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Abstract 

     The asymmetric traveling salesman problem (ATSP) is a 
combinatorial problem of great importance where the cost matrix is 
not symmetric, which complicates its resolution. The genetic 
algorithms (GAs) are a meta-heuristics methods used to solve 
transportation problems that have proved their effectiveness to 
obtain good results. However, improvements can be made by 
adapting the crossover operator as a primordial operator in GAs. In 
this work, we propose an adapted XIM crossover operator for the 
ATSP in order to improve the optimal solution obtained by GAs. 
Numerical simulations are performed and discussed for different 
series of standard instances showing the improvement of the optimal 
solution by the proposed genetic operator. 

 

     Keywords: Combinatorial problem; ATSP; Genetic algorithm; crossover 
operator 

1      Introduction 

The asymmetric traveling salesman problem (ATSP) is a combinatorial problem 

of great importance which can model several real problems, especially in 

distribution, and in vehicle routing problems. This importance explains the large 

number of works which studies the different aspects of this problem and several 
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survey that have been written about it in the past few decades which present 

different formulations for the ATSP such as [1], and present the different exact, 

heuristic and metaheuristic procedures for the ATSP [2, 3, 4, 5]. The ATSP is an 

extension of the traveling salesman problem (TSP), and it can be stated as 

follows: A traveler must visit a finite number of cities passing by each of them 

once and return to the starting city. The only difference between these two 

problems is that in the ATSP, the distance from a city “A” to the city “B” is not 

equal, as in the TSP, to that between the city “B” to the city “A” [6]. 

The ATSP problem is classified as an NP-complete problem such as TSP [7]. 

There are some intuitive methods to find the approximate solutions [8, 9], but all 

of these methods have exponential complexity, they take too much computing 

time or require too much memory. Then, meta-heuristics methods should be 

exploited.  

The importance of ATSP is that many of the real-world problem such as single 

vehicle routing problem and different hard multivehicle routing problems, that 

cannot be modeled as an ATSP, can be solved by an polynomial transformation 

into an ATSP through an asymmetric generalized traveling salesman problem 

(AGTSP) by the same algorithms developed for the ATSP without any 

modification [10, 11, 12]. 

An approximation algorithm, like the Genetic Algorithms, Ant Colony [13] and 

Tabu Search [7, 14], is a way of dealing with NP-completeness for optimization 

problem. This technique does not guarantee the best solution but it is to come as 

close as possible to the optimum value in a reasonable amount of time which is at 

most polynomial time. 

The genetic algorithm is a one of the family of evolutionary algorithms [15]. The 

population of a genetic algorithm (GA) evolves by using genetic operators 

inspired by the evolutionary in biology, "The survival is the individual most 

suitable to the environment". Darwin discovered that species evolution is based on 

two components: the selection and reproduction. The selection provides a 

reproduction of the strongest and more robust individuals, while the reproduction 

is a phase in which the evolution run. These algorithms were modeled on the 

natural evolution of species. We add to this evolution the concepts of observed 

properties of genetics (Selection, Crossover, Mutation, etc), from which the name 

Genetic Algorithm. They attracted the interest of many researchers, starting with 

Holland [16], who developed the basic principles of genetic algorithm, and 

Goldberg [17] that has used these principles to solve specific optimization 

problems. Other researchers have followed this path [18, 19].  

In a genetic algorithm, a population of individuals (possible solution) is randomly 

selected. These individuals are subject to several operations, called genetic 

operators (selection, crossover, mutation, insertion, ..) to produce a new 

population containing in principle better individual. This population evolves more 

and more until a stopping criterion is satisfied and declaring obtaining optimal 
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best solution. Thus; the performance of a genetic algorithm depends on the choice 

of operators who will intervene in the production of the new populations [20, 21]. 

Among the difficulties in GAs is the parameter setting and the choice of the 

crossover operator adapted to the problem which is the most influent operator in 

the GAs. 

In this work, we consider the resolution of the ATSP by genetic Algorithms where 

we will present each individual by the most adapted method of data 

representation, the path representation method, which is the most natural 

representation of a tour (a tour is encoded by an array of integers representing the 

successor and predecessor of each city). We attempt to develop a new crossover 

operator in order to find the best meta-heuristic solution. 

This paper is organized as follows. The mathematical formulation of the ATSP is 

presented in Section 2. In order to enhance the optimization performance, the 

standard GA and the developed adapting crossover operator to improve the 

evolution of the GA for the ATSP are established in Section 3. In Section 4, 

numerical simulations were performed through many ATSPs standard instances. 

