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Abstract

In this paper, a solution of the following conjecture is given.
For a,b > 0 with a # b the inequality N < T, holds if and only
if p > 4/5, where N,T, are Neuman-Sdndor mean, power-type
second Seiffert mean, respectivelly.
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1 Introduction

In the paper [4], the power-type mean M,(a,b) is defined as:
M, = MY?(a? bP) if p # 0 and My = Vab,

where a,b > 0, a # b, p € R, M = A, He,L,I,P,T,N,Z and Y stand
for the arithmetic mean, Heronian mean, logarithmic mean, identric (expo-
nential) mean, the first Seiffert mean, the second Seiffert mean, Neuman-
Sandor mean, power-exponential mean and exponential-geometric mean, re-
spectivelly. Author proved the power type means P,,T,, N,, Z, are increas-
ing in p on R and established sharp inequalities among power-type means
Ay, Hey, L,, I,, Ny, Z,, P,,Y,. Lastly, the following conjecture was proposed.
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Conjecture 1.1 For a,b > 0, with a # b, the inequality N < T, holds if and
only if p > 4/5.

2 Preliminaries

The purpose of the paper is to prove the conjecture. First, we recall the
definitions of N and T,.

T'(a,b) is the second Seiffert mean defined in (see [4]) as

a—>

- 2 arctan (Z—fg)

T(a,b) for a # b and T'(a,a) = a;

N(a,b) is the Neuman-Sédndor mean defined in (see [4]) as

a—>

2arcsinh (%)

N(a,b) = for a # b and N(a,a) = a;

The mean 7T),(a, b) is defined as
T,(a,b) = (T(a”,1¥))7 .

For some other details about means, (see [2], [4]) and related references cited
there in.

3 Main results

The result of the paper is the following theorem.

Theorem 3.1 Let a,b > 0, a # b. Then the inequality N < T, holds if and
only if p > 4/5.

First, we prove necessity. Without loss of generality, we assume that 0 <
b < a. Denote x = b/a. Let N < T,. Using Taylor’s theorem for N(1,z) we
have

1—=x 1 1 )
=14+ -(z—1)+—(x—1)*+ —1)°,
2arcsinh (—L—Li) Z(x ) 24(1’ ) u(z)(z )

N(1,z) =

where u(z) is a suitable function such that lim u(x) = u(1) # oc.
r—1-

Similarly,
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T(1,2) — ( 1_96?mp)>p:1+%(:c—1>+<—%+%)(x—1>2+

2 arctan (1 Top
+ v(pz)(x 1),

where v(p, x) is a suitable function such that lim v(p,x) = v(p,1) # oo.
z—1-

(Without loss of generality we assume p > 0.) It implies
N(1 —T,(1 1
o VLD =T 1
sl (1— )2 6 24
From this p > 4/5.
Sufficiency. We prove that N(a,b) < Ty/5(a,b) for all positive a # b. From this
and from 7, is increasing in p we obtain N(a,b) < T,(a,b) for p > 4/5. The
inequality N(a,b) < Ty/s(a,b) is equivalent to

4/5
L 1 _ 4475
. xl—x < p 4/5 for0 <z <1, @
2arcsinh ({72) 2 arctan <;§4§5>

which can be rewriting as:

4/5
15(1—x)4/5 1— /5 . 1l—x
21/ Warctan T3 215 < | arcsinh T2 . (2)
We use two following inequalities and one formula. (The first one is evident,
the second one see [3], formula follows from [1] 1625,9, NV 59,(6))

3
x
arctanx > x—? for 0 < x,

inhz > 3z for 0 <
arcsinhx —  for x,
T 24+ V1+ 22
1l—=x T
arctan = — —arctanz forzxz > —1.
1+ 4

We divide the proof of the inequality (2) into two cases. The first case is a
proof of the inequality

NEPRYY 12/5 1—2\\"?
o1/5 (1 - zi/s (g — Ay mT) < (arcsinh (1 n i)) ; (3)

for x € (0,0.1 >,
and the second case is a proof of the inequality

4/5
_ \4/5 3 (1l=z
21/5& T arctan (x4/5) < (1”) (4)
1— a5 \1 2
N
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for z €< 0.1,1). If we show this, the proof will be done.
Proof of (3).

Denote

1— 1— 12/5\ 5/4
F(x) = arcsinh (1_x) — 21/4(1(—30) (Z — '+ x_) , ()

+x _ x4/5)5/4 4 2

for x € (0,0.1 > .

