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Abstract 

     Most statistical methods in time series analytics assume that the residuals are 
independently and identically distributed with zero mean and constant variance. 
In real cases, this assumption may be violated. Nowadays, data are dynamic and 
highly volatile, particularly in finance. The Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) model is a statistical method for non-
constant conditional variance that can capture the volatility data. Recently, 
artificial intelligence methods are gaining popularity and have promising 
performance, one of those is the Long Short-Term Memory (LSTM) method. 
However, due to the filtering process by forget gate in the LSTM cell some 
information is missing, which can decrease the prediction’s accuracy. This study 
proposes a method, namely Hybrid GARCH-LSTM, to overcome those limitation. 
The performance of the proposed method is evaluated in the simulation and 
empirical data and compared with GARCH and LSTM model. The results show 
that the Hybrid GARCH–LSTM model is able to recognize the volatility pattern of 
data well and outperforms all the other models.  

     Keywords: Autocorrelation, Heteroscedasticity, Machine Learning, Stock Price, 
Time Series. 

1      Introduction 

Time series are datasets of arranged observations in time order [1]. One of the essential 

works with time series datasets is how to predict the future based on the past. Stationarity 

is the main characteristic of time series that must be fulfilled when using statistical models. 

The stationary diagnostic checks of those models are based on the assumptions of errors, 

which are independently and identically distributed with zero means and constant variance 

[2]. However, this assumption may be violated in many practical cases, particularly in 

finance or economics. 

Todays, data are dynamic and highly volatile. The high volatility data generally has 

time-dependent variance (heteroskedastic). In this case, a linear model or even an ARIMA 
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model could not capture the volatility pattern of data and thereby would lead to erroneous 

conclusions. To overcome this limitation, Engle [3] introduced the Autoregressive 

Conditional Heteroskedasticity (ARCH) processes which allow the conditional variance to 

change over time. As the generalization of ARCH, Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) was initially introduced by Bollerslev [4]. 

GARCH has been widely used in the risk management of assets. Some studies [5, 6] show 

that GARCH can capture data volatility. 

In addition to statistical methods, artificial intelligence methods are widely used in 

many prediction tasks. The best artificial intelligence method for sequential data is the 

Recurrent Neural Network (RNN). It has a memory that can remember important 

information about the input [7]. As the improvement of RNN, LSTM has a recurrent 

learning unit with gates to capture the longer states from the beginning unit and the shorter 

states from the last unit. These features allow LSTM to have a good memory for long data 

periods. Some studies [8, 9, 10] show a promising performance of LSTM in time series 

forecasting problems. Despite the advantages of LSTM above, LSTM has some problems. 

Under limited data, the accuracy of LSTM prediction will decrease with the increase of the 

prediction period. Besides, the existence of forget gate in LSTM would reduce the 

participation of previously hidden states and prioritizes the current state. The LSTM model 

can be improved by combining LSTM with other models [11]. Some studies have been 

combining the LSTM model with statistical [12], deep learning [13], and a hybrid of both 

methods [14]. 

This study will examine the performance of hybrid GARCH–LSTM models for 

volatility data and compares the performance to the GARCH, LSTM models. In the hybrid 

model, GARCH is the initial model used to model the main linear components of data, 

while the LSTM model is used to model the non-linear details in residuals of the GARCH 

model. The model's performances are evaluated using the Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean 

Absolute Error (MAE) metrics. This study contributes to the literature by comparing 

statistical, machine learning, and hybrid statistical and machine learning methods for 

analyzing the dynamical pattern of data volatility. 

