∅ or [x]P ∩ X' ≠ ∅ } 

where X' = U - X (complement of X in U). 

Now, let us explore the concepts of positive, negative, and boundary regions based on 

the equivalence relations P and Q over U: 

Definition 4: For the equivalence relations P and Q over U, the following regions can be 

defined as the positive region (PosQ(P)) is the set of all objects in U that can be classified 

into classes of U/Q using the information in attributes P as: PosQ(P) = { x ∈ U | for all y 

∈ U: y IND(P) x implies y IND(Q) x } 

The negative region (NegQ(P)) is the set of all objects in U that cannot be classified 

into classes of U/Q using the information in attributes P as: NegQ(P) = { x ∈ U | for all y 

∈ U: x IND(P) y implies x IND(Q) y } 

The boundary region (BndQ(P)) is the set of objects in U that belong neither to the 

positive region nor the negative region as: BndQ(P) = U - (PosQ(P) ∪ NegQ(P)) 

The positive region helps us identify objects suitably classified with the information 

provided by attributes P, while the negative region includes objects not well-classified. The 

boundary region consists of objects that are ambiguous in their classification. 

The notion of dependency in rough sets can be defined as: 

Definition 5: For subsets P, Q ⊆ A, it is said that Q depends on P with a degree k (0 ≤ k ≤ 

1), denoted P ⇒k Q, if the following condition holds: for every x, y ∈ U: x IND(P) y implies 

x IND(Q) y with a probability of at least k. 

According to the formulation above, three cases can be assigned to k to determine the 

dependency relation: 

1. If k = 1, then Q depends absolutely on P. 

2. If 0 < k < 1, then Q depends partially (to a degree k) on P. 

3. If k = 0, then Q does not depend on P. 

Sets of attributes can be generated through equivalence relations, and in this case, the 

comparison equivalence relations help achieve attribute reduction. A minimal subset is 

defined as a subset R of the conditional attribute set C, denoted as γR(D) = γC(D). The set 

R of all reducts is defined as: 

Definition 6: The set R of all reducts is given by: R = { R ⊆ A | LX(R) = LX(A) for all X 

⊆ U } 
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The second point of reducts is about the minimal cardinality Rmin of the conditional 

attribute set: 

Definition 7: The minimal cardinality Rmin of the conditional attribute set is given by: 

Rmin = { R ⊆ A | R is a reduct and there is no subset R' of R such that LX(R') = LX(R) for 

all X ⊆ U }. 

The intersection of all sets in Rmin is called the core: 

Definition 8: The core, denoted as Core (U, A), is the intersection of all sets in Rmin given 

by: Core (U, A) = ⋂ { R | R is in Rmin } 

Mostly, a minimal set of attributes called the minimal reducts was not only used to 

protect segmentation but also able to achieve the best classification for a dataset. 

3.2      Attribute Reduction (AR) in Rough Set 

Attribute reduction is a crucial aspect of rough set theory. It revolves around the concept 

of reducts, which are minimal subsets of attributes that preserve the partitioning of the 

universe and enable effective classifications. 

A reducts subset is defined as a minimal set of attributes that retains the discriminatory 

power necessary for accurate classification [33, 34]. By selecting a reducts subset, 

redundant or irrelevant attributes are eliminated, reducing the dimensionality of the dataset 

while preserving the classification performance. This reduction in attributes not only 

simplifies the dataset but also improves the efficiency and interpretability of the resulting 

classification models. 

The identification and utilization of reducts have significant applications in RST. By 

extracting reducts, we can uncover the essential attributes that are sufficient to achieve 

reliable classifications. These minimal attribute sets capture the core information needed 

for accurate decision-making, allowing for efficient data analysis and interpretation. 

The concept of reducts and attribute reduction plays a leading role in various aspects 

of RST, including feature selection, data reduction, decision rule generation, and data-

driven inference interpretation. By identifying minimal attribute subsets, attribute 

reduction facilitates efficient classification and data analysis by preserving the partitioning 

of the universe and the ability to perform accurate classifications. It enables researchers 

and practitioners to identify the most relevant attributes that contribute significantly to the 

classification process, improving the efficiency and effectiveness of data analysis and 

decision-making. 

3.3      Rough Set Attribute Reduction (RSAR) 

Rough Set Attribute Reduction (RSAR) serves as a filter-based tool for discovering concise 

knowledge from a given domain [31]. In the context of rough set theory (RST), the 

objective is to explore and understand the relationship between the conditional attributes 

and the decision attributes in a dataset. 

RSAR focuses on finding a minimal subset of attributes from a given dataset, thereby 

selecting the most informative attributes for the task at hand. This process involves 

identifying and retaining the attributes that contribute significantly to the knowledge 

discovery and data mining tasks while eliminating or reducing the impact of unimportant 

or redundant attributes. 
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Large datasets often contain many attributes, which can lead to challenges such as 

increased computational complexity, decreased interpretability, and potentially irrelevant 

information. By employing attribute reduction using rough set theory, these challenges can 

be addressed by effectively reducing the dimensionality of the dataset and extracting the 

most relevant attributes. 

The attribute reduction process in rough set theory aims to identify the minimal subset 

of attributes that can accurately capture the patterns and relationships in the data, ensuring 

that important knowledge is retained while eliminating unnecessary complexity. This 

reduction facilitates more efficient and effective data mining and knowledge discovery 

tasks. 

By applying attribute reduction using rough set theory, researchers and practitioners 

can improve the quality and efficiency of knowledge discovery and data mining processes. 

The resulting reduced dataset contains a concise representation of the essential attributes, 

enabling more focused analysis and interpretation. 

4      Strategy of Mining Rules & Classification Accuracy 

The field of data mining involves various important tasks, including association rule 

discovery, sequential pattern discovery, classification, clustering, forecasting, deviation or 

anomaly detection, and regression. Each task requires specific methods and techniques to 

execute the necessary operations effectively. In the context of this research, the focus is on 

the classification task, for which several methods have been commonly used. These 

methods include:  

• Decision Tree: Decision tree algorithms construct a tree-like model to represent 

decisions or classifications based on feature values. They partition the data 

based on attribute values and create branches that lead to different classes or 

outcomes. 

• Bayesian Classifier: Bayesian classifiers apply probabilistic methods based on 

Bayes' theorem to classify data. They model the probability distribution of the 

target class given the attribute values and make predictions based on these 

probabilities. 

• Artificial Neural Network: Artificial neural networks are computational models 

inspired by the biological neural networks. They consist of interconnected nodes 

(neurons) and learn from training data to make predictions or classifications. 

• Genetic Algorithm: Genetic algorithms are inspired by the process of natural 

selection and evolution. They use evolutionary principles such as selection, 

crossover, and mutation to search for optimal solutions in a population-based 

manner. 

• Fuzzy Logic: Fuzzy logic allows for the representation and manipulation of 

uncertainty or imprecise information in the classification process. It incorporates 

degrees of membership to different classes, enabling more flexible and nuanced 

classifications. 

• Rough Set Theory: Rough set theory, as discussed earlier, provides a 

mathematical framework for handling uncertainty and incomplete data. It aims 

to identify common patterns and relationships in data and plays a significant role 

in attribute reduction and classification tasks. 
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These methods, among others, serve as tools for performing the classification task in data 

mining. Researchers and practitioners choose appropriate methods based on the nature of 

the data, the problem at hand, and the desired objectives. The selected method should be 

capable of effectively extracting patterns and making accurate predictions or classifications 

based on the available features and attribute values. 