Because of F(0) = 0.0021, F(0.1) = 0.0031, F'(0) = +o0, to prove (3) it
suffices to show that F’(z) has only one root in (0,0.1), where

x_ 4)5 | a2/

-2 (4 T+ )

) : e N T
(1 + 27) 1 + (H—x) t

y 7r+ 4/5 x12/5+5(1—x) —4 +6x7/5 "
T 2 4 5215 5

12/5\ 5/4 1 — A5\ /4
% (1_1‘4/5)5/4_'_ (E_m4/5+l’_) (1_l‘)u )

1/4

X

4 2 xl/5

F'(z) = 0 is equivalent to
12/5
24/ (1- x4/5)9 = (1+2)*(1+2%)? (% — a5 4 xT) X

3 3 !
(1 _ % 1 gxl/s _ o §$8/5 195 g g12/5 4 9,18/5 531317/5) . (6)

for x € (0,0.1 > . Put z = 5, then ¢t € (0,0.6310 > . It is evident, that
F'(x) = 0 has only one root € (0,0.1 > if and only if

24 (1 — t4)° y
(14 t5)4 (1 4 110)% (2 — ¢4 4+ £2)
1
X 1 1 (7)
(1— T4 T — 25 — 1.5¢8 419 + ¢12 4 2¢13 — 1.5¢17)

L(t)

has only one solution in (0,0.6310 > . Because of L(0) = 0, L(0.6310) = 1.5614
it will be done, if we show that L(t) is an increasing function on (0,0.6310 > .
Denote L(t) = 2f1(t) f2(t), where

1—t

fit) = W7
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(1 —

folt) = (1+6) (1+t10)2

1

X .
(1= T 4 Tt — 25 — 155 + 9 + 112 4 2413 — 1.5¢17)"

If we show that f; and \/fs are increasing functions, then L will be an increas-
ing function.

Denote w(u) = (1 —u)/ (% —u+ “;) for u € (0,0.6310* >= (0,0.1585 > .
Then w'(u) > 0 if and only if s(u) = 1 — % — 3u? + «* > 0. Because of
s'(u) = 3u(u — 1) < 0, $(0.1585) = 0.1809 we have fi(f) is an increasing
function on (0,0.6310 > .

Denote /fo = f3f1 where

th*(t) _tR(t)
f3(t) = FOLIOYION fat) = EOYIOk

dit) =1+t°, fit)=1- % i gt o5 15t 410 4 12 4 213 — 15417,

b(t) =1—1t* c(t)=1+1,

If we show that f; and f, are increasing functions, then f, will be an increasing
function, so L will be an increasing function on (0,0.6310 > . It will be done
if we show f; > 0 and f} > 0. It is equivalent to prove

f5() = (b()e(t)d(t) + 2t (t)e(t)d(t) — th(t)c' (£)d(t) — tb(t)c(t)d () f(£) —

th(t)c(t)d(t) f'(t) > 0, (8)
fo(t) = (b(t)e(t) + 26/ (t)e(t) — tb(t)c' (1)) f(t) — tb(t)c(t) f'(t) > 0. (9)
We prove (8). Some calculations give

(b(t)c(t)d(t) + 2tV (£)e(t)d(t) — th(t)c ()d(t) — tb(t)e(t)d (t)) =
1— 9t —4t® — 144° + 10 4 1 — 144" + 6117,
th(t)c(t)d(t) =t — 7 + 10 — 10 41t — 415 416 420,
It implies
T 9m 4 5 O 4 m 9
= 1l——+{— - — - —t — — 14t
f5(t) 1 4+(4 9)t + (4 — )t rad +

21 7T 19 ™
2048 _IT g9 ) g0 _ 222 g8 (6 _ _> (14
p T ( 7 " > 2 * 1)t

1 . 3
(47 —6) " + (3 — %) 10+ 25¢17 — %tlg — (14 + 7”) 9 4

17
(38 + %) 129 — 1481 4 5622 4 19t — 45¢%* + ?t% + 577 —

39¢28 — o3 + ?t” — %t%.
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Denote f5(t) = ay(t) + t*°ay(t) where

9 5 21
ar(t) = 1—%+(f—9>t4+(4—7r)t5—£t6+7t8+

m m 19 T
M4 _IM g 410 _ 272 g3 (——>t14
(F-aa)es (-Trro) oo Do asr (5= T) s
1
(47r—6)t15+(3—%)1&1%2515”—%7 <14+32)t19+

3420,

7 17
ax(t) = <4 + Zﬂ) — 14t + 5% + 19¢° — 45¢* + ?56 + 5t7 — 39t% —

169 15 69 14
STt

We show ay(t) > 0, a3(t) > O. Put ay(t) = B1(t) + t°82(t) where

ottt +

7
Bi(t) = (4 + f) — 14t + 5% + 19¢* — 45¢*

and 17 169 . 69
Bo(t) = - - 39t% — 9t + Tt6 - 77510.