2      Literature Review 

2.1.  Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) 

Heteroscedasticity is defined as the condition where the residual variance is non-constant 

over time. Given a time series {𝑌𝑡}, the conditional variance of 𝑌𝑡 measures the uncertainty 

in the deviation of 𝑌𝑡 from its conditional mean. The phenomenon where the conditional 

variance of this series varies over time is called volatility [15]. Autoregressive Conditional 

Heteroscedasticity (ARCH) processes are serially uncorrelated processes with non-

constant variances conditional on the past but constant unconditional variances [3]. The 

ARCH process allows the conditional variance to depend on the past realization of the 

series. The ARCH (𝑞) denoted the ARCH process with order 𝑞. The conditional variance 

at time 𝑡 of ARCH (𝑞) process is defined as: 

𝜎𝑡|𝑡−1
2 = 𝜔 + ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑞

𝑖=1

,                                             (1) 

with 𝑟𝑡 = 𝜎𝑡|𝑡−1𝜀𝑡  is a return at time 𝑡 ; 𝜀𝑡  is a random variable at time 𝑡  that is 
independently and identically distributed with zero mean and unit variance; 𝜔, 𝛼𝑖  are the 
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model parameters. 
The natural generalization of the ARCH process, Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH), allows 𝑝 lagged conditional variances to enter 

the model. The conditional variance at time 𝑡 of GARCH(𝑞, 𝑝) process is defined as 

𝜎𝑡|𝑡−1
2 = 𝜔 + ∑ 𝛼𝑖𝑟𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗|𝑡−𝑗−1
2

𝑝

𝑗=1

.                           (2) 

The condition of 𝛼𝑖 ≥ 0 and 𝛽𝑖 ≥ 0 is necessary to make the conditional variance non-

negative. The necessary and sufficient condition for weak stationary of GARCH process 

is ∑ (𝛽𝑖 + 𝛼𝑖)𝑚𝑎𝑥(𝑝,𝑞)
𝑖=1 < 1. 

2.2.  Long Sort-Term Memory (LSTM) 

Long Short–Term Memory (LSTM) is a Recurrent Neural Networks (RNN) variation. RNN 

has been developed for tasks related to ordered sequence data. RNN accomplishes the task 

by recursive processes. The weight estimators, together with an additional latent variable 

called hidden state, are iteratively updated and keeps the memory of the previous steps 

[16]. Due to the repetitive nature of RNN, the gradient tends to shrink exponentially or 

become too large in the significant time step. It makes the model training process less 

effective, and the model has poor performance while dealing with long-term dependency. 

LSTM address to overcome the vanishing gradient problem of RNN. 

 

Fig 1. An LSTM cells 

The LSTM block contains a memory cell and three gates with weights and bias vectors 

through which information passes serially [17]. Three gates of LSTM, called input gate, 

forget gate, and output gate, control the information flow, whether the information should 

be saved or forgotten. In general, the architecture of LSTM is presented in Fig 1. The 

workflow of LSTM cell consists of some stages. First of all, a combination of current block 

input and previous activation values are passed through a sigmoid function 𝑓𝑡 (Equation 3) 

to filter the information that should be stored. In the next stage, other sigmoid functions 𝑖𝑡 

(Equation 4) in the input gate are used to filter the same combination of activation from 

the previous layer and the current block to be used as the updated input. Then, the primary 

set of information is passed through a tan hyperbolic function to produce new candidate 

values (𝑐𝑡̃) (Equation 5) of the current block. The previous cell state (𝑐𝑡−1) is then updated 

to a new cell state (𝑐𝑡) (Equation 6) and served as the final values of the current block. 

Another sigmoid function filters the last stage, the final values of the current block 𝑜𝑡 

(Equation 7) in the output gate and passed through another tanh activation. All functions 

for each stage are defined as: 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑥𝑡 + 𝑤𝑓ℎℎ𝑡−1 + 𝑏𝑓),                                            (3) 
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𝑖𝑡 = 𝜎(𝑤𝑖𝑥𝑥𝑡 + 𝑤𝑖ℎℎ𝑡−1 + 𝑏𝑖),                                             (4) 

𝑐𝑡̃ = 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥𝑡 + 𝑥𝑐ℎ𝑡−1 + 𝑏𝑐),                                            (5) 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐𝑡̃,                                                    (6) 

𝑜𝑡 = 𝜎(𝑤𝑜𝑥𝑥𝑡 + 𝑤𝑜ℎℎ𝑡−1 + 𝑏𝑜),                                            (7) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡),                                                      (8) 

with 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 are filter in forget, input and output gate respectively, 𝑤 is a weight matrix 

size ((𝑡 − 1) × (2𝑡 − 2)), 𝑏  is a bias vector size ((𝑡 − 1) × 1) , 𝑥  is an input, ℎ  is an 

output, 𝑐 and 𝑐̃ are cell state values and candidate cell state values, respectively. 

