Int. J. Open Problems Compt. Math., Vol. 9, No. 4, December, 2016
ISSN 1998-6262; Copyright (©ICSRS Publication, 2016
WWW. 4-CSTS. 0Tq

On some Cebysev type inequalities
for functions whose second
derivatives are co-ordinated logarithmically convex
B. Meftah and R. Haouam

Laboratoire des télécommunications, Faculté des Sciences et de la Technologie,
University of 8 May 1945 Guelma,
P.O. Box 401, 24000 Guelma, Algeria.
e-mail:badrimeftah@yahoo.fr

Received 1 April 2016; Accepted 28 October 2016

Abstract
The aim of this paper is to establish some new Cebysev type
inequalities involving functions of two independante variable
whose second derivatives are co-ordinated logarithmically con-
ver.
Keywords: Cebysev inequality, co-ordinated log-convez, integral inequal-

1ty.
2010 Mathematics Subject Classification: 26D15, 26D20.

1 Introduction

In 1882, Cebysev [4] gave the following inequality

T(£,0)] < 75 (= 0 1 e ') (1)

for f, g : [a,b] — R are absolutely continuous functions, whose first deriva-
tives f’ and ¢g’are bounded, where

b
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and ||.||, denotes the norm in L [a,b] defined as || ||, = esssup|f (¢)].
tela,b

During the past few years, many researchers have given Conside[zra]ble atten-
tion to the inequality (1.1). Various generalizations, extensions and variants
of this inequality have appeared in the literature, we can mention the works
[1,3,6,8,9,10,11,12, 14], and references cited therein.

Recently, Guezane-Lakoud and Aissaoui [6] gave the analogue of the func-
tional (1.2) for functions of two variables and established the following Cebysev
type inequalities for functions whose mixed derivatives are bounded
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and

1
(.9 < o / / (19, ) 1l + 17 )] o)

X [((x—a) (b—2)") (y — )" + (d—)")]] dydz, (4)

where

T(f.g9) = %77}‘ (7,9) g (

g(z,y) /f(x,v)dv dydx

77 f (z,y) dydx 779 (t,0) dvdt | . (5)

Sarikaya et al. [16] have discussed the case where the mixed derivatives are
convex on the co-ordinates. Meftah et al. [10, 9, 8] have treated the cases where
the mixed derivatives are on co-ordinated (hq, hs)- convex, (s, r)- convex in the
first sense and (s1, my)-(s2, m2)-convex.

Motivated by the above results, in this paper, we establish some new
Cebysev type inequalities whose mixed derivatives are logarithmically-convex
functions on the co-ordinates.

g (2.y) / £ () dt | dydz

a

2 Preliminaries

In this section, we recall some definitions and lemmas.
Throughout this paper we denote by A the bidimensional interval in [0, 00)?,
A =:1]a,b] X [¢,d] witha <band ¢ <d, k= (b—a)(d—c) and a,\aa by fia-
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Definition 2.1 ([7]) A function f : A — R is said to be convex on the co-
ordinates on A, if the following inequality:

fx+ (1 =t)u, y+ (1 —=Nv) < tAf(z,y)+t(1—=N) f(x,v)
A=A (wy)+ (1 =1) (1= A) fu,v)
(6)

holds for all t,s € [0,1] and (z,y), (z,v), (u,y), (u,v) € A.

Clearly, every convex mapping f : A — R is convex on the co-ordinates.
Furthermore, there exists co-ordinated convex function which is not convex see

[5]-

Definition 2.2 ([2]) A positive function f : A — R is called log-convex on
the co-ordinates on A, if the following inequality

flz+ (1 —=t)u, y+(1—XN)v)
< [y O @) fM ) FE (0, 0) (7)
holds for all t, X € [0,1] and (z,y), (z,v), (u,y), (u,v) € A.
Lemma 2.3 (Lemma 1. [13]) Let f : A — R be a partially differentiable

mapping on A in R%. If fra € L1 (A), then for any
(z,y) € A, we have the equality:

d

fay) — ﬁ]f(t,y)dt + d—i(jf(m)ds - %7/f(t, 5)dsdt
%// =1y =)
X ]me A+ (1 = Nt,ay + (1 — a)s) dad) | dsdt. (8)

3 Main result

Theorem 3.1 Let f,g : A — R be partially differentiable functions, such
that their second derivatives fro and gro are integrable on A. If |fro| and
|gra| are co-ordinated logarithmically convez, then