Because of

51(0.6310) = 0.2942, B(0) = —14, BI(t) = 0 & t = 0.2778, t = —0.0667,
p1(0.2778) = —10.6821 we have (;(t) > 0. (We used Cardano’s formula and
Matlab.)

We have By > 0 if

s(t) = 17 + 10t — 82.6t* + 158t° > 0.

We used t < 0.6310. We prove s(t) > 0 if we show for example

17+ 10t

7 > 158(1 — ) > 82.6 — 158",

This is equivalent to
s1(t) = 17 4 10t — 158t% + 158t* > 0

and
So(t) = 158 — 82.6 — 158t + 158t* > 0.

Using Cardano’s formula we have s;(t) = 0 only for ¢ = —0.2675, which implies
s1(t) > 0. Next s9(t) = 0 only for complex number ¢, which implies sq(t) > 0.
So we proved as(t) > 0.
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Put ay(t) = v (t) + t'%9(t) where

™ 9 om 21
= 1=-= - _ 4 4 — )5 — 546 T8
n(®) 4 (4 9)75 ( )t 4t 2t

(%ﬂ — 14) 9 + (—%ﬂ + 14.8) 0,

19 15
n(t) = 42— 7 —6t°+ <6— %) 44 (4r — 6) 85 + <3— —”) £+

and

25¢7 — %ﬁ — (14 + 37”) 2 + 34410,

Because of v,(0.6310) = 0.00071784 it suffices to show that ~i(t) < 0. It
implies v, (t) > 0. v{(¢) < 0 is equivalent to &;(t) + t*d2(t) < 0 where

B ™ 157 , 4
() = =36 (1 - Z> +5(4 = m)t = 4 90,
and . -
Sy(t) = —6+9 (g - 14) t+10 (—7” + 14.8) 2.

Using Cardano’s formula we have ;(t) = 0 only for t = 0.6330 and t = —0.2675
which implies d;(f) < 0. Next d»(t) = 0 only if ¢ = 0.8883, which implies
d2(t) < 0. So we proved v, (t) > 0.

Now we prove 7,(t) > 0. We show that 75(¢t) < 0. It implies the proof
because of 75(0.6310) = 0.1622. We have

Y5(t) = th(t) =t [-19 — 18t + (24 — m) t* + 5 (47 — 6) *+
1
6 (3—%) 4+ 7% 258> — 5T x4t° — 9 (14+3§) t7+340t8] .

Because of h(0) = —19 and h(0.6310) = —17.2052 it suffices to show that A is

a convex function. Simple computation gives
R"(t) = 48 — 27 + 30 (4w — 6) ¢ + 54 (4 — 57) t* + 3500¢> —
3
634014 — 378 <14 + ;) £7 + 2448015,
We see that h"(t) = hi(t) + ha(t) where

hi(t) = 30 (47 — 6) + 108 (4 — 57) t + 2100¢2,

3
ha(t) = 8400t — 27360¢% — 1890 (14 + 7”) #4 6 % 2448015,
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Using Cardano’s formula we have hy(t) = 0 only for complex number ¢ which
implies hy(t) > 0. Next ha(t) = 0 only if ¢ = 0 or ¢ = —0.4518 which implies
ha(t) > 0. So we proved a;(t) > 0 which implies f5(t) > 0.

Now we show fg(t) > 0. Simple calculation gives fg(t) = g1(t) + t'%g2(¢),
where

9 5 21
gl(t)zl—%—l—(—W—9>t4+(4—7r)t5——Wt6+—t8—(4—7r)t9+

4 4 2
3
g — — |t
(s-7)

19 99
g2(t) = 10 — 7252 — 6t% — 15¢* + 3t° 4+ 10t — 29¢% — 4¢'! + 7512 —
39

—t16.

