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1 Introduction

The theory of fuzzy sets was introduced by L.Zadeh in 1965 [22]. After the
pioneering work of Zadeh, there has been a great effort to obtain fuzzy ana-
logues of classical theories. Among other fields, a progressive developments is
made in the field of fuzzy topology. One of the most important problems in
fuzzy topology is to obtain an appropriate concept of fuzzy metric space. This
problem has been investigated by many authors from different points of view.
In particular, George and Veeramani [4] have introduced and studied a notion
of fuzzy metric space. Furthermore, the class of topological spaces that are
fuzzy metrizable agrees with the class of metrizable- topological spaces (see
[4, 5]). This result permits Gregori and Romaguera to restate some classical
theorems on metric completeness and metric (pre) compactness in the realm of
fuzzy metric spaces [5–7]. Nevertheless, the theory of fuzzy metric completion
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is very different from the classical theories of metric completion. In fact, there
are fuzzy metric spaces which are non-completable [7]. A significant difference
between a classical metric and a fuzzy metric is that this last one includes in
its definition a parameter t. This fact has been successfully used in engineering
applications such as colour image filtering [1, 2, 12–16] and perceptual colour
differences [17]. The fuzzy fixed point theory has become an area of interest
for specialists in fixed point theory, or fuzzy mathematics has offered new pos-
sibilities for fixed point theorists, see [19–21]

The structure of the paper is as follows. After preliminaries, in section 3,
we construct some new metric sets and we study the topological properties of
these sets. Section 4 is devoted to study the fixed point theorem for multi-
valued mappings in fuzzy metric spaces and finally, in section 5, we prove
some common fixed point theorems for multi-valued mappings in fuzzy metric
spaces.

2 Preliminaries

In this section we present some definitions and terminology will used in the
sequel.

Definition 2.1. Let X be an arbitrary set. A fuzzy set A in X is a function
with domain X and values in [0, 1]. That is, A : X → [0, 1].

Let (Λ,≤) be a partially ordered non-empty set. A triangle function on
Λ (or a tΛ-norm) is a map τ : Λ × Λ → Λ that is associative, commutative,
nondecreasing in both arguments (that is, τ(λ1, λ2) ≤ τ(λ3, λ4), whenever
λ1, λ2, λ3, λ4 ∈ Λ with λ1 ≤ λ3 and λ2 ≤ λ4) and has an element λ0 ∈ Λ as
identity (i.e., τ(λ, λ0) = λ for all λ ∈ Λ). A t-norm is a triangle function
∆ : [0, 1]2 → [0, 1] that has 1 as identity, see [18]. Some typical examples of
t-norm are the following:

∆(a, b) = ab, (product)

∆(a, b) = min{a, b}, (minimum)

∆(a, b) = max{a+ b− 1, 0}, (Lukasiewicz)

∆(a, b) =
ab

a+ b− ab
, (Hamacher)

Definition 2.2. [10] A triple (X,M,∆) is called a fuzzy metric space (briefly,
a FM-space) if X is an arbitrary (non-empty ) set, ∆ is a continuous t-norm
and M is a fuzzy set on X ×X × [0,∞) such that the following axioms hold:

(FM-1) M(x, y, 0) = 0 for all x, y ∈ X,
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(FM-2) M(x, y, t) = 1 for every t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0,

(FM-4) M(x, y, .) : [0,∞)→ [0, 1] is left continuous for all x, y ∈ X,

(FM-5) M(x, z, t + s) ≥ ∆(M(x, y, t),M(y, z, s)) for all x, y, z ∈ X and for all
t, s ∈ [0,∞).

We will refer to the fuzzy metric spaces in the sense of Kramosil and
Michalek as KM-fuzzy metric spaces. If, in the above definition, the condition
(FM-5) is replaced by the condition

(FM-5A) M(x, z,max{t, s}) ≥ ∆(M(x, y, t),M(y, z, s)) for all x, y, z ∈ X and for
all t, s ∈ [0,∞),

then (X,M,∆) is called a strong metric space. It is easy to check that (FM-
5A) implies (FM-5), that is, every strong fuzzy metric space is it self a fuzzy
metric space.

Definition 2.3. [4] A triple (X,M,∆) is called a fuzzy metric space (briefly,
a FM-space) if X is an arbitrary (non-empty ) set, ∆ is a continuous t-norm
and M is a fuzzy set on X ×X × [0,∞) such that the following axioms hold:

(FM-1) M(x, y, t) > 0 for all x, y, z ∈ X,

(FM-2) M(x, y, t) = 1 for every t > 0 if and only if x = y,

(FM-3) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0,

(FM-4) M(x, y, .) : [0,∞)→ [0, 1] is left continuous for all x, y ∈ X,

(FM-5) M(x, z, t + s) ≥ ∆(M(x, y, t),M(y, z, s)) for all x, y, z ∈ X and for all
t, s ∈ [0,∞).

We will refer to the fuzzy metric spaces in the sense of George and Veera-
mani as GV-fuzzy metric spaces.

Example 2.4. ([4])(1) Let (X, d) be a metric space. Define a t-norm by
∆(a, b) = ab, and set

Md(x, y, t) =
t

t+ d(x, y)
, for all x, y ∈ x and t > 0.

Then (X,Md,∆) is a strong fuzzy metric space;Md is called the standard fuzzy
metric induced by d. It is interesting to note that the topology induced by the
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Md and the corresponding metric d coincide.
(2) Let (X, d) be a metric space. Define a t-norm by ∆(a, b) = ab, and set

M(x, y, t) = exp

[
−d(x, y)

t

]
, , for all x, y ∈ x and t > 0.

Then (X,M,∆) is a strong fuzzy metric space.