Supervised classification is a technique that utilizes the class (target) attribute of a 

dataset to guide the construction of a classification model. The dataset is typically divided 

into separate sets for training and testing purposes. 

During the training phase, the classification model, also known as a classifier, is built 

using the training set. The classifier learns from the input features and their corresponding 

class labels to identify patterns and relationships that can be used for classification. 

Once the model is constructed, it is evaluated and validated using the testing set. The 

performance of the classifier is assessed by comparing its predictions on the testing set 

with the true class labels. The accuracy of the model is calculated based on the number of 

correct predictions (hits) divided by the total number of instances in the testing set. 

To ensure robustness and reliability of the evaluation, the experiments in your research 

adopted a 10-fold cross-validation scheme. In this scheme, the dataset is divided into 10 

subsets or folds. The classification model is trained and tested 10 times, each time using a 

different fold as the testing set and the remaining folds as the training set. This process 

allows for a comprehensive evaluation of the model's performance across different subsets 

of the data. 

The use of cross-validation, specifically 10-fold cross-validation, helps to mitigate the 

potential biases and variances that can arise from using a single training and testing split. 

It provides a more robust estimate of the classifier's accuracy and generalizability by 

incorporating multiple iterations of training and testing. 

By employing the 10-fold cross-validation scheme, your experiments account for the 

training, testing, and validation sets, ensuring a thorough evaluation of the classification 

model's performance and accuracy. 

The classification method employed in your research is based on IF-THEN rules, 

where each rule is defined as IF a certain condition is met, THEN a specific conclusion or 

class label is assigned to the instance. 

The accuracy of a rule is assessed using the formula specified in Equation (1): 

𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝑹𝑼𝑳𝑬) =
𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕

𝒏𝒄𝒐𝒗𝒆𝒓𝒔
                 (1) 

where 𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕  represents the number of tuples (instances) that are correctly classified by 

the rule, while and 𝒏𝒄𝒐𝒗𝒆𝒓𝒔  denotes the total number of tuples covered by the rule. A tuple 

is considered covered by the rule when the condition in the IF part of the rule is satisfied. 

The accuracy of a rule quantifies its ability to correctly classify instances relative 

to the total number of instances it covers. It provides a measure of how well the rule 

performs in terms of correctly assigning class labels to the instances it applies to. 

By calculating the accuracy of each rule, you can assess the performance and 

effectiveness of individual rules in the classification process. This information can help 

understand the strengths and weaknesses of specific rules and their contributions to the 

classification model's accuracy. 
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5      Re-heat Simulated Annealing (Re-heat SA)  

In this section, some useful mechanisms in the Re-heat Simulated Annealing (Re-heat SA) 

approach are discussed. Several mechanisms are employed to effectively explore the 

solution space and find optimal solutions. These mechanisms include: 

• Solution Representation: The Re-heat SA approach requires a suitable 

representation for the solutions. This representation defines how the attributes 

or variables are encoded and manipulated. It could be a binary representation, 

integer encoding, or any other suitable format depending on the problem at hand. 

• Neighbourhood Structures: Define  the set of moves or transformations that can 

be applied to a solution to generate neighbouring solutions. These structures 

determine the search space exploration strategy. In the context of Re-heat SA, 

neighbourhood structures define the possible changes that can be made to the 

current solution to generate alternative solutions. 

• Solution Quality Measurement: Evaluate the quality of a solution, and a 

measurement or evaluation function is employed. This function assesses how 

well a solution satisfies the objectives or criteria of the problem. In the Re-heat 

SA approach, the solution quality measurement function assesses the 

performance or fitness of a solution based on the specific problem being 

addressed. 

• Cooling Schedule: It controls the rate at which the temperature decreases during 

the simulated annealing process. It determines the exploration-exploitation 

trade-off by balancing between exploration (higher temperature) and 

exploitation (lower temperature). The cooling schedule plays a crucial role in 

the convergence and search behaviour of the algorithm. 

• Re-heat Mechanism: This mechanism is a distinctive feature of the Re-heat SA 

approach. It addresses the situation where the algorithm gets stuck in a 

suboptimal solution or local minimum. When there is no improvement in the 

solution quality for a certain number of iterations, the Re-heat mechanism is 

triggered. It resets the temperature to its initial value, allowing the algorithm to 

explore the search space more extensively and potentially escape from local 

optima. 

These mechanisms collectively contribute to the effectiveness and efficiency of the Re-

heat SA approach. They enable the algorithm to explore the solution space, evaluate 

solution quality, and address the issue of being trapped in local optima. By utilizing these 

mechanisms, the Re-heat SA approach enhances the search process and improves the 

chances of finding better solutions. 

5.1      Solution Representation 

In the Re-heat SA approach, a solution is represented as a binary array. The size of the 

array is equal to the number of conditional features, denoted as |𝐶|. Each cell of the array, 

denoted as 𝑦𝑖 𝑓𝑜𝑟 𝑖 = 1, 2, ⋯ , |𝐶|  , represents whether the corresponding attribute is 

included or not in the solution subset. 
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For example, let us consider an array y with a size of |𝐶|. If the value of cell 𝑦𝑖  is one, 

it indicates that the ith attribute is included in the solution subset. On the other hand, if the 

value of cell 𝑦𝑖 is zero, it signifies that the ith attribute is not included in the solution subset. 

To illustrate this representation, Fig. 1 depicts a subset of a solution. The figure shows 

an array where certain cells have a value of one, indicating that the corresponding attributes 

are included in the solution. In this example, attributes 1, 2, 4, 7, 9, and 13 are part of the 

solution subset, as indicated by the ones in their respective cells.  

 

 

 

 

Fig. 1. Solution representation 

 

This binary array representation allows for a compact and efficient encoding of the 

solution, indicating which attributes are selected or excluded. It facilitates the manipulation 

and exploration of the solution space during the Re-heat SA algorithm, enabling the 

algorithm to search for optimal subsets of attributes that contribute to accurate 

classification. 

5.2      Encoding Candidate Solutions 

In the Re-heat SA approach, the generation of a trial solution plays a crucial role in 

exploring the search space and potentially finding near-optimal results. In this context, 

three different neighborhood structures are utilized to generate trial solutions: 

1) NS1: In this neighbourhood structure, two attributes are randomly selected from 

the current solution, and their corresponding cells are changed from one to zero. 

This operation removes the selected attributes from the solution subset. 

2) NS2: This neighbourhood is applied when the current solution is set as the best 

solution encountered so far. In this case, one attribute is randomly chosen from 

the current solution, and its corresponding cell is changed from one to zero. This 

operation removes a single attribute from the solution subset. 

3) NS3: This neighborhood is employed when the current solution is set as an 

accepted worse solution. In this neighbourhood structure, one attribute is 

randomly selected, and its corresponding cell is modified by changing its value 

to either zero or one based on its current value. Additionally, another attribute 

is randomly chosen, and its cell is changed to either zero or one, also based on 

its current value. This operation adds or removes one attribute from the solution 

subset and modifies the value of the selected cells. 

Each neighborhood structure represents a specific way of modifying the current solution 

to create a new candidate solution. 

By employing these three neighborhood structures, the Re-heat SA approach explores 

various ways of modifying the current solution, allowing for diverse changes in the 

attribute subset. This promotes the exploration of the search space and enables the 

Conditional Features 1 1 0 1 0 0 1 0 1 0 0 0 1 

Subset Solution 1 2 - 4 - - 7 - 9 - - - 13 
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algorithm to potentially find near-optimal solutions by iteratively generating and 

evaluating trial solutions. 