2

Using t < 0.6310 we have
19 , 3
g2(t) > ga(t) =10 — o1 =162

Because of ¢4(0.6310) = 2.1474 and ¢)(t) < 0 we have that go(t) > 0. Next
g1(t) = e1(t) + t8ey(t) where

9 5
ety =1— % + (f - 9) ey (4—m)tt — ftﬁ +10.1¢%,

3
go(t) =04 — (4 —m)t + (8 — ZW) t2.
We show &1(t) > 0, and e5(t) > 0. Because of £(0.6310) = 0.0002408 and
€9(t) = 0 only for ¢ complex number, it suffices to show ¢} (t) < 0 which is
equivalent to

15
() = —36 (1 - %) +5 (A= m)t— ST+ 808 < 0.

Using Cardano’s formula and Matlab we have €3(t) = 0 only for ¢ = —0.7353
and t = 0.6573 which implies £;(t) > 0. So we proved fs(t) > 0.
Now we show the second case which is the inequality (4). (4) is equivalent

to
34/5 1— 4/5
arctan (x4/5) > T ( ° ) (10)

4 21/5 (2(1+:E)+ T—}-QZEQ)ZL/S
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for v €< 0.1,1).

Denote

4/5 1 _..A4/5
G1(z) = arctan (3:4/5) _T + 3 (1 —a%?)

4 21/5 (2(1+x)+ /—2_’_2:1;2)4/5.

for x €< 0.1,1). Because of G1(1) = 0 it suffices to show that G (z) < 0. Put
t = 2°. We show G'(t) = %t(x) < 0 for t €< 0.6310,1). Simple computation
gives that G'(t) < 0 is equivalent to

s (201 + 1) + 2 5 210) 7 42UtV

1 (81) (204+45)+v252e10) /272410
L+e8 \ 2 (2(1 + 1) + V2 + 210)*"
which can be rewriting as
9 5
(200+8) + v2+200) (V2520) < 81x16(1+19)° (11)
5
[(1 F V2120 41+ tG}

for t €< 0.6310, 1).

We distinguish two cases. The first is (11) for ¢ €< 0.6310,0.67 >, the
second is (11) for t €< 0.67,1 > .

Proof of (11) for t €< 0.6310,0.67 > .

We use two following inequalities, which are evident.

V14110 <1405 V14110 > 1404976t > 1+ 0.4362t™°

for t €< 0.6310,0.67 > . (11) will be proved if we show for example

8(x/§(1+t5)+1+§>9(1+§)5<81(1+t8)5x (12)

[(1 V2L + 0.4362£10) + 1+ t6] .

Denote
tlo th
a(t) = V2(L+£)+ 1+, bt) =1+,
ct) = 1+1t% dt) = (1+t)V2(1 +0.43620) + 1 + 15,

8a’b°
81cPdd”
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Now we prove H(t) < 1 for t €< 0.6310,0.67 > . Using 2.5607 < a(t) < 2.6143
for t €< 0.6310,0.67 > it suffices to show that

8a(t)'b(t)° < 81 % 2.5607c(t)’d(t)®,
which is equivalent to

O(t) = % < 1.917. (13)

Using 0.6310 < ¢t < 0.67 we have that (13) will be done if we prove S(t) =
a(t)? — 1.8996¢(t)d(t) < 0. Simple calculations give

S(t) < —0.1717 — 2.6863t + 6.8286t° — 1.8996t° — 4.585t% — 2.6863t" +
3.2425¢10 — 1.8996¢™ — 11717t 4 /2t1° — 1.17171¢'8 —
L1771 + 0.25¢%.

Using 6.8286t° < 1.376t, 3.2425¢' < 2.1725¢? we have S(t) < 0.
Proof of (11) for t €< 0.67,1 > .
Denote

frt) = 21+8) + V2 + 2110,
‘) = (L4183 [(1+6)V2 4 2610 + 1 + ¢°]
S V2 + 2t10 ’
then (11) is equivalent to A(t) = (f*(¢))?/(g*(t))°® < 81 * 16.
Because of A(1) = 81x%16 it suffices to show that X'(t) > 0 for t €< 0.67,1).
This is equivalent to ¢(t) = 9f* (t)g*(t) — 5f*(t)g* (t) > 0.
Simple calculations give