2.3. Evaluation Metrics 

When various models are applied in the analysis, forecasting accuracy generally is used to 

decide the best model. Forecasting accuracy refers to the forecasting error that is the 

deviation between the actual and predicted values [18]. Here are several metrics used to 

access the forecasting accuracy in the time series modeling. 

Mean Square Error (MSE) 

Given data at time 𝑡 is 𝑦𝑡 and 𝑦̂𝑡is the predicted value of 𝑦𝑡. MSE is calculated by: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

.                                                    (9) 

The best model will have an MSE value that is close to zero. MSE is also used to detect 

outliers. If there is a bad prediction result, the squaring part of the MSE function magnifies 

the error [19]. 

Root Mean Square Error (RMSE) 

RMSE is related to the MSE (through the square root). RMSE is defined as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

.                                             (10) 

Mean Absolute Percentage Error (MAPE) 

MAPE has an intuitive interpretation in terms of relative error. The formula of MAPE is 

presented in Equation 11. MAPE usually is used in tasks where being sensitive to relative 

variations are more essential than to absolute variations. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
|

𝑛

𝑡=1

× 100.                                        (11) 

Mean Absolute Error (MAE) 

MAE or MAD (Mean Absolute Deviation) is the average absolute deviation between the 

actual and forecasted values. The formula for MAE is: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

.                                                (12) 
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3      The Proposed Method 

The hybrid GARCH-LSTM combines two models to capture linear and non-linear features 

of data. The GARCH model is the initial model used to capture the linear elements of data, 

while the LSTM model is proposed to extract the non-linear features. The general 

procedure of the hybrid GARCH–LSTM model is illustrated in Fig 2. Firstly, data is 

modelled using the GARCH model. The order of the GARCH model is determined based 

on the sample autocorrelation function (ACF) and partial autocorrelation function (PACF) 

identification. Secondly, the residuals of the GARCH model are then modelled using the 

LSTM model. Lastly, the final prediction of the hybrid model is calculated as the sum of 

predicted values of the GARCH model and LSTM model. The calculation formula of the 

hybrid model is defined as follows: 

𝑦𝑟(t) = 𝑦𝑜(t) − 𝑦𝑔(t),                                                (13) 

𝑦𝑓(t) = 𝑦𝑔(t) + 𝑦𝑙(t),                                                (14) 

with 𝑦𝑟(𝑡) is the residual, 𝑦𝑜(𝑡) is the actual value of the return, 𝑦𝑔(𝑡) is the GARCH 

model prediction, 𝑦𝑙(𝑡)  is the LSTM model prediction, 𝑦𝑓(𝑡)  is the hybrid model 

prediction. 

 

Fig 2. Flow chart for hybrid GARCH–LSTM model 

4      Methodology 

4.1. Data 

This study evaluates the performance of GARCH, LSTM, and hybrid of both models in 

simulation and empirical data. The simulation data are obtained from the simulation 

process by generating data from the GARCH model. There are ten scenarios of the data 

generating process, presented in Table 1, with ten repetitions for each scenario. To generate 

returns 𝑟𝑡, for 𝑡 = 1, 2, . . . , 365, the GARCH processes in (1) and (3) are used, with the 

initial value of the return 𝑟0~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0, 1) and 𝜀𝑡~𝑁(0, 1). 

The empirical data is the stock closing price of PT. Bumi Resources Minerals Tbk. (BRMS) 

obtained from https://yahoo.finance.com. The closing price from 01st January to 31st 

Return data 

Linear prediction by GARCH 

model 

GARCH residual 

Nonlinear prediction by LSTM 

model 

Final prediction: linear prediction + nonlinear 

prediction 

https://yahoo.finance.com/
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December 2021 is used for this study. The data is in the daily frequency with the stock 

price only available for the workdays, so there are 247 observations. 