5.3      Solution Quality Measurement 

In the Re-heat SA approach, the quality of a solution is measured using the concept of 

dependency degree (γ) based on rough set theory. The dependency degree indicates the 

extent to which a solution satisfies the desired objectives or criteria. 

When comparing two solutions, such as the current solution (Sol) and a trial solution 

(Sol*), the trial solution is accepted if its dependency degree (γ) is greater than the 

dependency degree of the current solution (γ). In other words, if γ(Sol*) > γ(Sol), the trial 

solution is considered superior in terms of meeting the desired criteria. 

In situations where the dependency degrees of both solutions are the same, a tiebreaker 

rule is applied based on the cardinality of the solutions. The solution with a lower 

cardinality, i.e., a smaller number of attributes, is preferred or accepted. 

This measurement approach allows the Re-heat SA algorithm to compare and evaluate 

different solutions based on their dependency degrees. Solutions with higher dependency 

degrees are considered to have better quality in terms of capturing patterns and 

relationships in the data. 

By utilizing this solution quality measurement based on dependency degrees and 

considering the cardinality tiebreaker rule, the Re-heat SA approach promotes the selection 

of solutions that exhibit stronger dependencies while favoring solutions with fewer 

attributes, leading to more concise and informative solutions. 

5.4      Cooling Schedule 

The cooling schedule in the Re-heat SA approach plays a critical role in determining the 

trade-off between exploration and exploitation during the optimization process. It 

influences the convergence behavior and the quality of the final solution. 

The choice of a cooling schedule impacts the algorithm's search strategy. A faster 

cooling schedule leads to quicker convergence to local optima, while a slower cooling 

schedule allows for a more extensive search and potentially higher-quality solutions.  

In this implementation, the initial temperature (T0) is set to 2 times the cardinality of 

the conditional attributes (|𝐶|). The initial temperature represents the exploration phase of 

the algorithm, allowing for a more extensive search initially. 

The temperature is updated using the formula specified in Equation (2): 

T(t+1) = α * T(t)           (2) 

In this equation, T(t) represents the temperature at iteration t, and α is a constant related to 

the temperature update. In this work, α is set to 0.93, which indicates a gradual reduction 

of temperature over iterations. (Alternatively α can be set to operate in a range between 

greater than a lower bound value like 0.83 and less than or equal to an upper bound value 

like 0.93.) 

The choice of α is adapted from Jensen and Shen [12], who have determined the value 

based on their empirical observations and experimentation.  

The algorithm starts with an initial high temperature, allowing for more exploration, 

and gradually decreases the temperature to focus on exploiting promising regions of the 
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search space. This approach aims to find high-quality solutions while also considering the 

computational efficiency of the algorithm. 

5.5      Re-heat Mechanism 

The Re-heat mechanism in the Re-heat SA approach is a crucial component that addresses 

the issue of getting stuck in local optima. It involves resetting the current temperature to 

the initial temperature (T0) and allowing the algorithm to explore the search space more 

extensively. 

The Re-heat mechanism is triggered when there is no improvement in the solution 

quality for a certain number of iterations. Specifically, if the solution quality does not 

improve for a predetermined number of non-improving solutions, the mechanism is 

activated. 

When the Re-heat mechanism is triggered, the current temperature is reset to the initial 

temperature (T0). Additionally, the best solution obtained thus far is set as the current 

solution. This reset allows the algorithm to have more flexibility in accepting worse 

solutions during exploration. 

By resetting the temperature and accepting worse solutions, the Re-heat SA algorithm 

can escape from local optima and continue searching for better solutions. It promotes 

exploration and increases the chances of finding globally optimal or near-optimal 

solutions. 

In this work, the number of non-improving solutions is set to 3. This means that if the 

solution quality does not improve for three consecutive iterations, the Re-heat mechanism 

is activated. The specific value of 3 is determined empirically, based on preliminary 

experiments, and can be adjusted based on the characteristics of the problem being solved 

and the algorithm's behavior. 

5.6      Proposed Algorithm: Re-heat SA 

In the Re-heat SA algorithm, the optimization process is summarized as follows: 

1. Initialisation: Generate an initial solution (Sol) at random. Encode the solution 

using a binary array representation, as shown in Figure 1. Set the initial 

temperature, maximum number of iterations (NumOfIteration), and maximum 

number of non-improving solutions (MaxUnImprovement). Calculate the initial 

dependency degree (γ(Sol)) and the number of attributes (cardinality, |Sol|) for 

the initial solution. 

2. Termination Criterion: Check if the termination criterion (NumOfIteration) is 

met. If the maximum number of iterations is reached, the algorithm terminates 

and returns the best solution obtained so far. Otherwise, the algorithmic process 

continues as follows: 

i. Generate Trial Solution: Generate a trial solution (Sol*) using one of the 

neighbourhood structures discussed previously. The neighbourhood 

structure determines how the trial solution is generated by modifying the 

current solution. 

ii. Calculate Quality: Calculate the dependency degree (γ) of the trial solution, 

γ(Sol*), using rough set theory. 
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iii. Compare Solutions: Compare the quality of the trial solution, γ(Sol*), with 

the quality of the current solution, γ(Sol). If γ(Sol*) is greater than or equal 

to γ(Sol), the trial solution is accepted, and the current solution is updated 

(Sol ← Sol*). Additionally, if the quality of the trial solution is better than 

the quality of the best solution obtained so far (γ(Sol*) > γ(Sol_best)), update 

the best solution (Sol_best ← Sol*). Furthermore, if the trial solution has the 

same quality as the current solution but a lower number of attributes (|Sol*| 

< |Sol|), it is also accepted. 

iv. Iteration Update: Update the iteration counter and go back to step 2 to 

continue the optimization process until the termination criterion is met. 

The Re-heat SA algorithm iteratively generates trial solutions, evaluates their quality 

using the dependency degree, and updates the current solution and the best solution based 

on certain acceptance criteria. By exploring different solutions and accepting worse 

solutions probabilistically, the algorithm aims to escape local optima and search for better 

solutions with higher dependency degrees and potentially lower cardinalities. Moves that 

improve the solution, with respect to the objective function, will always be accepted, whilst 

bad moves are accepted with a certain probability determined by the Boltzmann 

probability, P, calculated by using Equation (3): 

P = e -β/ T              (3) 

where β is the difference in the objective function evaluation between the current and the 

trial solutions, and T is the temperature parameter, which periodically decreases during the 

search process, according to some cooling schedule.  

The algorithm continues this iterative process until the termination criterion 

(maximum number of iterations) is reached. At that point, the algorithm terminates and 

returns the best solution obtained throughout the optimization process. 

Note that the specific details of the neighborhood structures and their generation 

process are not provided in this summary, but were discussed earlier. 

  In the Re-heat SA algorithm, the probability of accepting a worse trial solution is 

determined based on Equation (4): 

𝑒𝑥𝑝 [
(−(𝛾(𝑆𝑜𝑙∗)−𝛾(𝑆𝑜𝑙)))

𝑇
≥ 𝑅𝑎𝑛𝑑𝑁𝑢𝑚[0,1]]              (4) 

In this equation, T represents the current temperature, γ(Sol*) is the dependency degree of 

the trial solution, γ(Sol) is the dependency degree of the current solution, and 

RandNum[0,1] is a randomly generated number between 0 and 1.  

