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Abstract 

         This paper presents an alternative numerical computation of a 
system of linear and nonlinear fractional partial differential equations 
obtained by employing fractional reduced differential transform method 
(FRDTM), where Caputo type fractional derivative is taken. The 
effectiveness and convergence of FRDTM is tested by means of four 
problems, which indicate the validity and great potential of the FRDTM 
for solving system of fractional partial differential equations.   

     Keywords: System of nonlinear fractional partial differential equations, 
Caputo time-fractional derivatives, Mittag-Leffler function, fractional reduced 
differential transform method, coupled viscous Burgers equation 

1      Introduction 

          Fractional differential equation have achieved great attention among 

researchers due to its wide range of applications in various meaningful 

phenomena in fluid mechanics, electrical networks, signal processing, diffusion, 

reaction processes and other fields of science and engineering [1]–[6], among 

them, the non-linear oscillation of earthquake can be modeled with fractional 

derivatives [7], the fluid-dynamic traffic model with fractional derivatives [8] can 

eliminate the deficiency arising from the assumption of continuum traffic flow, 

fractional non linear complex model for seepage flow in porous media in [9].   

http://www.i-csrs.org/
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Keeping all this in mind, a lot of vigorous techniques has been introduced  for 

getting an approximate solution of such type of fractional differential equations, 

among others, generalized differential transform method [10], variation iteration 

method (VIM) [11],[32],[34], local fractional variation iteration method [12], 

modified Laplace decomposition method [13], reproducing kernel Hilbert space 

method [14], homotopy  analysis method (HAM) [15]-[17], [31], Adomian 

decomposition method [18], homotopy perturbation method (HPM) [30], [33] and 

homotopy perturbation Sumudu transform method [19].   

             Keskin and Oturanc proposed reduced differential transform method 

(RDTM) for finding approximate analytic solutions of partial differential 

equations [20]. After, seminal work of Keskin, FRDTM has been adopted to solve 

vigorous type differential equations arising in mathematics, physics and 

engineering [21]–[28].  The initial valued system of time-fractional partial 

differential equation has been solved by many research articles, see [29], [35]-[41].   

             The main aim of this paper is to present an implementation of fractional 

reduced differential transform (FRDT) method to compute an alternative 

approximate solution of initial valued autonomous system of linear and nonlinear 

fractional partial differential equations.   

 

2   Background 

        The basic preliminaries on fractional calculus as appeared in [1], [2] is 

revisited to complete this work.  

 

Definition 1 Let , .m 
 
A function :f  

 
belongs to the space C  

if there exists a real number withk k    such that ( ) ( )pf t t g t , 

where [0, ]g C  . Moreover,  C C   whenever    and 
mf 

 
if 

( ) .mf 
 

 

Definition 2 Let tJ 
 be Riemann – Liouville fractional integral operator and 

let ,f  then 
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Moreover, if m    ,  m , ( 1), , 0 1mf C and          , then the 

operator xJ   satisfy the following properties:  

i)      = ,x x x x xJ J f x J f x J J f x         

ii) 
 

 

1
,  x>0.

1
xJ x x   

 


 


  

 

Caputo and Mainardi [4] developed a modified fractional differentiation operator 

xD
 to overcome the discrepancy of Riemann-Liouville derivative. 

 

Definition 3 If 1 ,  , 0m m m t     , then Caputo fractional derivative 

of f C [4] is read as: 

(1)     
 

     
x

1

0

1
= x-t dt.

m mm m

x x xD f x J D f x f t
m

 



  
                                    

The basic properties of tD
 are as follows:  

Lemma 1 If 1 ,  m m m N     and ,  -1mf C   , then 

a)      = ,t t t t tD D f t D f t D D f t         

b) 
 

 

1
, t>0

1
tD t t   

 


 


  

 

c)    = ,  t>0,t tD J f t f t 
 

d)        
0

= 0 ,  t>0,
!

km
k

t t

k

t
J D f t f t f

k

  



  

For details study of fractional derivatives we refer the readers to [1-6]. 

 

3       FRDT method 

         This section concerned with the discussion of some basic results as in [20]-

[28], on fractional reduced differential transform to complete the paper. 

Throughout the paper, we denote the original function by ( , )x t  (lowercase) 
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while it’s fractional reduced differential transform (FRDT) by ( , )k x t  

(uppercase). 

 

Definition 4 FRDT (spectrum) of an analytic and continuously differentiable 

function  ,w x t  is defined by 

 
 

  
0

1
(2) ,

1

k

k t t t
W x D w x t

k



 

 

                                                                    

where   is order of fractional derivative.  The inverse FRDT of  kW x is defined 

as follows 

    0

0

(3) , .
k

k

k

w x t W x t t






                                                                                

From Eq. (2) and (3), one get  
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1
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t t t
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w x t D w x t t t
k










 
 

  

In particular for 0 0t  , we get  

   
 

  
0

0 0

1
(5) , , .

1

k k k

k t t
k k

w x t W x t D w x t t
k

  



 


 

 
 

     

Definition 5 The Mittag-Leffler function ( )E z  with 0   is defined by  

 
 0

(6) E
1

k

k

z
z

k









 

                                                                                

It is valid in the whole complex plane, and is an advanced form of  exp z and 

   
1

exp lim E .z z


  

Theorem 1 Let  kU x  and  kV x  be spectrum of analytic and continuously 

differentiable function    , and ,u x t v x t  respectively, then  

a) If      , , ,w x t u x t v x t , then  

         
0

.
k

k k k r k r

r

W x U x V x U x V x



  
 

b) If      1 2, , ,w x t u x t v x t  , then  

     1 2 .k k kW x U x V x 

 
c) If      , , , (x, t)x t u x t v x t w  , then  

     
0 0

( ) ( ) ( ) ( ).
k r

k k k k i r i k r

r i

x U x V x W x U x V x W x 
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d) If    , ,N

tx t D u x t  , then  
 

 
 

1 ( )
.