10¢°

V2 + 2110
8t7(1 4 ¢° 14+ 8)(12t° — 10¢° + 215
gr(t) = 1+8"+9°+ a+e) A+ 27

V2 + 2t10 (2 + 2t10)y/2 + 2¢10

¢(t) > 0 is equivalent to v/2 + 2t19a*(t) + *(t) > 0 where

7@ = 10t* +

af(t) = =24+ 181+ 1087 — 247 — 185 4 14¢% — 2410 - 212 — 14413 +-
18t 4 24 — 10417 — 18418 + 2122,
BE(t) = —2+ 18" — 1267 — 32t7 — 18¢° + 287 4 20¢1° + 12¢"2 — 28¢13 +

2811 — 2115 — 207 — 281" + 1819 4 32620 + 12422 — 2 4 2177,
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Using v/2 4 2t10 > /2 + 2% 0.6710 = 1.4270 we show that
x(t) = 1.4270a (t) + B*(t) > 0.
Simple calculations give

x(t) = —4.854 4 43.686t* + 2.27t° — 66.248t" — 43.686t° 4- 47.978t° +
17.146¢'° + 14.854¢'% — 47.978¢'3 + 53.686¢'* + 32.248¢1° — 34.27¢'7
—53.686t" + 18+ + 32t%° + 14.8541%% — 2t*3 + 247,

It is evident that x(t) > my(t) 4+ t'%ma(t) > 0, where

mi(t) = —4.854 + 43.686t* + 2.27t° — 66.248t" — 43.686t° + 47.978t° +
21.146t",
mo(t) = —4+4 14.854t% — 47.978t% + 53.686t" + 32.248t° — 34.27t" —

53.686t% + 18t + 30¢'°.

We prove my(t) > 0, and ma(t) > 0.
Because of m»(0.67) = 0.1897 it suffices to show mj(¢) > 0. We have

mh(t) = t(29.708 — 143.934t + 214.744t* + 161.24¢> — 239.89t° —
429.488t% 4- 162t + 300t®) = t[u1 (t) + t*pa(t)]

where

pi(t) = 29.708 — 143.934¢ + 214.744t* + 161.24t> — 261¢*,
pa(t) = 261 — 239.89t — 429.488t% + 162> 4 300t*.

Using Cardano’s formula and Matlab we have p(t) = 0 only for t = —0.9618
and ¢ = 1.0027. Next ps(t) = 0 only for complex numbers, which implies
ma(t) > 0. Now we show m;(t) > 0. Simple calculation gives

mi(t) = t01(t) = t3(174.740 + 11.35¢t — 463.7361> — 349.488t* +
431.802t° 4 211.46t°),
my(t) = t20o(t) = t3(524.232 + 45.4t — 2782.41° — 2446.4¢* + 3454.4¢° +
1903.1t°%),
ol (t) = 11.35 — 3% 463.736t> — 4 % 349.488t> + 5 % 431.802t* +
= 46 %211.46t°,
o] (t) = t(—6%463.736 — 12 % 349.488¢ + 20 * 431.802t> + 30 * 211.46t%),
0h(t) = 45.4 — 3% 2782.41% — 4 % 2446.4t> 4 5 * 3454.4t" + 6 * 1903.1¢°,
oy (t) = t(—6%2782.4 — 12 % 2446.4¢ + 20 * 3454.4t> 4 30 * 1903.1¢°).
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We show that

1. is a concave function on < 0.67,0.9 >
) II. is a decreasing function on < 0.9,0.9698 >
m
! III. is a convex function on < 0.91,1 >
IV. is an increasing function on < 0.97,1 > .
Because of

m1(0.67) = 0.1574, m,(0.9) = 0.618, m1(0.968) = 0.0723,

m1(0.97) = 0.0723, my(1) = 0.202, m1(0.91) = 0.5082,

m’ (0.9698) = —0.0247, m/,(0.97) = 0.0532, g,(0.91) = 4728.8,
(0.67) = —136.6314, 0,(0.9) = —17.1866, ¢/ (0.9) = 31.0811,

(0.97) = 427.3728,

0y =0 if and only if t = —1.4268,¢t = —0.3571,t = 0.5739

(we used Cardano’s formula),

o/ = 0 if and only if = —1.6031, = —0.4160, t = 0.6577

(we used Cardano’s formula),

02
01

and the tangent line y = 0.0723 — 0.0247(¢t — 0.9698) to m,(t) at the point
[0.9698,0.0723] is equal to 0 for ¢ = 3.8969 we get m;(t) > 0. The proof is
complete.
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