To accept a worse trial solution, the exponential difference between the dependency 

degrees of the trial and current solutions divided by the current temperature should be 

greater than or equal to the randomly generated number. This probabilistic condition 

ensures that worse solutions have a chance of being accepted during the optimization 

process, allowing for exploration and potential escape from local optima. 

If the condition in Equation (4) is not satisfied for a certain number of iterations, it 

indicates that there is no improvement in the solution quality. In this case, the re-heat 

mechanism is invoked. The current temperature is reset to the initial temperature (T ← T0), 

and the best solution obtained so far is set as the current solution (Sol ← Sol_best). This 

allows the algorithm to explore the search space again and potentially find better solutions. 
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The process of generating trial solutions, evaluating their quality, and accepting or 

rejecting them based on the probabilistic condition continues until the termination criterion 

is met. The termination criterion can be defined based on the maximum number of 

iterations or other stopping conditions specific to the problem being solved. 

The algorithm repeats this iterative process until the stopping condition is met, 

resulting in an optimized solution with higher dependency degrees, that balances 

exploration and exploitation. This is illustrated in Algorithm 1. 

 

Algorithm 1: The Pseudo Code for Re-heat SA Process 

Variables / Operators: 

Sol       // Initial solution 

Sol*      // Trial solution 

Solbest   // Best solution 

γ         // Cost function 

||        // The number of attributes of Sol 

BEGIN 

    for NumOfIteration do  

        T = T * α 

        generate Sol*  

        if (γ(Sol*) ≥ γ(Sol) && |Sol*| ≤ |Sol|) then 

            Sol = Sol*  

            Solbest = Sol* 

            UnImprovement = 0 

        else  

            β = γ(Sol*) - γ(Sol) 

            generate RandomNum in [0, 1]  

            if (RandomNum ≤ e^(-β / T)) then 

                Sol = Sol*                                       

                UnImprovement = 0 

            else  

                UnImprovement++                              

            end if 

        end if 

        if (UnImprovement == MaxUnImprovement) then 

            T = T0 

            UnImprovement = 0  

            Sol = Solbest 

        end if  

    end for 

    return Solbest, γ(Solbest), |Solbest| 

END 

6   Experimental Design    

The overall experimental design for the solution proposed in this work encompasses 

several steps, as illustrated in Fig. 2.  
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Fig. 2. Experiments stratagem 

Each one of the steps is defined as follows: 

• Preprocessing: The first step involves preprocessing the dataset to clean it from 

vague, imprecise, and inconsistent data. This process aims to enhance the quality 

of the data by addressing issues such as missing values, outliers, and noise. 

• Attribute Reduction: The cleaned dataset is then used for attribute reduction, 

which involves finding the minimal reducts. Attribute reduction is performed 

using the Re-heat SA algorithm, as described earlier. The algorithm selects the 

most informative attributes by optimizing the search in the attribute space. 

• Classification: After attribute reduction, the reduced dataset is used for 

classification. The classification task involves building a classifier using the "IF-

THEN" rules generated from the reduced attribute set. The classifier aims to 

accurately assign class labels to the instances in the dataset. 

• Accuracy Estimation: To estimate the classification accuracy, the Rosetta 

software [37, 38] is utilized. Rosetta is a tool commonly used for evaluating the 

performance of classification models. It assesses the accuracy of the classifier 

based on the correctly classified instances and the total number of instances. 

• Comparison to Existing Approaches: The experimental results obtained from 

the proposed Re-heat SA algorithm are compared to other approaches available 

in the literature. These approaches may include different methods for attribute 

reduction and classification. The comparison is conducted to assess the 

effectiveness and performance of the proposed method relative to existing 

techniques. 

By following this experimental design, the proposed Re-heat SA algorithm's 

performance in terms of attribute reduction and classification accuracy can be evaluated.  

The preprocessing step ensures the dataset's quality before applying the algorithm, and 

the comparison with existing approaches provides insights into the algorithm's 

competitiveness and potential advantages.  

In the evaluation of the experiments, a total of 13 well-known datasets from the UCI 

Machine Learning Repository [29] are utilized. These datasets are selected to test the 

performance of the proposed Re-heat SA algorithm. Table 1 provides an overview of the 
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main characteristics of these datasets, including the number of dataset instances, attributes, 

and classes. 

Table 1. Characteristics of the selected datasets 

Datasets No. of Attributes No. of Classes 

M-of-N 13 1000 

Exactly 13 1000 

Exactly2 13 1000 

Heart 13 294 

Vote 16 300 

Credit 20 1000 

Mushroom 22 8124 

LED 24 2000 

Letters 25 26 

Derm 34 366 

Derm2 34 358 

WQ 38 521 

Lung 56 32 

 

By using these 13 datasets, the proposed algorithm was tested and evaluated on a 

diverse range of data characteristics, allowing for a comprehensive assessment of its 

performance in attribute reduction and classification tasks. 

In the datasets shown in Table 1, nine of them (M-of-N, Exactly, Exactly2, Heart, 

Vote, Credit, LED, Letters, and WQ) do not have missing values, and the class attribute is 

in the last column. Therefore, these datasets do not require any preprocessing steps. 

Four datasets, however, required preprocessing due to missing values and other data 

issues: 

• Mushroom dataset: This dataset is the largest among the chosen datasets. 

Preprocessing steps are performed, including data cleaning, and converting 

some characters to the integer type. These steps are necessary to make the data 

suitable for the calculation of rough sets. 

• Derm dataset: Preprocessing is needed for the Derm dataset due to missing 

values and noisy data. Additionally, discretization is applied to the age attribute. 

• Derm2 dataset: The Derm2 dataset is created by removing objects with missing 

values from the Derm dataset. After removing these objects, the Derm2 dataset 

is formed with 358 objects. The preprocessing steps for Derm2 are the same as 

the Derm dataset, except for handling missing values. 

• Lung dataset: The Lung dataset has the largest number of attributes among all 

the chosen datasets. It differs from the others in terms of the class attribute, 

which is in the first column. Additionally, the Lung dataset contains missing 

values at objects 15, 19, 21, and 26. 
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For each dataset, the Re-heat SA algorithm is executed multiple times with different 

initial solutions. Specifically, the algorithm is run 20 times for each dataset, except for 

Heart, Vote, and Derm2 datasets, which are executed 30, 30, and 10 times, respectively. 

These numbers were determined based on previous works [12, 14]. More recently, the 

authors from [36] in their experimental work used a similar approach. 

The results obtained from the Re-heat SA algorithm are analyzed in two phases: 

minimal reducts and rules generation for accuracy. This allows for the evaluation of the 

algorithm's performance in finding minimal reducts and generating rules for classification. 

The accuracy of the generated rules is also assessed to determine the classification 

performance of the algorithm on each dataset. 

By conducting these experiments and analyzing the obtained results, the effectiveness 

and performance of the Re-heat SA algorithm can be evaluated for each dataset. 

7      Results 

The experiments were conducted in two phases, and the outcomes for each phase are 

presented below. 

7.1      Results of the First Phase (Minimal Reducts) 

In this study, we introduced a method called Re-heat SA. In the first phase of the 

experiments, the focus was on finding minimal reducts using the Re-heat SA algorithm. 

The parameters of the Re-heat SA algorithm were set as shown in Table 2. 

Table 2: Re-heat SA Parameter Settings 

Parameter Definition Value 

T0 Initial temperature 2*|C| 

T(t+1) Decreasing temperature rate T * 0.93 

Max-un-improvement Maximum number of unimproved 

solutions 

3 

NumOfIteration Maximum number of iterations 250 

 

The initial temperature (T0) was set as 2 times the number of classes. The temperature 

was decreased according to the formula T(t+1) = T * 0.93, where T represents the current 

temperature. 