Remark 2.5. [4] Let (X,M,∆) be a FM-space. For all T ∈ (0,∞), the open
ball B(x, r, t) with center x ∈ X and radius r ∈ (0, 1) is defined by

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}. (1)

Let (X,M,∆) be a FM-space and let τM be the set of all A ⊂ X with x ∈ A if
and only if there exists t > 0 and r ∈ (0, 1) such that B(x, r, t) ⊂ A. Then τM
is a topology on X (induced by the fuzzy metric M). This topology is Hausdorff
and first countable.

Lemma 2.6. [8] Let (X,M,∆) be a FM-spaces. Then M(x, y, t) is non-
decreasing with respect to t, for all x, y ∈ X.

Definition 2.7. [8] Let (X,M,∆) be a FM-spaces. (i) A sequence {xn} in X
is said to be convergent to x ∈ X if

lim
n→∞

M(xn, x, t) = 1 for all t > 0.

(ii) The sequence {xn} in X is said to be Cauchy if

lim
n,m→∞

M(xn, xm, t) = 1 for all t > 0.

or equivalently, if for any ε ∈ (0, 1) and t > 0, there exists an n0 ∈ N such
that M(xn, xm, t) > 1− ε for each n.m ≥ n0.
(iii) The FM-space (X,M,∆) is said to be complete if every Cauchy sequence
in X is convergent.

Lemma 2.8. [11] Let (X,M,∆) be a FM-spaces. If there exists k ∈ (0, 1)
such that

M(x, y, kt) ≥M(x, y, t)

for all x, y ∈ X and t > 0, then x = y.

Definition 2.9. Let (X,M,∆) be a FM-spaces with continuous t-norm ∆.

1. A sequence {xn} in X is said to be τ -convergent to x ∈ X, denoted by
xn

τ−→ x, if for any ε > 0 and λ ∈ (0, 1), there exists a positive integer
N0(ε, λ), such that M(xn, x, ε) > 1− λ whenever n ≥ N0.
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2. A sequence {xn} in X is said to be τ -Cauchy if if for any ε > 0 and λ ∈
(0, 1), there exists a positive integer N0(ε, λ), such that M(xn, xm, ε) >
1− λ whenever n,m ≥ N0.

3. (X,M,∆) is said to be τ -complete if every τ -Cauchy sequence is τ -
convergent to some point in X.

4. A mapping T : X → X is said to be τ -continuous if, for any sequence
{xn} in X such that xn

τ−→ x, Txn
τ−→ Tx.

3 Diameter and Distance Between Sets

Throughout this section, (X,M,∆) will denote a Fuzzy metric space with a
continuous t-norm ∆.

Definition 3.1. Let A be a non-empty subset of X. Then the function defined
by

DA(t) = sup
s<t

[ inf
p,q∈A

M(p, q, s)],

will be called the fuzzy diameter of A. If supt>0DA(t) = 1, then A is called a
fuzzy bounded set.

Definition 3.2. A non-empty subset A of X is said to be

1. bounded if sup
t
DA(t) = 1,

2. semi-bounded if 0 < sup
t
DA(t) < 1,

3. unbounded if DA(t) = 0.

We now establish the properties of the fuzzy diameter. The proofs requiring
only routine calculation will be omitted.

Theorem 3.3. For any non-empty subset A of X, the function DA(.) is non-
decreasing in t, DA(0) = 0, supt>0DA(t) = 1 and DA(t) is left-continuous.

Theorem 3.4. If A is a non-empty subset of X, then DA(t) = 1 for all t > 0
if and only if A consists of a single point.

Theorem 3.5. If A and B are subsets of X and A ⊂ B, then DA ≥ DB.

Theorem 3.6. If A and B are subsets of X such that A ∩B = ∅, then

DA∪B(t+ s) ≥ ∆(DA(t), DB(s)). (2)

for all t, s > 0.
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Proof. Let t and s be given. To establish (2), we first show that

inf
p,q∈A∪B

M(p, q, s+ t) ≥ ∆

[
inf
p,q∈A

M(p, q, s), inf
p,q∈B

M(p, q, t)

]
. (3)

There are two distinct cases to consider:

Case(1):

inf
p,q∈A∪B

M(p, q, s+ t) = inf
p∈A,q∈B

M(p, q, s+ t). (4)

Now for any triple of points p, q and r in X, we have

M(p, q, s+ t) ≥ ∆(M(p, r, s),M(r, q, t)).

Taking the infimum of both sides of this inequality as p ranges over A, q
ranges over B and r ranges over A ∩B, and using (4), we have

inf
p,q∈A∪B

M(p, q, s+ t) ≥ inf
p∈A,q∈B,r∈A∩B

∆(M(p, r, s),M(r, q, t)).

However, since ∆ is continuous and non-decreasing, we obtain

inf
p,q∈A∪B

M(p, q, s+ t) ≥ ∆

[
inf
p,r∈A

M(p, r, s), inf
r,q∈B

M(r, q, t)

]
.

Case (2):

inf
p,q∈A∪B

M(p, q, s+ t) < inf
p∈A,q∈B

M(p, q, s+ t).

In this case, one of the following equalities

inf
p,q∈A∪B

M(p, q, s+ t) < inf
p,q∈A

M(p, q, s+ t)

or

inf
p,q∈A∪B

M(p, q, s+ t) < inf
p,q∈B

M(p, q, s+ t)

must hold. If the first equality holds, we have

inf
p,q∈A∪B

M(p, q, s+ t) ≥ ∆

[
inf
p,q∈A

M(p, q, s+ t), inf
p,q∈B

M(p, q, s+ t)

]
.