The comparison with previous work shows that the proposed XIM crossover 

operator for ATSP improves the performance of a genetic algorithm and provides 

better solutions. 

2      Mathematical formulation for ATSP 

The Traveling Salesman Problem (TSP) is one of the most intensively studied 

problems in computational mathematics. The Asymmetric Traveling Salesman 

Problem (ATSP) as extension of (TSP) has the same importance which is an NP-

hard problem in combinatorial optimization studied in operations research and 

theoretical computer science. 

In a practical form, the problem is that a traveling salesman must visit every 

city in his territory exactly once and then return to the starting point. Given the 

cost of travel between all cities that is not symmetric, how should he plan his 

itinerary for minimum total cost of the entire tour? 

The search space for the ATSP is a set of permutations of n cities and the optimal 

solution is a permutation which yields the minimum cost of the tour.  

In other words, an ATSP of size n is defined by: 

We consider a set of points  𝑣 = {𝑣1, 𝑣2, … . , 𝑣𝑛} which  𝑣𝑖  is a city. 

The mathematical formulation of the ATSP is given by:  

 
                       𝑀𝑖𝑛 {𝑓 𝑇 , 𝑇 = (𝑇 1 , 𝑇 2 , … . . , 𝑇 𝑛 , 𝑇[1])}                          (1) 

where; 

f  is the evaluation function calculates the adaptation of each solution of the 

problem given by the following formula: 
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                                     𝑓 =  𝑑 𝑇(𝑖), 𝑇(𝑖 + 1)  +  𝑑 𝑇(𝑛), 𝑇(1)                                                 (2)

𝑖=𝑛−1

𝑖=1

 

 

with d define a non symmetric distance matrix and d(i, j) the distance between the 

city 𝑣𝑖  and 𝑣𝑗  such that:  

 

                                                                       𝑑 𝑖, 𝑗  ≠ 𝑑(𝑗, 𝑖)                                                              (3) 

 

𝑇[𝑖] is a permutation on the set {1, 2, . . . ,n}. 

T = (T[1], T[2], . . . . . . , T[n], T[1]) is the scheduling form of a solution of the 

ATSP. 

n is the number of cities. 

 

3      Adapted genetic Algorithm for ATSP 

3.1      Principle of genetic algorithms 

The genetic algorithm is a one of the family of evolutionary algorithms. The 

population of a genetic algorithm (GA) evolves by using genetic operators 

inspired by the evolutionary in biology. These algorithms were modeled on the 

natural evolution of species. We add to this evolution concepts the observed 

properties of genetics (Selection, Crossover, Mutation, etc), from which the name 

Genetic Algorithm. They attracted the interest of many researchers, starting with 

Holland [16], who developed the basic principles of genetic algorithm, and 

Goldberg [17] who has used these principles to solve specific optimization 

problems.  

Irrespective of the problems treated, genetic algorithms are based on six principles 

[20]: 

 Each treated problem has a specific way to encode the individuals of the 

genetic population. A chromosome (a particular solution) has different ways 

of being coded: numeric, symbolic, matrix or alphanumeric; 

 Creation of an initial population formed by a finite number of solutions; 

 Definition of an evaluation function (fitness) to evaluate a solution; 

 Selection mechanism to generate new solutions, used to identify individuals 

in a population, there are several methods in the literature, citing the method 

of selection by rank, roulette, by tournament, random selection, etc.; 

 Reproduce the new individuals by using Genetic operators: 

1. Crossover operator: it is a genetic operator that combines two 

chromosomes (parents) to produce a new chromosome (children) with 

crossover probability Pc ; 
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2. Mutation operator: it avoids establishing a uniform population unable to 

evolve. This operator used to modify the genes of a chromosome selected 

with a mutation probability Pm; 

 Insertion mechanism: to decide who should stay and who should disappear. 

 Stopping test: to make sure about the optimality of the solution obtained by 

the genetic algorithm. 

3.2      Adapted crossover operator for ATSP 

In a genetic algorithm, selected individuals are subjected to a series of 

operations through "genetic operators". The crossover operator is the one that 

most influences in the reproduction of new individuals with the hope that it 

creates a better offspring [20]. 