A maximum number of 3 unimproved solutions was allowed before invoking the re-

heat mechanism. The maximum number of iterations was set to 250. 

These parameter settings were chosen based on previous works [12, 14] and were used 

consistently across all datasets. 

By running the Re-heat SA algorithm with these parameter settings, the minimal 

reducts for each dataset were obtained. The results of the first phase, concerning the 

minimal reducts for each dataset, provide insights into the effectiveness of the algorithm 

in identifying minimal subsets of attributes that are relevant for classification tasks. The 
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results of the second phase, concerning the classification task, focus on rules generation 

and accuracy. 

In the first phase of the experiments, the minimal reducts generated by Re-heat SA for 

the M-of-N dataset are presented in Table 3. The "No. of Attributes of Reducts" column 

indicates the number of attributes in each minimal reducts, which is 6 for all runs. The 

"Minimal Reducts" column lists the attributes included in the minimal reducts for each run. 

The "Run Time(s)" column shows the execution time in seconds for each run. 

Across all 20 runs, Re-heat SA consistently identified reducts comprising 6 attributes, 

specifically attributes 3, 5, 9, 11, 1, and 7, from the original set of 13 attributes. The specific 

attributes included in the minimal reducts varied across different runs. 

These results demonstrate the ability of the Re-heat SA algorithm to consistently find 

minimal reducts with a fixed number of attributes for the M-of-N dataset. The algorithm 

explores different combinations of attributes to identify the most informative subset that 

preserves the classification accuracy. 

 

Table 3: Observed reducts generated by Re-heat SA for minimal subset reducts in M-of-

N dataset 

M-of-

N 

No. of Attributes of 

Reducts 

Minimal 

Reducts 

Run 

Time(s) 

1 6 3, 5, 9, 11, 1, 7 130 

2 6 3, 5, 11, 7, 1, 9 117 

3 6 9, 11, 3, 1, 5, 7 146 

4 6 1, 3, 9, 11, 7, 5 175 

5 6 1, 3, 11, 9, 5, 7 157 

6 6 1, 5, 7, 3, 9, 11 179 

7 6 1, 5, 7, 11, 3, 9 127 

8 6 3, 5, 9, 7, 1, 11 151 

9 6 7, 11, 5, 9, 3, 1 151 

10 6 3, 5, 7, 11, 9, 1 115 

11 6 5, 11, 1, 3, 7, 9 180 

12 6 11, 9, 7, 3, 5, 1 182 

13 6 5, 11, 7, 9, 3, 1 195 

14 6 1, 3, 5, 11, 9, 7 136 
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15 6 3, 5, 9, 7, 11, 1 100 

16 6 3, 11, 9, 7, 1, 5 103 

17 6 1, 5, 11, 7, 3, 9 110 

18 6 3, 5, 11, 8, 1, 7 125 

19 6 1, 3, 7, 9, 11, 5 189 

20 6 1, 9, 11, 7, 3, 5 121 

Table 4 presents a comparison of subset reducts results for different datasets using 

various algorithms, including Re-heat SA. The table includes the datasets, followed by the 

results obtained by different algorithms such as TSAR, SimRSAR, AntRSAR, GenRSAR, 

ACOAR, SSAR, and Re-heat SA. 

In the comparison of various methods for finding minimal reducts, we considered two 

types of approaches: single-based solution approaches and population-based approaches.  

The selected methods for comparison were as follows: 

• TSAR: Tabu search [14] 

• SimRSAR: Simulated annealing [11] 

• AntRSAR: Ant algorithm [12] 

• GenRSAR: Genetic algorithm [11] 

• ACOAR: Ant colony optimization [13] 

• SSAR: Scatter search [15] 

The best minimal reducts (minimum number of attributes) obtained by each method 

are highlighted in bold. The superscripts in parentheses represent the number of runs in 

which the methods achieved the minimal reducts. When no superscripts are present, it 

indicates that the method consistently obtained these minimal reducts across all runs. 

Upon analysing the results presented in Table 4, we observe that Re-heat SA 

demonstrates comparable performance with TSAR and SimRSAR in the first comparison. 

However, there is a notable exception for the WQ dataset, where Re-heat SA performs 

worse, resulting in minimal reducts equal to 15, while TSAR and SimRSAR achieve 12 

and 13 minimal reducts, respectively. 

Table 4: Comparison of subset reducts results (* reflects best results) 
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Legend: For each dataset in Table 4, the best result is marked with an asterisk (*). The numbers in 

parentheses represent the rank or frequency of occurrence of the corresponding reducts across multiple 

runs or algorithms. 

Datasets TSAR SimRSAR AntRSAR GenRSAR ACOAR SSAR Re-heat SA 

M-of-N 6* 6* 6* 6(6)7(12) 6* 6* 6* 

Exactly 6* 6* 6* 6(10)7(10) 6* 6* 6* 

Exactly2 10* 10* 10* 10(9)11(11) 10* 10* 10* 

Heart 6 6(29) 7(1) 6(18) 7(2) 6(18)7(2) 6* 6* 6(16)7(14) 

Vote 8 8(15) 9(15) 8 8(2)9(18) 8* 8* 8 

Credit 8(13) 9(5) 

10(2) 

8(18) 9(1) 

11(1) 

8(12) 9(4) 

10(4) 

10(6)11(14) 8(16) 9(4) 8(9) 9(8) 

10(3) 

9(2)10(7)11(11) 

Mushroom 4(17) 5(3) 4* 4* 5(1)6(5)7(14) 4* 4(12) 

5(8) 

4(8)5(12) 

LED 5* 5* 5(12) 6(4) 

7(3) 

6(1)7(3)8(16) 5* 5* 5* 

Letters 8(17) 9(3) 8* 8* 8(8)9(12) 8* 8(5) 

9(15) 

8(6)9(10)10(4) 

Derm 6(14) 7(6) 6(12) 7(8) 6(17) 7(3) 10(6)11(14) 6* 6* 6(10)7(10) 

Derm2 8(2) 9(14) 

10(4) 

8(3) 9(7) 8(3) 9(17) 10(4)11(16) *8(4)9(16) 8(2) 

9(18) 

9(6) 10(4) 

WQ 12(1) 

13(13) 

14(6) 

13(16) 14(4) 12(2) 13(7) 

4(11) 

16 *12(4)13(12)14(4) 13(4) 

14(16) 

15(5)14(15) 

Lung 4(6) 5(13) 

6(1) 

4(7) 5(12) 

6(1) 
4* 6(8)7(12) 4* 4* 5(12)6(8) 

Regarding the second comparison, Re-heat SA remains competitive with AntRSAR 

and outperforms GenRSAR on all tested datasets. However, when compared to ACOAR 

and SSAR, in most cases, these two approaches perform better than Re-heat SA. 

Nevertheless, there is a tie (equal finish) on 5 datasets, namely M-of-N, Exactly, Exactly2, 

Vote, and LED. 

As a result, Re-heat SA can be considered a viable alternative approach for finding 

minimal reducts. The incorporation of a re-heat mechanism, where the temperature is set 

back to a higher value during the search, facilitates exploration. By accepting solutions that 

may initially worsen the current solution, the algorithm can escape local optima and delay 

convergence. The dynamically changing neighbourhood structure based on the current 

solution's quality aids in exploring the search space and finding better solutions. 