Table 1. The simulation scenario 

Scenario Variance Dataset 
Parameter 

𝜔 𝛼 𝛽 

1 

High 

GARCH (1,1) 0.5 0.1 0.7 

2 GARCH (1,3) 0.7 0.2 0.4, 0.2, 0.1 

3 GARCH (3,1) 0.2 0.3, 0.1, 0.1 0.4 

4 GARCH (3,3) 0.2 0.3, 0.2, 0.05 0.2, 0.1, 0.05 

5 Contaminated GARCH 0.5 0.1 0.7 

6 

Low 

GARCH (1,1) 0.5 0.1 0.15 

7 GARCH (1,3) 0.1 0.05 0.2, 0.1, 0.05 

8 GARCH (3,1) 0.1 0.2, 0.1, 0.05 0.05 

9 GARCH (3,3) 0.1 
0.15, 0.1, 

0.05 
0.1, 0.05, 0.025 

10 Contaminated GARCH 0.1 0.05 0.2, 0.1, 0.05 

4.2. Analysis 

For analysis, each data (i.e., simulation and empirical data) is divided into training and 
testing data with the proportion of 80% and 20%, respectively. Three models (i.e., GARCH, 
LSTM, and Hybrid) are applied to each training data. In the LSTM modeling, manual 
hyperparameter tuning is carried out. Due to the subjective inference of the manual process, 
the complete block factorial design is conducted to analyze the MAPE values obtained 
from all scenarios of simulation data. The design uses three factors: variance, model, and 
dataset, while the block is the repetition. The effect of the factors on the MAPE value is 
then analyzed using analysis of variance (ANOVA). The best model is obtained from 
Tukey's HSD analysis. 

For empirical data, the stock closing price data is transformed into returns to be stationer. 

The returns can be obtained by log and differencing transformation based on the following 

formula: 

𝑟𝑡 = 𝑙𝑜𝑔 𝑦𝑡 − 𝑙𝑜𝑔 𝑦𝑡−1 .                                            (15) 

The ARCH effect on the returns is checked by the sample ACF and PACF and Ljung-Box 

test of the returns and the absolute returns. The absolute returns are examined if the returns 

are serially uncorrelated or provide the white noise model. If the absolute returns admit 

significant autocorrelations, these autocorrelations furnish evidence of the existence of the 

ARCH effect. The model's validation is based on the goodness of fit between the actual 

values and the model's prediction values of returns and stock closing price, which is 

evaluated by MSE, RMSE, MAPE, and MAE metrics. The seven days ahead predictions 

are calculated after the validation process. 

5      Results and Discussion 

5.1    Simulation Study 

MAPE values from the modelling process using simulated data are analyzed using analysis 

of variance (ANOVA) based on the complete block factorial design with three factors. 
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Table 2 presents the ANOVA results of MAPE. The results show that the only significant 

interaction is the interaction between variance and dataset, and all main factors 

significantly affect the value of MAPE. Meanwhile, the other factors (i.e., block and model 

interactions) are statistically insignificant. However, the significant interaction effect 

between variance and dataset implies that variance affects MAPE value differently. Still, 

these variance effects depend on the kind of dataset.  

Table 2. ANOVA results of MAPE 

Source 

Degree 

of 

freedom 

Sum 

Square 

Mean 

Square 
F p-valuea 

Block 9 242.125 26.903 1.713 8.628e-02 

Variance 1 68.055 68.055 4.332 3.838e-02a 

Model 2 2948.542 1474.271 3.844 1.963e-31a 

Dataset 4 2170.901 542.725 4.547 3.824e-23a 

Variance: Model 2 56.145 28.073 1.787 1.695e-01 

Variance: Dataset 4 309.972 77.493 4.933 7.535e-04a 

Model: Dataset 8 88.880 11.110 0.707 6.851e-01 

Variance: Model: Dataset 8 136.066 17.008 1.083 3.755e-01 

Residual 261 4100.277 15.710   

a Factor is statistically significant at a 95% confidence level 

Based on Fig 3A, the MAPE value of the Contaminated GARCH dataset has a different 

pattern from the other dataset. The MAPE values of Contaminated GARCH are low for 

high variance, and the MAPE values are high for low variance. Meanwhile, the MAPE 

values are high on the other dataset when the variance is high and low when the variance 

is low. It implies that the MAPE value from different variances depends on the kind of 

dataset. Compared to the other datasets, the MAPE values of the contaminated GARCH 

are the highest, while the MAPE values of the GARCH (1,1) are the lowest. According to 