There are several crossover operators [21, 22], citing those using a crossover 

mask (Fig 1.), which is a vector generated randomly by identical length parents 

channels and composed of 0 and 1. When the bit mask is 0, the child inherits the 

bit of the first parent; otherwise it inherits that of the second parent. The second 

child is the complement of the first. This crossing can be regarded as a 

generalization of multi-function without prior knowledge of the crossing point. 

 

Fig. 1 Representation of a crossover mask. 

In this paper, we present Crossover Inverse Mask operator (XIM) as a new 

operator which is based on basic principle of reversing the crossover mask. Given 

two parent chromosomes, two random crossover points are selected partitioning 

them into a left, middle and right portion. The ordered two-point crossover 

behaves in the following way: child1 inherits its left and right section from 

parent1, and its middle section is determined and finally the holes are created at 

the retranscription of the genotype, if xji ∈ {xk,a, ……xk,b} then 𝑥𝑗 ,𝑖  is a hole. We 

explain the mechanism of the Crossover Inverse Mask (XIM) using in the 

example (Fig. 2). The algorithm (Fig. 3) shows the crossover method XIM. 
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Fig. 2 Example of XIM operator 

 

 

Regarding other genetic operators used in the implementation of this 

approach, we have chosen as a selection method the most common type – 

Roulette [21], which the individuals are given a probability 𝑃𝑖  of being selected (4) 

that is directly proportionate to their fitness.  

                            
𝟏

𝐍 − 𝟏
 𝟏 −

𝐟𝐢

 𝐟𝐣𝐣∈𝐏𝐨𝐩𝐮𝐥𝐚𝐭𝐢𝐨𝐧 

                                                                    (𝟒) 

 

To enhance the genetic reproduction, we integrated the operator Twors 

Mutation [20] as mutation operator with the mutation probability Pm between 

0.0045 and 0.117 it depends on the ATSP instances deployed. 

We used the method of inserting elitism that consists in copy the best 

chromosome from the old to the new population. This is supplemented by the 

solutions resulting from operations of crossover and mutation, in ensuring that the 

population size remains fixed from one generation to another [23]. 
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Fig. 3 Algorithm of Crossover operator XIM 

4      Numerical result 

In this study, FULL-MATRIX [2] br17, ft53, ft70, ftv33, ftb35, ftb38, ftv44, 

ftv47, ftv55, ftv64, ftv70, ftv170, kro124p, p43, rbg323, rbg358, rbg433, and 

ry48p are used from Standard asymmetric TSP libraries [24] to show the 

effectiveness of the XIM method proposed in this paper with a crossover 

probability Pc varies according to the used crossover mask. All programs in the 

C++ language were developed for the tests of proposed operator and to compare it 

with the GA presented in the work [25]. The performance tests were performed 

with a laptop with Intel Corei31.7 GHz, 4GB RAM. There are 33 cities in the 

FTV33, 44 cities in the FTV44, and 64 cities in the FTV64 library. Performance 

tests were executed for GAM and XIM. 

Depending on the change in the global fitness values of the XIM and GAM in 

each iteration are presented in Figure 4. Also, depending on the iteration, the 

Input: Parents 𝑥1 = [𝑥1,1, 𝑥1,2, …… . , 𝑥1,𝑛 ] and 𝑥1 = [𝑥2,1 , 𝑥2,2 , …… . , 𝑥2,𝑛 ]  

Output: Children 𝑦1 = [𝑦1,1 , 𝑦1,2 , …… . , 𝑦1,𝑛 ] and 𝑦2 = [𝑦2,1 , 𝑦2,2, …… . , 𝑦2,𝑛 ] 

Initialize 

 Initialize 𝑦1 and 𝑦2 being a empty genotypes; 

 Choose two crossover points a and b such that 1 ≤ a ≤ b ≤ n; 

j1 = j2 = k = b+1; 

 Generating a crossover mask defined by the two points a and b 

Repeat  

j ← Index where we find x2,i, in X1; 

y1,j = x1,j ; 

 y2,j = x2,j ; 

 i = j; 

Until   x2,i y1 

reverse crossover mask 

for each i between a and n do 

if x1,i {x2,a, . . . ,x2,b} then y1 = [y1 x1,i] ; 

if x2,i {x1,a, . . . ,x1,b} then y2 = [y2 x2,i] ; 

endfor 

i = 1; 

Repeat 

if  x1,i {x2,a, . . . ,x2,b}  then  y1,j1 = x1,k ;   j1++; 

if  x2,i {x1,a, . . . ,x1,b}  then  y2,j1 = x2,k ;   j2++; 

k=k+1; 