The performance of the proposed algorithm is influenced by parameter settings, such 

as the MaxUnImprovement, which determines the occurrence of the re-heat mechanism 

when there is no improvement in solution quality after a certain number of iterations. These 

parameter values may vary from one dataset to another, depending on dataset features, 

leading to differing results. Thus, proper tuning of parameters holds the potential to 

enhance the quality of results obtained by Re-heat SA, and this remains a subject for future 

work and investigation. 

In the first comparison with single-based solution approaches (TSAR and SimRSAR), 

Re-heat SA demonstrates comparable performance, achieving minimal reducts like those 
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obtained by TSAR and SimRSAR on most datasets. However, there is a slight deviation 

on the WQ dataset, where Re-heat SA performs marginally worse. 

Conversely, in the second comparison with population-based approaches (AntRSAR, 

GenRSAR, ACOAR, and SSAR), Re-heat SA performs better than GenRSAR on all tested 

datasets. However, it is outperformed by ACOAR and SSAR on most datasets, indicating 

that these methods have a competitive advantage in finding minimal reducts. Nonetheless, 

there are instances where Re-heat SA achieves equal performance (a tie) with ACOAR and 

SSAR on datasets such as M-of-N, Exactly, Exactly2, Vote, and LED. 

The re-heat mechanism employed in Re-heat SA offers an alternative approach to 

finding minimal reducts. By resetting the temperature to its initial value and accepting 

worse solutions, the algorithm introduces exploration into the search process. This 

exploration allows the algorithm to move away from local optima and delay convergence, 

thereby increasing the chances of finding a better solution. Fine-tuning the parameters of 

Re-heat SA, including MaxUnImprovement, T0, cooling schedule, and NumOfIteration, 

can enhance the quality of the obtained results. Finding the optimal parameter values for 

each dataset can lead to improved performance and better exploration of the search space. 

Our observations indicate that Re-heat SA performs better on certain datasets (M-of-

N, Exactly, Exactly2, Vote, and LED) and worse on others (Credit, Derm2, WQ, and 

Lung). This suggests that the algorithm's performance is influenced by the specific dataset 

properties and the interplay between the parameter settings and the dataset characteristics. 

The probability of accepting a worse solution is determined by the temperature, with 

higher temperatures corresponding to a higher probability. This flexibility enables the 

algorithm to explore different regions of the search space and avoid getting trapped in local 

optima. The combination of the re-heat mechanism, temperature control, and adaptive 

neighbourhood structures in Re-heat SA provides a powerful approach for exploring and 

finding minimal reducts, offering an alternative solution to tackle the optimization 

challenges in attribute reduction. By adapting the neighbourhood structure based on the 

quality of the current solution, Re-heat SA can dynamically adjust its exploration strategy, 

improving its efficiency and effectiveness. 

We believe that the parameter settings can significantly impact the performance of the 

Re-heat SA algorithm. The value chosen for MaxUnImprovement, which determines when 

the re-heat mechanism is triggered, can vary depending on the characteristics of the dataset. 

This adaptive behaviour allows the algorithm to effectively explore the search space and 

jump between different regions, increasing the likelihood of finding an optimal or near-

optimal solution. However, different datasets may require various levels of exploration to 

find the best settings for specific problem domains before finding an optimal solution. 

The results demonstrate the performance of Re-heat SA in terms of finding minimal 

subset reducts for different datasets. It can be observed that Re-heat SA achieves 

competitive results, often obtaining the best or close-to-best reducts compared to other 

algorithms for both single-based and population-based solution approaches. The specific 

results vary across datasets, indicating the effectiveness of Re-heat SA in adapting to 

different problem domains. However, its performance may vary depending on the specific 

dataset, and there are cases where other methods excel. Further analysis and comparisons 

could be conducted to gain deeper insights into the strengths and weaknesses of each 

method. Parameter tuning is an important aspect in optimizing the performance of any 

algorithm, and it is worth exploring different parameter configurations to find the most 

suitable settings for specific datasets and application domains. These aspects can be a 
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direction for future research and experimentation to further optimize the Re-heat SA 

algorithm. 

Overall, the results highlight the capability of Re-heat SA to identify informative 

attribute subsets that could improve the classification accuracy in various datasets. 

7.2      Results of the Second Phase (Rules Generation and Classification 
Accuracy) 

This paper addresses the principal issue between classification accuracy and minimal 

reducts in data mining.  

Table 5 provides a comparison of the number of rules generated and the classification 

accuracy for different algorithms on various datasets. The algorithms compared include 

Reheat Simulated Annealing Algorithm, Genetic Algorithm, Johnson's Algorithm, and 

Holte's 1R. 

 

Table 5: Average number of rules and the classification accuracy for each algorithm on 

each dataset 

 Re-heat SA results are compared to three algorithms available in Rosetta software, 

Genetic Algorithm (GA), Jonson’s Algorithm, and Holte’s 1R. According to Fig. 2, GA 

had a significant increase in the average number of generated rules.   

 

 

Datasets 

Reheat Simulated 

Annealing Algorithm 

Genetic Algorithm Johnson’s Algorithm Holte’s 1R 

Average #  of 

rules 

Accuracy 

% 

Average # of 

rules 

Accuracy 

% 

Average # of 

rules 

Accuracy 

% 

Average # of 

rules 

Accuracy 

% 

M-of-N 62 100 64 100 64 100 26 63 

Exactly 607 100 64 100 64 100 26 69 

Exactly2 64 62 607 62 607 62 26 76 

Heart 262 8 6407 25 261 7 67 64 

Vote 136 66 1125 73 125 72 48 88 

Credit 883 15 129259 28 882 14 83 63 

Mushroo

m 

82 99 6401 100 90 100 117 90 

LED 10 100 9234 100 10 100 48 64 

Letters 23 46 4388 46 24 46 51 46 

Derm 231 33 57231 70 306 11 135 49 

Derm2 253 40 50052 78 212 33 128 60 

WQ 136 69 87267 40 461 4 94 52 

Lung 23 35 3467 72 20 49 156 72 
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It is worth mentioning some general observations and insights on the relationship 

between classification accuracy, the number of generated rules, and the performance of 

different algorithms. In addition, in data mining, the trade-off between classification 

accuracy and the number of generated rules is often a key consideration. Generating more 

rules may lead to a more comprehensive representation of the data and higher accuracy. 

However, it can also increase the complexity of the model and make it harder to interpret. 

The performance of different algorithms can vary depending on the dataset and problem at 

hand. It is essential to assess the trade-off between accuracy and the number of rules 

generated, and consider the interpretability and complexity of the resulting model. 

Therefore, when comparing Re-heat SA to other algorithms like Genetic Algorithm 

(GA), Johnson's Algorithm, and Holte's 1R, it is important to consider both the average 

number of generated rules and the accuracy achieved by each algorithm. GA may have a 

higher number of generated rules, indicating a more comprehensive exploration of the 

solution space. However, it is crucial to analyze whether this increase in rules translates 

into a significant improvement in accuracy or if it introduces unnecessary complexity. 

Figures 3 and 4 address the average number of rules generated by different methods 

respectively. While both figures focus on the average number of rules, they are separated 

due to differences in scale. In Fig. 3, the Genetic Algorithm (GA) generates rules close to 

14,000 for the Credit dataset, while the other two approaches (shown in Fig. 4) do not 

exceed 1,000 rules for all datasets. 

