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Abstract 

     The aim of this paper is to make change to the application of 

the modified Adomian decomposition method suggested in [11] 

and we extend to obtaining solutions of nonlinear partial 

differential equations with time-fractional derivative. The 

fractional derivative is described in the Caputo sense. Some 

illustrative examples are given, revealing the effectiveness and 

convenience of the method.   
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1      Introduction 

     Differential equations are two types: linear differential equations and non-

linear differential equations. Non-linear differential equations are the most 

complex in the solution compared with linear differential equations due to the 

presence of non-linear part in them. So we find that a lot of researchers are 

working to develop new methods to solve this kind of equations. These efforts 

resulted in the consolidation of this research field in many methods, among them 

we find the Adomian decomposition method. This method was developed from 

the 1970s to the 1990s by George Adomian ([1]-[5]). Then, a new option emerged 

recently, includes the composition of Laplace transform, sumudu transform, 

Natural Transform or Elzaki transform with this method for solving linear and 

nonlinear differential equations. Among which are the Adomian decomposition 

method coupled with Laplace transform [6],[7], Adomian decomposition sumudu 

transform method [8], natural decomposition method [9] and Elzaki transform 

decomposition algorithm [10],[12]. 
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     The motivation of this paper is to extend the application of Elzaki transform 

decomposition method suggested in [11] to solve nonlinear partial differential 

equations with time-fractional derivative. The fractional derivative is described in 

the Caputo sense.  

    The present paper has been organized as follows: In Section 2 some basic 

definitions of ELzaki transform method are mentioned. In section 3 we will 

propose an analysis of the modified method. In section 4 nonlinear time-fractional 

partial differential equations is studied with the fractional Elzaki transform 

decomposition method (FETDM). Finally, the conclusion follows.           

2      Basic definitions 

     In this section, we give some basic definitions and properties of fractional 

calculus, Elzaki transform and Elzaki transform of fractional derivatives which are 

used further in this paper. 

2.1    Fractional calculus.   

    In There are several definitions of a fractional derivative of order α ≥ 0 (see 

[13]-[15]). The most commonly used definitions are the Riemann--Liouville and 

Caputo. We give some basic definitions and properties of the fractional calculus 

theory which are used further in this paper. 

Definition 2.1 Let Ω=[a,b] (-∞<a<b<+∞) be a finite interval on the real axis ℝ. 

The Riemann-Liouville fractional integrals I
α
ƒ of order α ϵ ℝ (α>0) is defined by   
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    Here )(  is the well-known Gamma function.  

Theorem 2.2 Let (α≥0) and let n=[α]+1. If ƒ(t) ϵ AC
n
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where D=d/dx  and n=[α]+1.  

    Proof (see [14]). 

 Remark 2.1 In this paper, we consider the time-fractional derivative in the 

Caputo's sense. When α ϵ ℝ⁺, the time-fractional derivative is defined as : 
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where m ϵ ℕ*
.                                                                                                      

 

2.2   Definitions of Elzaki transform  

     A new integral transform called Elzaki transform ([16]-[18]) defined for 

functions of exponential order, is proclaimed. They consider functions in the set A  

defined by : 
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Definition 2.3  If ƒ(t) is function defined for all t≥0, its Elzaki transform is the 

integral of ƒ(t) times –t/s from t=0 to ∞. It is a function of s and is defined by 

E[ƒ]  
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Theorem 2.4 Elzaki transform amplifies the coefficients of the power series 

function : 
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on the new integral transform "Elzaki transform", given by : 
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Theorem 2.5 Let ƒ(t) be in A and Let Tn(v) denote Elzaki transform of nth 

derivative ƒ
(n)

(t) of ƒ(t), then for n≥1, 
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    To obtain Elzaki transform of partial derivative we use integration by parts, and 

then we have : 
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    Properties of Elzaki transform can be found in Refs.([16],(17]), we mention 

only the following : 
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2.3   Elzaki transform of fractional derivatives    

     To give the formula of Elzaki transform of Caputo fractional derivative, we use 

the Laplace transform formula for the Caputo fractional derivative [13]. 
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where (m-1<α≤m) m ϵ ℕ∗. 

Theorem 2.6 [19] Let A defined as above. With Laplace transform F(s), then the 

Elzaki transform T(v) of ƒ(t) is given by : 
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Theorem 2.7 Suppose T(v) is the Elzaki transform of the function ƒ(t) then : 
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     Proof (see [20]).          
 

3      Fractional Elzaki decomposition method (FEDM) 

     In this section, we make a change to the method proposed in [11] and we 
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extend to solving nonlinear partial differential equations with time-fractional 

derivative. To illustrate the basic idea of this method, we consider a general 

nonlinear nonhomogeneous fractional partial differential equation : 

(14) ),,(),(),(),( txgtxNwtxRwtxwDt
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where m-1<α≤m, m=1,2,…, and the initial conditions :  
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where ),( txwDt

c 
 is the Caputo fractional derivative of the function w(x,t), R is 

the linear differential operator, N represents the general nonlinear differential 

operator, and g(x,t) is the source term. 

    Applying Elzaki transform (denoted in this paper by E ) on both sides of Eq. 

(14), we get : 
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    Using the property of Elzaki transform, we obtain :
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where m-1<α≤m, m=1,2,….