The same argument works for the second equality. This establish (3). Finally,
using the fact that the rectangle

{(s′, t′) : 0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t}
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is contained in the triangle (s′, t′) : s′, t′ ≥ 0, s′ + t′ < s+ t, the inequality (3)
and the continuity of ∆, we have

DA∪B(s′ + t′) = sup
s+t<s′+t′

[ inf
p,q∈A∪B

M(p, q, s+ t)]

≥ sup
s<s′,t<t′

[ inf
p,q∈A∪B

M(p, q, s+ t)]

≥ ∆

(
sup
s<s′

[ inf
p,q∈A

M(p, q, s)], sup
t<t′

[ inf
p,q∈B

M(p, q, t)]

)
= ∆(DA(s′), DB(t′)).

This achieves the proof.

Theorem 3.7. If A is a non-empty subset of X, then DA = DA, where A
denotes the closure of A in the (ε, λ)-topology on X.

Proof. Since A ⊂ A, it follows from Theorem 3.5 that DA ≥ DA. Let η > 0 be
given. In view of the uniform continuity of M with respect to the Levy metric
space L on D, there exists an ε > 0 and a λ > 0 such that for any four points
p1, p2, p3 and p4 in X,

L(M(p1, p2, t),M(p3, p4, t)) < η, t > 0.

whenever M(p1, p3, ε) > 1− λ and M(p2, p4, ε) > 1− λ.
Next, with each point p̄ inA, associate a point p(p̄) inA such thatM(p(p̄), p̄, t) >

1 − λ for every t > 0. Then, in view of the above argument, for any pair of
the points p̄ and q̄ in A,

L(M(p(p̄), q(q̄), t),M(p, q, t)) < η t > 0.

In particular, for all t > 0, we have

M(p(p̄), q(q̄), t− η)− η ≤M(p, q, t).

Let Aη = {p(p̄) : p̄ ∈ A}. Then since Aη ⊆ A, we have

inf
p̄,q̄∈A

M(p̄, q̄, t) ≥ inf
p̄,q̄∈A

M(p(p̄), q(q̄), t− η)− η

= inf
p,q∈An

M(p, q, t− η)− η

≥ inf
p,q∈A

M(p, q, t− η)− η.
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Now, taking the supremum for t < s, the above inequality yields

DA(s) = sup
t<s

[
inf
p̄,q̄∈A

M(p̄, q̄, t)

]
≥ sup

t>s

[
inf
p̄,q̄∈A

M(p(p̄), q(q̄), t− η)

]
− η

= sup
t<s−η

[
inf

p,q∈An
M(p, q, t− η)

]
− η

= DA(s− η)− η.

Since the above inequality is valid for all η and since DA is left-continuous, it
follows that

DA(s) ≥ DA(s)

for all s > 0. Whence DA(s) = DA(s) for all s > 0 and so the proof is
complete.

Definition 3.8. Let A and B be non-empty subsets of X. The fuzzy distance
between A and B is the function M(A,B, .) defined by

M(A,B, t) = sup
s<t

∆

(
inf
p∈A

[
sup
q∈B

M(p, q, s)

]
, inf
q∈B

[
sup
p∈A

M(p, q, s)

])
(5)

for all t ≥ 0.

In establishing the properties of M(A,B, .), we again omit the routine
proof.

Theorem 3.9. The fuzzy distance M(A,B, .) is non-decreasing in t, M(A,B, 0) =
0, supt>0M(A,B, t) = 1 and M(A,B, t) is left-continuous in t.

Theorem 3.10. If A and B are non-empty subsets of X, then M(A,B, .) =
M(B,A, .).

Theorem 3.11. If A is non=empty subset of X, then M(A,A, t) = 1 for all
t > 0.

Theorem 3.12. If A and B are non-empty subsets of X, then M(A,B, .) =
M(A,B, .).

Proof. It is sufficient to show that M(A,B, .) = M(A,B, .) since this result
together with Theorem 3.10 yields

M(A,B, .) = M(A,B, .) = M(B,A, .) = M(A,B, .).
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With this in mind, we first show that M(A,B, t) ≤ M(A,B, t) for all t > 0.
Since B ⊆ B, for all t > 0,

inf
q∈B

[
sup
p∈A

M(p, q, t)

]
≥ inf

q∈B

[
sup
p∈A

M(p, q, t)

]
. (6)

Let η > 0 be given. The argument in the proof of Theorem 3.7 establishes
that for each point q̄ ∈ B, there exists a point q(q̄) in B such that for all t > 0,

M(p, q, t− η)− η ≤M(p, q(q̄), t).

Let Bη = {q(q̄) : q̄ ∈ B. Since Bη ⊆ B, we have

sup
q̄∈B

M(p, q̄, t− η) ≤ sup
q̄∈B

M(p, q(q̄), t) = sup
q∈Bη

M(p, q, t) = sup
q∈B

M(p, q, t).

Thus, we have

inf
p∈A

[
sup
q̄∈B

M(p, q̄, t− η)

]
− η ≤ inf

p∈A

[
sup
q∈B

M(p, q, t)

]
.

Moreover, taking the supremum on t < s, the above inequality yields, for any
η,

f(s) = sup
t<s

(
inf
p∈A

[
sup
q∈B

M(p, q, t)

])
≥ sup

t<s

(
inf
p∈A

[
sup
q̄∈B

M(p, q̄, t− η)

])
− η

= sup
t<s−η

(
inf
p∈A

[
sup
q̄∈B

M(p, q̄, t)

])
− η

= g(s− η)− η.