 

 

Fig. 3. Comparison of average number of rules in Re-heat SA and GA 

  

Fig. 4 also reveals that Re-heat SA, when compared to the Janson and Holter methods, 

demonstrates promising results for the average number of rules. Additionally, Table 5 

provides further insights into the comparison of these methods, specifically for datasets 

such as Credit, Vote, Heart, Exactly, and Led. In these cases, Re-heat SA generates more 

rules or the same number of rules in relation to the other methods. 

The discrepancy in the number of rules generated has implications for the practical 

utility and interpretability of the generated rule sets. Having a significantly higher number 

of rules may lead to complex models that are harder to comprehend and apply in real-world 

scenarios. On the other hand, generating fewer rules that still effectively capture the 

essence of the data is desirable for better interpretability and ease of use in decision-making 

processes. 
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Fig. 4. Comparison of average number of rules among Re-heat SA, Janson & Holte’s 1R 

 

Therefore, the results from both Fig. 4 and Table 5 indicate that Re-heat SA performs 

competitively in terms of the average number of rules generated compared to other 

methods, especially for certain datasets. Nevertheless, further analysis is necessary to 

understand the specific patterns and reasons behind the variations in the number of rules 

across different datasets. It is possible that the characteristics of the datasets, the 

complexity of the problem, and the algorithm's parameters may all contribute to these 

variations. As such, investigating the interplay between these factors could be an avenue 

for future research to optimize the rule generation process and enhance the overall 

performance of Re-heat SA. 

Fig. 5 presents the percentage of accuracy of Re-heat SA compared to the other three 

selected methods. Since these algorithms use random strategies and have different 

parameters, it is challenging to determine the most appropriate one among them with 

certainty. However, these algorithms are chosen as alternative solutions to find nearby 

optimal solutions, rather than exact optimal solutions. 

 

 

Fig. 5. Comparison of accuracies among Re-heat SA, Janson, GA and Holte’s 1R 

 

In general, Re-heat SA demonstrates reliable performance in solving attribute 

reduction in rough set theory based on the following factors: 

%

Reheat-SA

GA

Janson

Holte’s 1R



 

287                                                                              Optimizing Attribute Reduction …             

• The number of reducts generated with a smaller cardinality, indicating a more 

concise representation of the dataset. 

• Shorter runtime, suggesting faster computational efficiency compared to other 

methods. 

• The quality of the generated reducts, indicating that the selected attributes are 

relevant and informative for the classification task. 

• Promising results in terms of classification accuracy, which implies that Re-heat 

SA is effective in accurately classifying the data. 

These observations highlight the potential strengths of Re-heat SA in attribute 

reduction and classification tasks within the domain of rough set theory. However, it is 

important to note that the algorithm's performance may still be influenced by various 

factors such as dataset characteristics, parameter settings, and the specific problem at hand. 

Further analysis and experimentation may be necessary to validate and further explore the 

capabilities of Re-heat SA. 

The experimental results indicate that Re-heat SA outperforms other classification 

schemes, as evidenced by the classification accuracy measured using Rosetta software. 

Among the tested datasets, three datasets achieved a classification accuracy of 100%, 

indicating that Re-heat SA was able to accurately classify all instances in those datasets. 

Four datasets achieved classification accuracy between 60% and 99%, indicating a 

substantial level of accuracy. Additionally, six datasets achieved classification accuracy 

between 30% and 59%, suggesting that Re-heat SA was still able to achieve reasonable 

accuracy on those datasets. 

These results demonstrate the effectiveness of Re-heat SA in achieving high 

classification accuracy across a range of datasets. It indicates that Re-heat SA can 

accurately classify instances and can be a valuable tool in solving classification problems. 

However, it is important to note that the actual classification accuracy achieved by Re-heat 

SA may vary depending on the specific dataset and problem at hand. Further evaluation 

and comparison with other classification schemes would provide a more comprehensive 

understanding of its performance. 

7.3      Calculated running time  

The calculated running time for Re-heat SA shows that in some cases it is longer 

compared to other methods, such as AntRSAR, GenRSAR, and SimRSAR. For example, 

in the LED dataset, Re-heat SA takes longer compared to AntRSAR, but both methods 

achieve the same number of attributes in the smallest reducts. Similar observations can be 

made for the WQ dataset, where Re-heat SA takes longer than SimRSAR and GenRSAR, 

but less time compared to AntRSAR. 

In the case of the Mushroom dataset, Re-heat SA requires more computational time to 

discover the smallest reducts compared to AntRSAR, GenRSAR, and SimRSAR. This can 

be attributed to the larger size of the Mushroom dataset, which has 8124 objects. Similarly, 

the WQ dataset also requires longer time in Re-heat SA compared to SimRSAR and 

GenRSAR, but less time compared to AntRSAR. 

It is important to note that the number of objects in each dataset plays a significant 

role in decreasing the running time for Re-heat SA. This is evident in the Mushroom, LED, 

and WQ datasets, which have more objects. 
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Despite the longer execution times for some datasets compared to other methods, Re-

heat SA is able to discover results with a smaller cardinality, indicating its effectiveness in 

finding minimal reducts. Therefore, the proposed approach of Re-heat SA outperforms 

some of the other approaches, as demonstrated in Fig. 6. 

Based on the findings of Jensen and Shen [12], SimRSAR and AntRSAR were 

reported to outperform the other methods in terms of running time, with the order of 

techniques being SimRSAR ≤ AntRSAR ≤ GenRSAR. However, when comparing these 

methods to Re-heat SA, the order of techniques in terms of running time may change to 

Re-heat SA ≤ SimRSAR ≤ AntRSAR ≤ GenRSAR for 10 datasets. 

Additionally, the results in Table 3 demonstrate the advantage of the Re-heat SA 

method in terms of discovering minimal reducts with minimal cardinality compared to 

other methods. This indicates that Re-heat SA can find more compact and concise 

solutions, which can be beneficial in interpretability and efficiency. 

Therefore, while SimRSAR and AntRSAR may have performed better in terms of 

running time according to previous studies, the Re-heat SA method shows its superiority 

in terms of discovering minimal reducts with minimal cardinality, as evident from the 

results in Table 3. 

 

 

Fig. 6. Comparison of running time among Re-heat SA, AntRSAR, GenRSAR and 

SimRSAR 

 

In this way, based on the presented results, it can be observed that: 

• Reheat Simulated Annealing Algorithm tends to generate a smaller number of 

rules compared to the other algorithms in most cases. 

• The accuracy of Reheat Simulated Annealing Algorithm varies across the 

datasets, with some datasets achieving 100% accuracy while others have lower 

accuracy. 

• Genetic Algorithm and Johnson's Algorithm generate a higher number of rules 

compared to Reheat Simulated Annealing Algorithm, but their accuracy varies 

across the datasets. 

• Holte's 1R tends to generate a smaller number of rules compared to the other 

algorithms, but its accuracy also varies across the datasets. 
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Overall, Reheat Simulated Annealing Algorithm shows promising results in terms 

of generating a smaller number of rules and achieving high classification accuracy on 

certain datasets. However, the performance of the algorithms varies across the different 

datasets, indicating that the choice of algorithm may depend on the specific characteristics 

of the dataset. 

Finally, Re-heat SA demonstrates reliable performance in solving attribute reduction 

problems. It offers several advantages such as shorter execution time and the ability to 

generate reducts with lower cardinality. While it may not achieve the exact optimal results, 

the solutions obtained by Re-heat SA are near optimal. As a stochastic search algorithm, it 

explores the search space and provides results that are close to the optimal solution. This 

makes it a valuable approach for attribute reduction tasks, offering a balance between 

computational efficiency and solution quality. 