Tukey's multiple comparisons, the Contaminated GARCH dataset from high variance has 

different effects on the MAPE value than other datasets from low variance. Moreover, 

GARCH (3,1) and GARCH (3,3) datasets from high variance have different effects on the 

MAPE value than the GARCH (1,1) dataset from low variance. Another result shows that 

the GARCH (1,3) and GARCH (3,3) datasets from high variance have different effects on 

the MAPE value than the Contaminated GARCH dataset from low variance. Furthermore, 

all comparisons show no significant effect on the MAPE value for the same datasets but 

with different variances. On the other hand, for the same variance (i.e., both are high 

variances), the Contaminated GARCH dataset has different effects on the MAPE value 

than the GARCH (1,1) and GARCH (1,3) datasets. Meanwhile, for both low variances, the 

Contaminated GARCH dataset has a different effect on the MAPE value than other datasets. 
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A B 

Fig 3. Simulation study results: (A) interaction plot between variance and dataset; (B) 

boxplot of models 

Another factor that significantly affects the MAPE values is the model. Boxplot in Fig 
3B shows the different values of MAPE based on the model. The lowest MAPE is obtained 
from the Hybrid GARCH–LSTM model with the mean value of 6.30%, while the highest 
MAPE is obtained from the GARCH model with the mean value of 13.89%, and for the 
LSTM model, the average value of MAPE is 9.07%. Tukey's multiple comparisons show 
that the mean difference for each pair of two models is significant. The mean difference of 
MAPE between GARCH and Hybrid models is -7.5879. The negative sign indicates that 
the mean MAPE of the Hybrid model is lower than that of the GARCH model. Meanwhile, 
the mean difference in MAPE between the Hybrid and LSTM models is 2.771. It shows 
that the mean MAPE of the LSTM model is higher than that of the Hybrid model. Therefore, 
it can be concluded that the Hybrid GARCH–LSTM model gives the lowest MAPE or is 
the best model among others. 

5.2      Empirical Study 

Fig 4A shows the BRMS daily stock closing prices for the study period. Generally, it 
shows an increasing trend and different variability for different levels of stock closing price; 
the higher stock closing prices the higher variability. On the financial asset, a return is the 
asset's price change, which is a stationary data. The closing price data is transformed into 
the return form and shown in Fig 4B. The return plot shows that the mean values are 
constant over zero. The Dickey-Fuller unit root (ADF) test result also indicates that returns 
are stationary with a p-value < 0.05. On the other hand, the plot shows that returns are 
highly volatile over some periods, especially at the beginning and the middle of the study 
period. The covid-19 cases might cause these results during these periods. This pattern 
gives a hint of the volatility clustering on the returns. The sample ACF and PACF of returns 
show serial uncorrelation over the data and suggest the white noise model. It can be said 
that the series is independently and identically distributed. Meanwhile, the ACF and PACF 
of the absolute returns preserve the serial dependence structure in the absolute returns. 
There are some significant autocorrelations in the absolute returns. Therefore, it can be 
concluded that the returns are not independently and identically distributed, or there is a 
volatility clustering on the returns. 
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A 

 
B 

Fig 4. BRMS daily stock (A) closing price; (B) return 

On the model specification stage, the best model for the returns is the GARCH (4, 3) 
model, which has the lowest AIC (Akaike Information Criterion) and BIC (Bayesian 
Information Criterion). The sample ACF and PACF of the standardized residuals of the 
model and the absolute values of those show that the white noise model is appropriate. 
This implies that the standardized residuals are independently and identically distributed, 
and the model is correctly specified.  The GARCH model is then constructed using the 
order of (4, 3). The GARCH model for conditional variance of BRMS daily stock return 
is: 

𝜎𝑡|𝑡−1
2 = 1.6235 + 0.1599𝑟𝑡−1

2 + 6.5111𝑒−3𝑟𝑡−2
2 + 0.372𝑟𝑡−4

2 + 0.0113𝜎𝑡−1
2   

+0.4503𝜎𝑡−3
2 .                                                                                                                (16) 