Now since both f and g are left-continuous and η is arbitrary, it follows that
f(s) ≥ g(s). This together with (6) and the continuity of ∆ yields

M(A,B, s) = ∆

{
sup
t<s

(
inf
p∈A

[
sup
q∈B

M(p, q, t)

])
, sup
t<s

(
inf
q∈B

[
sup
p∈A

M(p, q, t)

])}
≥ ∆

{
sup
t<s

(
inf
p∈A

[
sup
q̄∈B

M(p, q̄, t)

])
, sup
t<s

(
inf
q̄∈B

[
sup
p∈A

M(p, q, t)

])}

= sup
t<s

∆

{(
inf
p∈A

[
sup
q̄∈B

M(p, q̄, t)

])
,

(
inf
q̄∈B

[
sup
p∈A

M(p, q, t)

])}
= M(A,B, s).

A similar argument shows that M(A,B, t) ≥M(A,B, t) for all t > 0. Combin-
ing these inequalities yields the desired result. This completes the proof.
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Theorem 3.13. If A and B are subsets of X, Then M(A,B, t) = 1 for all
t > 0 if and only if A = B.

Proof. Suppose that M(A,B, t) = 1 for all t > 0 and let ε > 0 be given. Then
we have

M(A,B, ε) = ∆

{
sup
t<ε

(
inf
p∈A

[
sup
q∈B

M(p, q, t)

])
, sup
t<ε

(
inf
q∈B

[
sup
p∈A

M(p, q, t)

])}
= sup

t<ε

(
inf
q∈B

[
sup
p∈A

M(p, q, t)

])
= inf

q∈B

[
sup
p∈A

M(p, q, ε)

]
.

So that for any q ∈ B and every λ > 0 there exists a point p ∈ A for which
M(p, q, ε) > 1−λ. Therefore, q is accumulation point of A and we have B ⊆ A.
A similar argument shows that A ⊆ B.

Conversely, suppose that A = B. In view of Theorems (3.11) and (3.12),
M(A,B, t) = M(A,B, t) = M(A,A, t) = 1 for all t > 0. This completes the
proof.

Theorem 3.14. If A,B and C are subsets of X, then for all t, s > 0, we have

M(A,B, t+ s) ≥ ∆(M(A,C, t),M(B,C, s)).

Proof. Let u, v > 0 be given. Then, for any triple of points p, q and r in X,
we have

M(p, q, u+ v) ≥ ∆(M(p, r, u),M(r, q, v)).

Making use of the continuity and monotonicity of ∆, we have the inequality:

sup
q∈B

M(p, q, u+ v) ≥ ∆

(
sup
r∈C

M(p, r, u), inf
r∈C

[
sup
q∈B

M(r, q, v)

])
.

Thus, we have

inf
p∈A

[
sup
q∈B

M(p, q, u+ v)

]
≥ ∆

(
inf
p∈A

[
sup
r∈C

M(p, r, u)

]
, inf
r∈C

[
sup
q∈B

M(r, q, v)

])
.

Similarly, we have

inf
q∈B

[
sup
p∈A

M(p, q, u+ v)

]
≥ ∆

(
inf
r∈C

[
sup
p∈A

M(p, r, u)

]
, inf
q∈B

[
sup
r∈C

M(r, q, v)

])
.

Therefore, since ∆ is associative, we have

∆

(
inf
p∈A

[
sup
q∈B

M(p, q, u+ v)

]
, inf
q∈B

[
sup
p∈A

M(p, q, u+ v)

])
≥ ∆

{
∆

(
inf
r∈C

[
sup
p∈A

M(p, r, u)

]
, inf
p∈A

[
sup
r∈C

M(r, p, u)

])
,

∆

(
inf
q∈B

[
sup
r∈C

M(r, q, v)

]
, inf
r∈C

[
sup
q∈B

M(r, q, v)

])}
.
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Now arguing as in the last step of the proof of Theorem (3.6), we have

M(A,B, t+ s) = sup
u+v<t+s

∆

(
inf
p∈A

[
sup
q∈B

M(p, q, u+ v)

]
, inf
q∈B

[
sup
p∈A

M(p, q, u+ v)

])
≥ sup

u<t,v<s
∆

(
inf
p∈A

[
sup
q∈B

M(p, q, u+ v)

]
, inf
q∈B

[
sup
p∈A

M(p, q, u+ v)

])
= ∆

{
sup
u<t

∆

(
inf
p∈A

[
sup
r∈C

M(p, r, u)

]
, inf
r∈C

[
sup
p∈A

M(p, r, u)

])
,

sup
v<s

∆

(
inf
q∈B

[
sup
r∈C

M(q, r, v)

]
, inf
r∈C

[
sup
q∈B

M(q, r, v)

])}
= ∆ (M(A,C, t),M(C,B, s)) .

This achieves the proof.

Remark 3.15. Let (X,M,∆) be a FM-space with a continuous t-norm ∆
and let C be the non-empty collection of non-empty subsets of X. Then the
function MC defined for any A and B in C by MC(A,B, t) = M(A,B, t) , where
M(A,B, t) defined by (5) is a fuzzy set on C × C × [0,∞).

Furthermore, as a direct consequence of Theorems (3.9) ∼ (3.14), we have
the following:

Theorem 3.16. If each set in C is closed, then (C,MC,∆) is a fuzzy metric
space.

Definition 3.17. Let (X,M,∆) be a fuzzy metric space with a continuous
t-norm ∆ and A be a non-empty subset of X. We define the function DA(t)
by

DA(t) = sup
s<t

inf
p,q∈A

DA(t) for all t > 0. (7)

If supt>0DA(t) = 1, then A is called a fuzzy bounded set and DA(t) the fuzzy
diameter of A.

Proposition 3.18. Let (X,M,∆) be a fuzzy metric space with a continuous
t-norm ∆.