49
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where T(f,g) is define as in (1.5), k = (b —a) (d — ¢),
M= esssup  [|faa (@, 9)| + | fra (2, 8)] + [fra (E,9)| + | fra (& 8)]], and

z,t€a,bl,y,s€(c,d]

N = esssup [|gra (z,¥)] + |gra (2, 9)] + |gra (£, 9)] + |92 (t, 5)]] -
z,t€[a,bl,y,s€[c,d]

Proof 3.2 From Lemma 1, we have

b d b d
flo) = = St — o [wsis+ o [ [ ressa

= %77 (x —1t)(y—s) ]1/an Az + (1 = Nt,ay + (1 — a)s) dad | dsdt,

(10)

and

b d b d
1 1 1
9(z,y) — m/ﬂt?ﬂdt - E/g(m,s)ds + E//g(t’ s)dsdt
. b d 11
E// (x—1t)(y—s) //gm A+ (1 = Nt,ay + (1 — a)s) dad) | dsdt.
a c 0 0

(11)

Multipliying (3.2) by (3.3), then integrating the resultant equality with re-
spect to x and y over A, and multiplying the result by %, using properties of
modulus, and Fubini’s Theoerm, we get

L_m// //m—ﬂw—m

//Ifm (Ar + (1 = Nt ay + (1 — a)v)| dad) | dvdt
00

b d
x //u—ﬂw—m

1 1
/ / .. Az + (1= Nt ay + (1 — a)o)|dad | dvdt | | dyde(12)
00
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Since | f,.| and |g,,| are co-ordinated log-convex, (3.4) gives

T(f9)| < %}7 ]7m—ﬂw—ﬂtf7m4awﬁugwﬁﬂl”
2 L 0%

X fa )TN fL ()Y dosz} dsdt}

b d b d 11
a\ a(l-X
x// //m—ﬂw—ﬂ [ 190 g, (w9
0 0

X g, (6 )" gyt 8)[ OOV dadA} dsdt} dydz

T[]

Cc

IN

11
> //Ma/\+a1 A)+(1—a)X+(1—a)(1— )\dad/\ dsdt
00

x]] /m—ﬂw—ﬂ

a
1

1
% //Na/\+a1 A+ (1—a)A+(1—a)(1— /\dOéd)\ dsdt dydl'
0 0

. bd [bd 2
= EMN// //|x—t||y—s|dsdt dydz
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where we have use the fact that
2

b d b d 49
—t| |y — vl dodt | dyde = ——K°.
// //'x [y —vldv YT = 3600

The proof is thus achieved.

Theorem 3.3 Under the assumptions of Theorem 1, we have

(s rzSH//zwmwy—HWﬂwa

X [(:c —a) + (b —2)] [(y =) + (d—y)°] dydz, (14)
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where T(f,g) M, N, and k are defined as in Theorem 1.

Proof 3.4 Clearly (3.2) and (3.3) are valid. Let G(x,y) = 5-9(z,y) and
F(z,y) = 5:f(x,y).

Multiplying (3.2) by G(x,y) and (3.3) by F(x,y), summing the resultant
equalities, then integrating the result with respect to x and y over A, we have

s = o] pon [ Jo-vs

//f A+ (1= Nt,ay + (1 — «)s) dadX | dsdt

) //w—t —s)

//gm (Ax + (1 = Nt,ay + (1 — «)s) dad) | dsdt | dydzx.

(15)

Using the modulus and the log-convezity of |f,.| and |g,,|, we get

T(f.9)] < %// 92, )] 77|x—t| y—s

11

a\ a(l-X 1—a)A

<[ 1) s U )
0

0
+ | fo(t, s)| 0 dozd)\} dsdt}

b d
F1f (@)l //|a:—t| y—s

11
al a(l-X 1—a)A
[ [ 190l a0 g, ()

0 0
+ g, (£, 5)[ (70O dozd/\} dsdt] dyds (16)
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< _ _
< 2k// M |g(z, ) //| Hly — s| dsdt

+ N |f(x,y) //|$—t|\y—s\dsdt dydx

b d

= Zkg// (M g(z, y)| + N [f(z, y)]) //\x—tuy—sydsdt dxdy

_ 8k// (M [g(z, )| + N |f(z,9)])

% [(x —a)’+ (0 —2)’] [(y — )* + (d — y)°] dydx, (17)

where we have use the fact that

b d
//|x—tHy—8|dsdt

1

= e+ - [y + (-],

This completes the proof of Theorem 2.

4 Tow open problems

1. Can these inequalities be established for higher order of derivatives?
2. Can the analog of (1.5), (2.3), (3.1) and (3.6) be established for the preinvex
functions as well as the harmonic functions?
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