According to the Equation (16), the estimated parameters of 𝛼3  and 𝛽2  are zero. It 
means that the conditional variance value at 𝑡 period does not depend on the third period 
ago, (𝑟𝑡−3

2 ), and the conditional variance on the second period ago, (𝜎𝑡−2
2 ). All positive 

values of those estimated parameters indicate that the squared value of the returns and the 
conditional variance in the previous period positively affect the return value at 𝑡 period. 
For example, the estimated parameter of 𝛽3  is 0.4503. It implies that the conditional 
variance at 𝑡 period is expected to increase by 0.4503, assuming that the squared value of 
the returns and the conditional variance in the previous period are constant. Note that the 
coefficient of  𝑟𝑡−2

2  is very small close to zero (6.5111𝑒−3). It might indicate that the  
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conditional variance value at time 𝑡  period also does not rely on the second previous 
period. 

 
 

A 

 
 

B 

Fig 5. Fitted values of GARCH model for daily (A) return; (B) stock closing price 

The GARCH model validation is presented in fitted values of prediction visualization 
in Fig 5A. Based on the Fig, the return predictions do not fit well with the actual returns, 
especially when the volatility is low. For some periods, the prediction pattern does not 
follow the pattern of the actual values well. In addition, the overestimated and 
underestimated predictions occur in the period when the volatility is high. Fig 5B presents 
the visualization of the GARCH predictions after being transformed into the stock closing 
prices. The stock closing price predictions of the GARCH model do not fit well. However, 
the differences between the actual stock closing price and the prediction values are small 
enough, and the prediction pattern still follows the actual pattern.  
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Fig 6. Stock closing price predictions of the GARCH model 

The predictions of stock closing price seven days ahead using the GARCH model are 
shown in Fig 6, the first day of stock closing price prediction on 3rd January 2022 decrease 
from that of the last study period with the prediction value of Rp 114.775 and the 
confidence interval of [113.360, 116.191]. This prediction is overestimated than the actual 
value. On the second day, the actual value of the stock closing price increased. However, 
the stock closing price predictions decrease from the first day until the seventh day, 11st 

January 2022, with the prediction value of Rp 108.953 and the confidence interval of 
[107.537, 110.368]. 

 
A 

 
B 

Fig 7. Fitted values of LSTM model for (A) return; (B) stock closing price 
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For the LSTM model, the network structure is predefined as the LSTM layer–Dropout 
Layer–Dense Layer. Some hyperparameters are tuned to get the best LSTM model, which 
gives the lowest MAPE value. The best hyperparameter combination is the number of 
neurons of 200, the learning rate of 200, and epochs of 100. The goodness of fit between 
the actual values and the LSTM model prediction values of returns and stock closing price 
is presented in Fig 7A. The plots show that the LSTM model can capture the pattern of the 
volatility data well. For returns, the prediction values of the LSTM model fit well with the 
actual values. However, when the volatility is high, the predictions are underestimated and 
overestimated. The return predictions are then transformed into the stock closing price 
prediction. Based on Fig 7B, the stock closing price predictions tend to be underestimated 
from the middle until the end of the study period. However, the predictions fit well at the 
beginning of the study period. Overall, the prediction pattern follows the actual data 
pattern. 

  
Fig 8. Stock closing price predictions of the LSTM model 

The visualization of stock closing price predictions for seven days ahead using the 
LSTM model is presented in Fig 8. Based on the figure, the stock closing price predictions 
decrease from the first day until the seventh day. The stock closing price prediction on 3rd 
January 2022 is Rp 113.784 with a confidence interval of [112.585, 114.983]. This 
prediction is overestimated than the actual value. Meanwhile, the stock closing price 
prediction on 11th January 2022 is Rp 108.924 with a confidence interval of [107.725, 
110.123]. Based on the figure, the predictions of the LSTM model tend to be 
underestimated than the actual values. 