1. If A is a fuzzy bounded set, then DA(0) = 0, supt>0DA(t) = 1, DA(t) is
non-decreasing in t and left-continuous in t.

2. If A,B ⊂ X are two fuzzy bounded sets, then A∪B is also fuzzy bounded
set of X.

Proof. (1) This follows directly by using the properties of sup(.) and inf(.).
(2) Since A and B are fuzzy bounded, then so is B \A. From [3, Theorem 10],
we have

DA∪B(t) = DA∪B\A(t) ≥ ∆(DA(t/2), DB\A(t/2)),
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for all t > 0 and so, by the continuity of ∆, we have

sup
t>0

DA∪B(t) ≥ sup
t>0

∆(DA(t/2), DB\A(t/2))

= ∆(sup
t>0

DA(t/2), sup
t>0

DB\A(t/2))

= ∆(1, 1) = 1.

This completes the proof.

In the rest of this section, we always assume that (X,M,∆) is a fuzzy
metric space with a continuous t-norm ∆ and Ω is the the family of all non-
empty τ -closed fuzzy bounded sets. We define a mapping M̃(A,B, .) at t ∈ R+

by

M̃(A,B, t) = sup
s<t

∆(inf
a∈A

sup
b∈B

M(a, b, s), inf
b∈B

sup
a∈A

M(a, b, s)), A,B ∈ Ω. (8)

Then M̃ is called a fuzzy Hausdorff metric induced by M .

Proposition 3.19. Let (X,M,∆) be a fuzzy metric space. Then M̃ is a fuzzy
set on Ω× Ω× [0,∞) satisfying the following conditions:

1. M̃(A,B, t) is non-increasing and left-continuous in t and M̃(A,B, 0) = 0

and sup
t>0

M̃(A,B, t) = 1.

2. M̃(A,B, t) = 1 for all t > 0 if and only if A = B for all A,B ∈ Ω and
t > 0,

3. M̃(A,B, 0) = 0, for all A,B ∈ Ω and t > 0,

4. M̃(A,B, t) = M(B,A, t) for all A,B ∈ Ω and t > 0,

5. M̃(A,B, t1 + t2) ≥ ∆(M̃(A,C, t1), M̃(C,B, t2)) for all A,B,C ∈ Ω and
t1, t2 > 0.

and hence (Ω, M̃ ,∆) is a fuzzy metric space.

Proof. By the definition of M̃ , it is easy that M̃(A,B, t) is non-increasing and

left-continuous in t and M̃(A,B, 0) = 0. Now, we prove that

sup
t>0

M̃(A,B, t) = 1.
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In fact, since A,B ∈ Ω, we have A ∪B ∈ Ω. By the continuity of ∆, we have

sup
t>0

M̃(A,B, t) = sup
t>0

sup
s<t

∆(inf
a∈A

sup
b∈B

M(a, b, s), inf
b∈B

sup
a∈A

M(a, b, s))

≥ ∆(sup
t>0

sup
s<t

inf
a∈A

sup
b∈B

M(a, b, s), sup
t>0

sup
s<t

inf
b∈B

sup
a∈A

M(a, b, s))

≥ ∆(sup
t>0

DA∪B(t), sup
t>0

DA∪B(t))

= ∆(1, 1) = 1.

To show that M̃ satisfies condition (2), we first suppose that, for all t > 0,

M̃(A,B, t) = 1. By the continuity of ∆, for any s > 0, we have

1 = M̃(A,B, ε) = sup
s<ε

∆(inf
a∈A

sup
b∈B

M(a, b, s), inf
b∈B

sup
a∈A

M(a, b, s))

= ∆(sup
s<ε

inf
a∈A

sup
b∈B

M(a, b, s), sup
s<ε

inf
b∈B

sup
a∈A

M(a, b, s))

which implies that
sup
s<ε

inf
a∈A

sup
b∈B

M(a, b, s) = 1, (9)

sup
s<ε

inf
b∈B

sup
a∈A

M(a, b, s) = 1. (10)

From (9), it follows that supb∈BM(a, b, ε) = 1 for all a ∈ A. Therefore, for any
a ∈ A and any λ > 0, there exists b∗ ∈ B such that

M(a, b∗, ε) > 1− λ.

This shows that the point a is a τ -accumulation point of B and hence a ∈ B,
i.e., A ⊆ B. Similarly, we can prove that B ⊆ A. Therefore, we have A = B.
Conversely, if A = B, then for any t > 0 and any s ∈ (0, 1), we have

M̃(A,B, t) ≥ ∆(inf
a∈A

sup
b∈B

M(a, b, s), inf
b∈B

sup
a∈A

M(a, b, s)) ≥ ∆(1, 1) = 1.

The rest of the proof follows by Theorem 3.14. This ends the proof.

Definition 3.20. Let (X,M,∆) be a fuzzy metric space with a continuous t-
norm ∆ and let A ∈ Ω and x ∈ X. The fuzzy distance between a point x and
a set A is the function defined by

M(x,A, t) = sup
s<t

sup
y∈A

M(x, y, s, for all t ≥ 0. (11)

Proposition 3.21. Let (X,M,∆) be a fuzzy metric space with a continuous
t-norm ∆ and let A ∈ Ω and x, y be arbitrary points of X. Then

1. M(x,A, t) = 1 for all t > 0 if and only if x ∈ A,



14 M.H.M.Rashid

2. M(x,A, t1 + t2) ≥ ∆(M(x, y, t1),M(y, A, t2)) for all t1, t2 ≥ 0,

3. For any A,B ∈ Ω and x ∈ A,

M(x,B, t) ≥ M̃(A,B, t), for all t ≥ 0.