8. Proposing Standardization for Feature Selection and 
Dimensionality Reduction 

In modern machine learning, the quality of data directly affects the effectiveness of 

learning through iterative processes. Although we now have access to enormous databases, 

not all information within these datasets is equally relevant for the learning process [39]. 

Datasets often contain numerous features that describe examples through specific rules, 

resulting in a high-dimensional feature space. However, dealing with high dimensionality 

can pose challenges for machine learning tasks. One significant issue is the complexity of 

learning models. As the number of features increases, so does the model complexity, 

leading to higher computational intensity and processing time demands. Moreover, model 

complexity can negatively affect accuracy and efficiency. 

In practice, only a subset of features is usually crucial for distinguishing among 

examples and enabling knowledge discovery, while the rest may be insignificant or even 

detrimental to the model, leading to the "curse of dimensionality”. Feature selection plays 

a vital role in addressing this challenge by identifying the most relevant and non-redundant 

features for data separability. 

In this research, we propose using Rough Set Theory (RST) as the basis for attribute 

reduction, employing the Re-heat Simulated Annealing algorithm to assess the quality of 

minimal reducts. RST is a mathematical tool that uncovers subsets of reducts, especially 

valuable when dealing with uncertain and incomplete data typically encountered in big 

data scenarios. On the other hand, Re-heat SA aims to optimize the search space to find 

the optimal solution. 

Throughout our work, we have highlighted that knowledge discovery for data 

classification is a critical aspect, and leveraging rough sets to pre-process data within meta-

heuristic and annealing approaches can enhance performance. 

Given the insights from our discussion, we strongly advocate for the formalization and 

standardization of solutions that address the problems and challenges. Such standardization 

efforts need to be adopted as de facto or international norms, providing consistency, 

validation, and verifiability in machine learning pipelines across industries.  

Our proposed solution can serve as a standard for feature selection and dimensionality 

reduction, particularly problems of a deep learning nature [40]. It is inevitable that on the 

one hand dimensionality reduction stands as a fundamental and essential technique in data 

mining and optimization, particularly in the present big data era, which typically demands 
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feature selection and feature extraction tasks, each with its advantages and limitations [41]. 

On the other hand, as the volume of data continues to grow exponentially, the task of 

extracting and selecting features with robust representational capacity from limited sample 

data becomes a crucial area of research for the future [42]. Furthermore, we believe that 

we are pioneers in recognizing the significance and purpose of such standardization. 

The standardization process should encompass knowledge discovery and the 

application of intelligent data analysis strategies and techniques for tackling the challenges 

discussed above. By establishing industry-wide standards, we can streamline and optimize 

machine learning processes, enabling reliable and efficient analysis of big data. This effort 

will foster advancement and adoption of smart data analysis strategies in various fields. 

9      Discussion and Conclusion  

With the exponential growth of data in real-world applications, the need for dimensionality 

reduction techniques has become more critical than ever. Attribute reduction and feature 

selection are prominent methods for handling such large-scale data. 

In this paper, we have demonstrated that integrating minimal reducts theory with if-then 

rules offers a superior approach to tackling the dimensionality problem and classification 

issue. The results clearly indicate that the proposed method, Re-heat SA, outperforms other 

approaches in terms of generating high-quality reducts, achieving faster running times, 

reducing cardinality, and improving classification accuracy. Re-heat SA achieved 100% 

classification accuracy for three datasets, 60-99% accuracy for four datasets, and 30-59% 

accuracy for six datasets. These results reinforce the advantages and performance of the 

proposed method. However, there is much room for further research to enhance knowledge 

discovery. 

In future work, we suggest evaluating Re-heat SA using larger and more challenging 

datasets with a greater number of attributes. Additionally, comparing the generated reducts 

with other classification algorithms, such as neural networks, beyond those based on 

Rosetta and rules would be beneficial for comprehensive analysis. We believe that proper 

parameter tuning plays a crucial role in the algorithm's performance. Parameters like the 

maximum number of non-improving solutions, which governs the re-heating process, 

might vary across datasets due to their unique features. By carefully tuning these 

parameters, the Re-heat SA algorithm can further improve result quality. As a future 

research direction, we propose the use of search strategies, such as genetic algorithms, for 

dynamically tuning Re-heat SA's parameters instead of relying on fixed values. 

The dimensionality reduction method proposed in this paper follows a filter-based 

approach, where attribute reduction and classification tasks are treated separately. An 

alternative avenue is to develop a wrapper-based solution that integrates both tasks, where 

the cost function of the algorithm incorporates both classifier accuracy and the dependency 

degree derived from rough set theory. There is a tremendous opportunity for new research 

and development work in these subject and topic areas.  

The field of knowledge discovery, data mining, and machine learning continues to 

evolve rapidly, driven by advancements in technology, increasing availability of big data, 

and emerging challenges in various domains. 

Firstly, further investigations need to explore and refine the proposed Re-heat SA 

algorithm for attribute reduction and classification. This includes exploring its 

performance on larger and more diverse datasets, evaluating its scalability, and 
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benchmarking it against other state-of-the-art algorithms. Additionally, parameter-tuning 

strategies, such as advanced genetic algorithms or other optimization techniques must be 

utilised to enhance the algorithm's effectiveness. 

Secondly, the integration of different feature selection methods with classification 

algorithms warrants further exploration. Combining filter-based and wrapper-based 

approaches, as well as exploring embedded methods, can lead to more efficient and 

accurate solutions for dimensionality reduction. 

Thirdly, considering the ever-increasing complexity and heterogeneity of real-world 

data, the development of advanced techniques that handle high-dimensional and mixed-

type data is crucial. Exploring feature selection and dimensionality reduction techniques 

tailored for specific data types, such as text, images, time series, or network data, can open 

new avenues for research and development. 

Fourthly, in addition to algorithmic advancements, research can also focus on 

developing frameworks and tools for standardizing and automating the feature selection 

and dimensionality reduction processes. This includes the formulation of guidelines, best 

practices, and evaluation metrics to facilitate the comparison and reproducibility of 

different methods. Standardized workflows and software implementations can further 

accelerate the adoption of these techniques across industries and domains. 

Fifthly, as the field of machine learning continues to grow, it is essential to address 

ethical considerations and interpretability challenges associated with feature selection and 

dimensionality reduction methods. Research can explore techniques for ensuring fairness, 

transparency, and interpretability in the feature selection process to mitigate biases and 

enable trustworthy decision-making in transparent ways. 

Sixthly and lastly, exploring the applicability of feature selection and dimensionality 

reduction techniques in emerging areas such as federated learning, edge computing, or 

privacy-preserving settings presents exciting research opportunities. By developing 

innovative approaches that preserve data privacy, while enabling effective feature 

selection, can revolutionize the way machine learning in sensitive domains is applied. In 

addition, based on the technical analysis and experience gained from this work, we strongly 

advocate for the initiation of standardization efforts to establish a norm for feature selection 

and dimensionality reduction problems, especially in the context of big data. This 

standardization should provide consistency, validation, and verifiability to machine 

learning processes applied industry-wide, encompassing the entire knowledge discovery 

pipeline, and employing smart intelligent data analysis strategies and techniques. 

Finally, in conclusion, the subject and topic areas discussed in this paper offer a vast 

landscape for new research and development work. The field of feature selection and 

dimensionality reduction is ripe with opportunities to advance algorithms, explore new 

data types, standardize processes, address ethical concerns, and explore emerging 

applications. By embracing these opportunities, researchers can make significant 

contributions to the field and unlock the potential of machine learning in various domains. 
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