Until i ≤ n 

For each gene not yet initialized do 

 y1,i = x2,i; 

 y2,i = x1,i; 

Endfor 

y1 = [y1,1 ……y1,a−1 x2,a  ……x2,b y1,a  ……y1,n−a]; 

 y2 = [y2,1 ……y2,a−1 x1,a  ……x1,b y2,a  ……y2,n−a]; 
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global minimum change for FTV33 is shown graphically in Fig. 4(a), FTV44 in 

Fig. 4(b) and FTV64 are shown in Fig. 4(c). The test results show that the values 

obtained from the XIM operator mostly converge to the optimal solution.  

Moreover, it can be seen that the proposed operator XIM always reaches better 

global minimum rates in general for all ATSP series (Fig. 5, 6 and 7). 

 

 

 
(a) 

 
(b) 

 

 

 

 
(c) 

Fig. 4  Global fitness value in XIM and GAM for(a) ATSP-FTV 33 ; 

(b) ATSP-FTV 44 ; (c) ATSP-FTV 64. 
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Table 1: Convergence of optimal solution for ATSP-FTV series 

 POP 10 POP 20 POP 30 
 Init Best  Init Best  Init Best 

FTV33 3981 2192 3868 2163 3795 2021 

FTV35 4209 2875 4274 2832 4698 2559 

FTV38 4400 2898 4794 2812 4895 2786 

FTV44 5647 3327 5517 3313 5555 3320 

FTV47 6281 4105 6237 3835 6176 3305 

FTV55 6956 4592 6637 4487 6745 3742 

FTV64 8226 5244 8171 4899 8052 4849 

FTV70 8980 6138 8932 5769 9116 5604 

FTV170 24393 18906 24772 18334 25078 16982 

 

 

Table 2:  Finding the optimum solution for other ATSP series  

 POP 10 POP 20 POP 30 
 Init Best Init Best Init Best 

BR17 194 41 166 41 152 39 

FT53 25386 16860 23822 16516 24246 16032 

FT70 69850 58730 68747 57049 67176 56671 

KRO124P 175357 125073 179656 118582 176183 101284 

P43 17101 5887 17559 5758 17361 5743 

RY48P 45071 26766 47553 25885 51734 22268 

 

Table 3: Numerical results for ATSP-RBG series 

 POP 10 POP 20 POP 30 

 Init Best Init Best Init Best 

RBG323 6073 5557 5978 5555 5787 5465 

RBG358 6740 6262 6651 6223 6655 6135 

RBG443 7886 7553 8081 7485 8073 7388 
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Fig. 5  Curve converging towards the optimum for ATSP instances - FTV:                  

(a) ATSP-FTV33; (b) ATSP-FTV 47; (c) ATSP-FTV55; (d) ATSP-FTV 64;                

(e) ATSP-FTV 70; (f) ATSP-FTV 170. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 



 

 

 

 

 

 

 

C. TAJANI and al.                                                                                                 52 

Fig. 6  Converging towards the optimum for others ATSP instances:                     

(a) ATSP-BR 17; (b) ATSP-FT 53; (c) ATSP-FT 70; (d) ATSP-KRO 124P;                 

(e) ATSP-P43; (f) ATSP-RY48P.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(a) 

 
(b) 

 
(c) 

Fig. 7 Curve converging towards the optimum for ATSP instances – RGB:          

(a) ATSP-RGB 323 ; (b) ATSP-RGB358 ; (c) ATSP-RGB443. 

5      Conclusion 

In this paper, we focused on the possibility to perform a genetic algorithm by 

adapting the operators involved in this type of method. Thus, an appropriate 

crossover operator (XIM) for combinatorial problem ATSP is proposed having 

presented the mathematical formulation of the latter. Numerical results are 

developed for 18 standard instances taken from Standard asymmetric TSP 

libraries, showing the effectiveness of the new operator to obtain a better solution. 

6      Open Problems 

The purpose of transportation problems is to get the overall optimum with less 

complexity. Thus, it is interesting to be able to hybridize meta-heuristics to benefit 

from their abilities to improve the optimal solution. Drawing inspiration from the 
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natural phenomenon to introduce new operators allowing diversity and dynamism 

of the population during the generations also remains a very interesting way to 

decrease the complexity of the algorithms. 
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