Proof. (1) If x ∈ A, for any t > 0 and s ∈ (0, 1), we have

M(x,A, t) ≥ sup
y∈A

M(x, y, s) ≥M(x, x, s) = 1,

which shows that
M(x,A, t) = 1, t > 0.

Conversely, if M(x,A, t) = 1 for all t > 0, then for any ε > 0, we have

1 = M(x,A, ε) = sup
t<ε

sup
y∈A

M(x, y, ε) = sup
y∈A

M(x, y, ε).

This implies that, for any λ > 0, there exists y∗ ∈ A such that

M(x, y∗, ε) > 1− λ.

It follows that the point x is a τ -accumulation point of A and so x ∈ A.
(2) By the triangle inequality of M and continuity of ∆, we have

M(x,A, t1 + t2) = sup
s1+s2<t1+t2

sup
z∈A

M(x, z, s1 + s2)

≥ sup
s1+s2<t1+t2

∆(M(x, y, s1), sup
z∈A

M(y, z, s2)

≥ ( sup
s1<t1

M(x, y, s1), sup
s2<t2

sup
z∈A

M(y, z, s2))

= ∆(M(x, y, t1),M(y, A, t2)).

(3) If x ∈ A, then we have

M(A,B, t) = sup
s<t

sup
b∈B

M(x, b, s)

≥ sup
s<t

inf
a∈A

sup
b∈B

M(a, b, s)

= sup
s<t

∆(inf
a∈A

sup
b∈B

M(a, b, s), 1)

≥ sup
s<t

∆(inf
a∈A

sup
b∈B

M(a, b, s), inf
b∈B

sup
a∈A

M(a, b, s))

= M̃(A,B, t), t ≥ 0.

This ends the proof.
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4 Fixed Point Theorems for Multi-valued Map-

pings in Fuzzy Metric Spaces

Let (X,M,∆m) be a τ -complete fuzzy metric space with ∆m = min . Let Ω

be the family of all non-empty τ -closed and fuzzy bounded sets, M̃ be fuzzy
Hausdorff metric defined by (8) and M(x,A, t) be the fuzzy distance defined
by (11) for all t > 0.

Theorem 4.1. Let Ti be a sequence of multi-valued mappings Ti : X → Ω,
i = 1, 2, · · · . Suppose that there exists a constant k > 1 such that for any
i, j ∈ N, and any x, y ∈ X,

M̃(Tix, Tjy, t) ≥ min{M(x, y, kt),M(x, Tix, kt),M(y, Tjy, kt)}, t ≥ 0. (12)

Suppose further that for any x ∈ X and a ∈ Tnx, n ∈ N, there exists b ∈ Tn+1a
such that

M(a, b, t) ≥ M̃(Tnx, Tn+1a, t), t ≥ 0. (13)

Then there exists a point x∗ such that x∗ ∈
∞⋂
i=1

Tix∗.

Proof. For any x0 ∈ X, take x1 ∈ Tx0 ∈ Ω. By the assumptions, there exists
a point x2 ∈ Tx1 ∈ Ω such that

M(x1, x2, t) ≥ M̃(T1x0, T2x1, t), t ≥ 0.

Similarly, there exists a point x3 ∈ T3x2 such that

M(x2, x3, t) ≥ M̃(T2x1, T3x2, t), t ≥ 0.

Continuing this procedure, we can obtain a sequence {xn} in X satisfying the
following conditions:

(i) xn ∈ Tnxn−1, n = 1, 2, · · · ,

(ii) M(xn, xn+1, t) ≥ M̃(Tnxn−1, Tn+1xn, t), t ≥ 0.

It is easy to prove that a sequence {xn} in X is a Cauchy sequence. By the
τ -completeness of (X,M,∆), we can suppose xn

τ−→ x∗ ∈ X.
Now we prove that the point x∗ is a common fixed point of {Ti}∞i=1. In
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fact, it follows from Proposition 3.21 that

M(x∗, Tix∗, t) ≥ ∆

(
M

(
x∗, xn+1,

((
1− 1

β

)
t

))
,M

(
xn+1, x∗,

(
t

β

)))
≥ ∆

(
M

(
x∗, xn+1,

((
1− 1

β

)
t

))
,M

(
Tn+1xn, Tix∗,

(
t

β

)))
(14)

≥ ∆

(
M

(
x∗, xn+1,

((
1− 1

β

)
t

))
,

min

{
M

(
xn, x∗,

(
kt

β

))
,M

(
xn, Tn+1xn,

(
kt

β

))
,M

(
x∗, Tix∗,

(
kt

β

))})
,

where β > k is a constant. In addition, by Proposition 3.21, we have

M

(
xn, Tn+1xn,

(
kt

β

))
≥ ∆

(
M

(
xn, xn+1,

(
k

β
− 1

β2

)
t

)
,M

(
xn+1, Tn+1xn,

(
t

β2

)))
= M

(
xn, xn+1,

(
k

β
− 1

β2

)
t

)
.

Substituting the above inequality into (14) and letting n → ∞ , we have, by
continuity of ∆,

M(x∗, Tix∗, t) ≥M

(
x∗, Tix∗,

(
k

β

)
t

)
≥M

(
x∗, Tix∗,

(
k

β

)2

t

)

≥ · · · ≥M

(
x∗, Tix∗,

(
k

β

)m
t

)
, m = 1, 2, · · · .

Letting m→∞ on the right, we have, for all t > 0 and i = 1, 2, · · · ,

M(x∗, Tix∗, t) = 1

and so we have x∗ ∈ Tix∗, i = 1, 2, · · · . Therefore, by Proposition 3.21, we
have

x∗ ∈
∞⋂
i=1

Tix∗.