 
A 
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B 

Fig 9. Fitted values of Hybrid GARCH-LSTM model: (A) return; (B) stock closing price 

In the hybrid model, the residuals of the GARCH model are modelled using the LSTM 
model. The network structure for the LSTM model in the hybrid model is similar to that of 
the LSTM model, LSTM layer–Dropout Layer–Dense Layer. The best hyperparameter 
combination for the LSTM network in the hybrid model is the best number of neurons, 
learning rate, and epochs of the hybrid model of 40, 0.001, and 100, respectively. The 
hybrid GARCH–LSTM model validation is presented in Fig 9. The return predictions (Fig 
9A) fit very well with the actual return values. However, few underestimated and 
overestimated predictions on the low volatility period exist. Fig 9B shows the predictions 
after being transformed into the stock closing prices. The stock closing price predictions 
of the hybrid model seem to be a little overestimated in all study periods. Still, the 
differences between the actual and the prediction values are very small. Generally, the 
prediction pattern follows the actual value pattern and fits very well. 

The hybrid GARCH–LSTM model is then used to make predictions of the stock closing 
price seven days ahead. Based on Fig 10, the first stock closing price prediction on 3rd 
January 2022 decrease from that of the last study period with the prediction value of Rp 
112.735 and the confidence interval of [111.517, 113.953]. This prediction is close to the 
actual value of Rp 112. The stock closing price prediction increases on the second day, 
04th January 2022. The actual value of the stock closing price also increases on the second 
day. The predictions decrease from the third day until the seventh day, 11st January 2022, 
with the prediction value of Rp 108.692 and the confidence interval of [107.474, 109.910]. 

 
Fig 10. Stock closing price predictions of the Hybrid GARCH-LSTM model 
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Generally, all three models; GARCH, LSTM, and hybrid GARCH-LSTM; are able to 
capture the volatility pattern. Table 3 presents statistical values of model’s performance 
evaluation in the form of MSE, RMSE, MAPE, and MAE. The GARCH and LSTM models 
have quite similar performance indicated by error values that are not significantly different. 
Meanwhile, the proposed model, the hybrid GARCH – LSTM, provides the lowest error 
values and thus is in line with the simulation study. In other words, the hybrid GARCH – 
LSTM model can recognize the volatility patterns better than the GARCH or LSTM 
models individually.  

Table 3. Goodness of fit metrics 

 MSE RMSE MAPE MAE 

GARCH 21.4082 4.6269 3.2093 3.5208 

LSTM 20.6886 4.5485 3.1641 3.5195 

Hybrid GARCH-LSTM 1.0652 1.0321 0.9378 1.0102 

5      Conclusion  

This study compares statistical, machine learning, and a hybrid of statistical and machine 

learning methods for analyzing the dynamic pattern of volatility data. The simulation study 

is carried out to learn how the proposed method work compared to the baseline models, 

GARCH and LSTM. The results show that the LSTM model is better than the GARCH 

model, and furthermore the Hybrid GARCH–LSTM model is the best model (i.e., it 

produces lower MAPE values). As the application of those models, the empirical study is 

applied to the daily stock closing price of BRMS. Generally, the GARCH model can 

capture the volatility pattern of the BRMS stock closing prices, but it has the overestimated 

and underestimated predictions in all study periods. Moreover, the LSTM model is able to 

recognize the volatility of the BRMS stock closing price. Furthermore, the hybrid 

GARCH–LSTM model performs very well in grasping the volatility pattern of the BRMS 

daily stock closing price. Both simulation and empirical studies give similar conclusion 

that the proposed model, Hybrid GARCH – LSTM, outperforms other two models. 

For the future studies, this study can be extended in several ways. First, this study 

examines the dynamic pattern of volatility data with the normally distributed residuals or 

assumed to be normal. In practice, the data may have non-normal residuals. A study of 

non-normal residuals can be developed for the following research. Second, this study 

simulates the volatility data from the GARCH model; innovation can be done for the kind 

of data by simulating volatility data using models other than the symmetric GARCH model. 

Third, due to the manual hyperparameter tuning on the LSTM modelling process, the 

results of this study may not be optimum. The automatic hyperparameter tuning is needed. 

Last, the performance of the proposed model needs to be evaluated by comparing this 

model with other models, such as the hybrid of ARIMA-GARCH model. 
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