     Operating with the inverse Elzaki transform on both sides of Eq. (17), we get :
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where G(x,t), represents the term arising from the source term and the prescribed 

initial conditions. The second step in Elzaki decomposition method, is that we 

represent solution as an infinite series given below:  
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and the nonlinear term can be decomposed as:
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where An are He's polynomials [21] of w0, w1, w2, …,wn, which can be calculated 

by the following formula : 
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    Substituting (19) and (20) in (18), we have: 
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    On comparing both sides of Eq. (20), we get: 
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    In general, the recursive relation is given as :    
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    Finally, we approximate the analytical solution by truncated series: 
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    The above series solutions generally converge very rapidly [22].

 4     Application of the FETDM  

     In this section, we apply the fractional Elzaki transform decomposition method 

(FETDM) for the Caputo fractional derivative, to solve nonlinear partial 

differential equation with time-fractional derivative. 

Example  4.1 Consider the following time-fractional partial differential equation : 
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xxxt

c wwwwD
 

subject to the initial condition 
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    Applying Elzaki transform on both sides of Eq. (26). Thus, we get: 
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    Using the differentiation property of Elzaki transform, we have :
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    By applying the aforesaid decomposition method, we find : 
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    The first few components of An(w) polynomials [21] for example, is given by :
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    On comparing both sides of Eq. (30), we get:
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    Using He's polynomials (31) and the iteration formulas (32), we obtain:
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    The approximate solution of Eq. (26), is given by:
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    The approximate solution of Eq. (26) in the special case α=1, is given by
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    That gives :                                                                                              
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equation as presented in [23].   

                                                                                                                                                                                                                                                                                                      

                                                                  

                             

Fig.  1  : (a) Exact solution, (b) the 

approximate solution in the case α=1, 

(c) The exact solution and approximate 

solutions of Eq. (23) for different 

values of α when x=1.  

Example  4.2  Consider the nonlinear time-fractional partial differential equation 

of order α (1<α≤2)  
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    If α=2 and with the initial conditions (38), the exact solution of the following 

equation :
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    By using (22), we can obtain the iteration formula :
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    The first few components of )(wAn polynomials [21] for example, is given by: 
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    In a similar way as above, we have: 
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    The approximate solution in a series form, is given by :
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    As α=2, we obtain : 
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which is an exact solution of the nonlinear partial differential equation (34). 

 

Remark For graphs of the 

approximate solution, we took only 

four terms in the two previous 

examples. 

Fig. 2 :  (A) The exact solution, (B) 

The approximate solution when 

α=2.90, (C) The approximate 

solutions of Eq. (32) for different 

values of α when x=1.
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Example  4.3  Consider the nonlinear time-fractional partial differential equation 

of order α (2<α≤3)   
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    If α=3 and with the initial conditions (47), the exact solution of the following 

equation :
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    By using we can obtain the iteration formula : 
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    The first few components of )(wAn polynomials [21] for example, is given by: 
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    In a similar way as above, we have : 

 
 

,1
1

),(
2

2

0 









x

t

x

t

x
txw

  

 
 

,
1

),(
7

4

56

3

45

2

34

1

2311 











x

t
a

x

t
a

x

t
a

x

t
a

x

t
a

x
txw



        

                                                             
                                                                                     

      

                                                                   
                                                                                     

      



36                                                                                               Djelloul ZIANE                                                                                                      

 

 

         



,
1

),(
10

42

109

32

98

22

87

12

76

2

62 











x

t
a

x

t
a

x

t
a

x

t
a

x

t
a

x
txw



                                                                    
                                                                                     

   

 
                                                                    

                                                                                     
     

                                                                     
                                                                                                                                           

where :
  

,
)4(

32
,

)3(

!5
,

)2(

!4
,

)1(

!3 32

4321















aaaa  

.
)52(

)5(

)3(

!618
,

)42(

)4(

)3(

!624

)2(

!4126

,
)32(

)3(

)3(

!5132

)2(

!4108

)1(

!424

,
)22(

)2(

)2(

!496

)1(

!378
,

)12(

!366
,

)5(

32

109

8

76

35

5


















































































































aa

a

aaa

The first terms of the approximate solution of Eq. (46), is given by : 
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As α=3,
 
we obtain :  
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That gives :
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which is an exact solution of the nonlinear partial differential equation (48) as 

presented in [11]. 
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Fig.  3 : (A) The exact solution, (B) The 

approximate solution when 3 , (C) The 

approximate solutions of  Eq. (40) for 

different values of   when 1x , and we 

took only three terms. 

 

 

 

 

5      Conclusion 

    In this paper, the fractional Elzaki transform decomposition method (FETDM) 

has been applied for finding the exact or the approximate solutions to the 

nonlinear fractional partial differential equations. The FETDM can easily be 

applied to many problems and is capable of reducing the size of computational 

work. The results show that the fractional Elzaki transform decomposition method 

(FETDM) is an appropriate method for solving nonlinear partial differential 

equations of fractional orders.   

 6      Open Problem 

    In this work, the fractional Elzaki transform decomposition method (FETDM) 

to be effective for solving nonlinear partial differential equation with time-

fractional derivative. One can apply the fractional natural transform 
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decomposition method (FNTDM),...,to the same problem (nonlinear fractional 

partial differential equations). Is it possible to solve nonlinear partial integro-

differential equations of fractional order by this method (FETDM)? 
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