This achieves the proof.

5 Common Fixed Points Theorems for Multi-

valued Mappings in FM-Spaces

Throughout this section, we assume that (X,M,∆) is a fuzzy metric space with
the (ε, λ)-topology τ and continuous t-norm ∆. Let CB(X) be the family of
all non-empty τ -closed subsets of X and C(X) be the family of all non-empty
τ -compact subsets of X.
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Definition 5.1. Let (X,M,∆) be a fuzzy FM-space, A,B ∈ CB(X) and x ∈
A. We define M(x,A, .) and M(A,B, .) by

M(x,A, t) = sup
y∈A

M(x, y, t),

M(A,B, t) = sup
s<t

∆(inf
x∈A

sup
y∈B

M(x, y, s), inf
y∈B

sup
x∈A

M(x, y, s))

for all t ∈ R+, respectively. We say that M(x,A, .) is the fuzzy distance from
the point x to the set A and M(A,B, .) is the fuzzy distance from A to B
induced by M .

Lemma 5.2. Let (X,M,∆) be a fuzzy FM-space with a continuous t-norm ∆,
A ∈ CB(X) and x, y ∈ X. Then we have the following:

1. For any B ∈ CB(X), x ∈ A and t ∈ R+,

inf
x∈A

sup
y∈B

M(x, y, t) ≤M(x,B, t),

2. M(x,A, t) = 1 for all t > 0 if and only if x ∈ A,

3. M(x,A, t1 + t2) ≥ ∆(M(x, y, t1),M(y, A, t2)) for all t1, t2 > 0,

4. M(x,A, t) is a left-continuous function at t.

Proof. (1)∼ (3) follows from Proposition 3.21. Noting that

sup
s<t

sup
y∈A

M(x, y, t) = sup
y∈A

M(x, y, t)

for all t > 0, the conclusion is obvious.

Definition 5.3. Let φ : [0,∞)→ [0,∞) be a strictly increasing function such
that φ(0) = 0 and lim

t→+∞
φ(t) = +∞. Define a function ψ : [0,∞)→ [0,∞) by

ψ(t) =

{
0, if t = 0;
inf{s > 0 : φ(s) > t}, if t > 0.

(15)

Definition 5.4. We say that a function φ : [0,∞) → [0,∞) satisfies the
condition (Φ) if it is strictly increasing and left-continuous function such that

φ(0) = 0, lim
t→+∞

φ(t) = +∞ and
∞∑
n=0

φn(t) <∞ for all t > 0.

Lemma 5.5. [18] Let φ : [0,∞)→ [0,∞) satisfy the condition (Φ) and let ψ
be defined by (15). Then we have the following:
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1. φ(t) < t for all t > 0,

2. φ(ψ(T )) ≤ t and ψ(φ(t)) = t for all t ≥ 0,

3. ψ(t) ≥ t for all t ≥ 0,

4. lim
n→∞

ψn(t) = +∞ for all t > 0.

Definition 5.6. Let ∆ be a t-norm satisfying the condition

sup
0<t<1

∆(t, t) = 1.

∆ is said to be of h-type if the family of functions {∆m}m∈N is equi-continuouys
at t = 1, where

∆1(t) = ∆(t, t),∆m(t) = ∆(t,∆m−1(t)), t ∈ [0, 1], m = 2, 3, · · · .

Lemma 5.7. Let (X,M,∆) be a fuzzy FM-space, where ∆ is a t-norm of h-
type. If the sequence {xn} in X satisfies the following condition: for any n ∈ N
and t > 0,

M(xn, xn+1, t) ≥M(x0, x1, φ
n(ψ(t))), (16)

where φ is a function satisfying the condition (Φ) and ψ is defined by (15).
Then {xn} is a τ -Cauchy sequence in X.

Proof. Since ∆ is a t-norm of h-type, for any λ ∈ (0, 1), there exists a δ(λ) > 0
such that for any t > δ(λ), ∆m(t) > 1 − λ for all m ∈ N. Since φ satisfies

the condition (Φ),
∞∑
n=0

φn(ψ(t)) <∞. Hence for any t > 0, there exists N ∈ N

such that
∞∑
i=n

φi(ψ(t)) < t for any n ≥ N . By (16) and Lemma 5.5, for any

n ≥ N , we have

M(xn, xn+m, t) ≥M

(
xn, xn+m,

∞∑
i=n

φi(ψ(t))

)
≥ ∆

(
M(xn, xn+1, φ

n(ψ(t))),∆(M(xn+1, xn+2, φ
n+1(ψ(t)))), · · · ,

∆(M(xn+m−2, xn+m−1, φ
n+m−2(ψ(t)))),∆(M(xn+m−1, xn+m, φ

n+m−1(ψ(t))), · · · )
)

≥ ∆m(x0, x1, ψ(t)) > 1− λ

for all m ∈ N, which implies that {xn} is a τ -Cauchy sequence in X. This
achieves the proof.

Now we give our main result in this section:
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Theorem 5.8. Let (X,M,∆) be a τ -complete fuzzy FM-space, where ∆ is a
continuous t-norm of h-type. Let {Ti}∞i=1 be a sequence of multi-valued map-
pings Ti : X → CB(X), i = 1, 2, · · · , satisfying the following condition:

for any i, j ∈ N, x, y ∈ X and u ∈ Tix, there exists a point v ∈ Tjy such
that

M(u, v, φ(t)) ≥ min{M(x, y, t),M(x, Tix, t),M(y, Tjy, t)} (17)

for all t > 0, where the function φ satisfies the condition (Φ). Then the family
{Ti : i ∈ N} of multi-valued mappings has a common fixed point in X, i.e.,

there exists a point x∗ ∈ X such that
∞⋂
i=1

Tix∗.

Proof. Take x0 ∈ X and x1 ∈ Tx0. By Lemma 5.5 and the condition (17),
there exists x2 ∈ T2x1 such that

M(x1, x2, t) ≥M(x1, x2, φ(ψ(t)))

≥ min{M(x0, x1, ψ(t)),M(x0, T1x0, ψ(t)),M(x1, T2x1, ψ(t))}
(18)

≥ min{M(x0, x1, ψ(t)),M(x1, x2, ψ(t))}

for all t > 0, where ψ(t) is defined by (15). Using (18) repeatedly, we have

M(x1, x2, t) ≥ min{M(x0, x1, ψ(t)),M(x0, x1, ψ
2(t)),M(x1, x2, ψ

2(t))}
= min{M(x0, x1, ψ(t)),M(x1, x2, ψ

2(t))}
≥ · · ·
≥ min{M(x0, x1, ψ(t)),M(x1, x2, ψ

n(t))}.

Letting n→∞, we have

M(x1, x2, t) ≥M(x0, x1, ψ(t))

for all t > 0. Taking this procedure repeatedly, we can define a sequence {xn}
in X satisfying

xn+1 ∈ Tn+1xn and M(xn, xn+1, t) ≥M(xn, xn−1, ψ(t))

for all t > 0. Thus, for any n ∈ N and t > 0, we have

M(xn, xn+1, t) ≥M(xn, xn−1, ψ(t)) ≥ · · · ≥M(x0, x1, ψ
n(t)). (19)

Therefore, by Lemma 5.7, {xn} is a τ -Cauchy sequence in X. Since (X,M,∆)
is τ -complete, we assume that xn

τ−→ x∗ ∈ X.
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Next, we prove that x∗ is a common fixed point of the family {Ti : i ∈ N}.
In fact, for any t > 0 and i ∈ N and ε ∈ (0, 1),from (19), we have

M(xn+1, Tix∗, t− ε) ≥M(xn+1, Tix∗, φ(ψ(t− ε)))
= sup

y∈Tix
M(xn+1, y, φ(ψ(t− ε))) (20)

≥ min{M(xn, x∗, ψ(t− ε)),M(xn, xn+1, ψ(t− ε)),M(x∗, Tix∗, ψ(t− ε))}
≥ min{M(xn, x∗, ψ(t− ε)),M(x0, x1, ψ

n+1(t− ε)),M(x∗, Tix∗, ψ(t− ε))}

If M(x∗, Tix∗, ψ(t− ε)) = 1, then we have

M(xn+1, Tix∗, t− ε) ≥ min{M(xn, x∗, ψ(t− ε)),M(x0, x1, ψ
n+1(t− ε))}.

Letting n → ∞, we have M(x∗, Tix∗, t − ε) ≥ 1. by the arbitrariness of
ε ∈ (0, 1), we have M(x∗, Tix∗, t) = 1 for all t > 0, i.e., x∗ ∈ Tix∗. thus the
conclusion is proved.

If M(x∗, Tix∗, ψ(t− ε)) < 1, then letting n→∞ in (20), we have

M(x∗, Tix∗, t− ε) ≥M(x∗, Tix∗, ψ(t)). (21)

By Lemma 5.2, we have

M(x∗, Tix∗, t) ≥ ∆(M(x∗, xn+1, ε),M(xn+1, Tix∗, t− ε)). (22)

Letting n→∞ in (22), from (21) and the continuity of ∆, we have

M(x∗, Tix∗, t) ≥M(x∗, Tix∗, t− ε).

Thus, as ε→ t, by the continuity of ψ and the left continuity of M , it follows
that

M(x∗, Tix∗, t) ≥M(x∗, Tix∗, ψ(t)).

Taking this procedure repeatedly, we obtain

M(x∗, Tix∗, t) ≥M(x∗, Tix∗, ψ(t)) ≥ · · · ≥M(x∗, Tix∗, ψ
n(t)).

Therefore, as n → ∞, M(x∗, Tix∗, t) = 1 for all t > 0, i.e., x∗ ∈ Tix∗. This
completes the proof.

Taking φ(t) = kt, 0 < k < 1, in Theorem 5.8, we obtain the following
result.

Corollary 5.9. Let (X,M,∆) be a τ -complete fuzzy FM-space, where ∆ is a
continuous t-norm of h-type. Let {Ti}∞i=1 be a sequence of multi-valued map-
pings Ti : X → CB(X), i = 1, 2, · · · , satisfying the following condition:
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for any i, j ∈ N, x, y ∈ X and u ∈ Tix, there exists a point v ∈ Tjy such
that

M(u, v, kt) ≥ min{M(x, y, t),M(x, Tix, t),M(y, Tjy, t)}

for all t > 0, where k ∈ (0, 1) is a constant. Then the family {Ti : i ∈ N}
of multi-valued mappings has a common fixed point in X, i.e., there exists a

point x∗ ∈ X such that
∞⋂
i=1

Tix∗.

Corollary 5.10. Let (X,M,∆) be a τ -complete fuzzy FM-space, where ∆
is a continuous t-norm, K be a non-empty fuzzy bounded subset of X and
T : K → C(K) be a mapping satisfying the following condition: for any
x, y ∈ K and u ∈ Tx, there exists a point v ∈ Ty such that

M(u, v, kt) ≥M(x, y, t)

for all t > 0, where k ∈ (0, 1) is a constant. Then T has a fixed point in K.

6 Open Problem

The open problem here is to construct some new metric sets and study the
topological properties of these sets and study some fixed point theorem for
multi-valued mappings in fuzzy metric spaces.
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