1
k k N

k N
x U x

k






  
 

 
 

e) If  , ( , )m nx t x t x t  , then 

 
( ), if

0, else.

m

k n

k

x x k n
x  

  
  


 

f) If  , m nx t x t  , then  

    ,m

k x x k n   

 
where   is defined by

1    if   0
( ) .

0    otherwise

k
k


 


 

4         Numerical study 

           This section deals with the main goal of the paper, is to obtain approximate 

analytical solution of initial valued autonomous systems of linear and nonlinear 

FPDEs, by adopting FRDTM. 

 

Problem 1 Consider the following initial valued autonomous system of the linear 

fractional partial differential equations with (0 , 1)   as: 

  

(7)   

*

*

( , ) ( , ) ( , ) ( , ) 0

( , ) ( , ) ( , ) ( , ) 0

( ,0) sinh( ) , ( ,0) cosh( )

t x

t x

D u x t v x t v x t u x t

D v x t u x t v x t u x t

u x x v x x





    


   
  


                                 

FRDTM on Eq. (4.1) leads the following recurrence relation 

(8)       

 

 

1

1

0 0

1 (1 )
( , ) ( , ) ( , ) ( , )

(1 )

1 (1 )
( , ) ( , ) ( , ) ( , )

(1 )

( ) sinh( ) , ( ) cosh( )

k k k k

k k k k

k d
U x t V x t V x t U x t

k dx

k d
V x t U x t V x t U x t

k dx

U x x V x x
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On solving the recurrence relation (8), we 

get

1 1

2 2

2 2

3

3 3

( 1) ( 1)
( ) cosh( ); ( ) sinh( )

(1 ) (1 )

( 1) ( 1)
( ) sinh( ); ( ) cosh( )

(1 2 ) (1 2 )

( 1) ( 1)
( ) cosh( ); ( ) sinh( )

(1 3 ) (1 3 )

U x x V x x

U x x V x x

U x x V x x

 

 

 

 
 
   

 
 
   

 
 
   

 

( , )u x t  

 

( , )v x t  

 
Fig. 1: The solution behavior of ,u v  of the IVS (7) in the computational domain ( , ).   
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By using inverse FRDTM, we have 
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        This is the required exact solution of system of linear fractional partial 

differential equations (7).  

 

Moreover, for 1   , Eq. (11) & (12) reduces to  

(11) ( , ) sinh( ); ( , ) cosh( ).u x t x t v x t x t                                                    
 

      The same exact solution is obtained by employing HAM [31], VIM [32] and 

HPM [33].  The solution behavior of ,u v  of the IVS (7) with 1    is 

depicted in Fig. 1. 

Example 2 Consider the following initial valued nonlinear autonomous system of 

FPDEs:  

(12)       

*

*

*

( , ,0) , ( , ,0) , ( , ,0) , 0 , , 1

t x y y x

t x y y x

t x y y x

x y x y x y

D u v w v w u

D v u w u w v

D w u v u v w

u x y e v x y e w x y e







     

    


  


  


    

          

FRDTM on Eq. (12) leads the following recurrence relation 

(13) 
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On solving the system (13), we get 

 

 

 
Fig. 2: The behavior of , ,u v w  of the IVS (12) with 1      in computational domain (0, 1.5).  

 

The inverse FRDTM leads to  
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Moreover, for 1,      Eq. (4.8)-(4.10) reduces to  

(17) ( , , ) , ( , , ) , ( , , )x y t x y t x y tu x y t e v x y t e w x y t e              

                     

       This is the required exact solution of system (12) of non linear fractional 

partial differential equations (FPDEs), which is same as obtained in [31] using 

HAM.  The solution behavior of , ,u v w  at 1t   is depicted in Fig. 2. 

 

Example 3: Consider the time-fractional coupled Burgers’ equations [34]: 

  

(18)         
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2

2

2

2
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t
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u u
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         FRDTM on Eq. (18) leads the following recurrence relation  

(19)         
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       On solving the system (19), we have 

1 1

2

2

( 1) ( 1)
( ) sin ; ( ) sin
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sin 2sin cos 2sin cos (1 )
( ) ,
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         The inverse FRDTM, leads to   

0

2

(20) ( , ) ( )

sin sin 2sin cos 2sin cos (1 )
sin

(1 ) (1 2 ) (1 2 ) (1 2 ) (1 )

k
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0

2

(21) ( , ) ( )

sin sin 2sin cos 2sin cos (1 )
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      The same solution is obtained by Yildirim and Kelleci [33] using HPM.  

 

In particular, for 1,    the solutions (20)-(21) reduces to 

 (22)      ( , ) sin , ( , ) sint tu x t e x v x t e x                                
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     This is the required exact solution of the initial values system of classical 

coupled viscous Burgers equation (18). This is same as the solution obtained by 

HPM [33], VIM [34] for 1   . The physical behavior of ,u v  in domain 

( , )    is depicted in Fig. 4, whereas Fig. 3 depicts the physical behavior of 

,u v  in domain ( 10,10) for different values of , .   
 

 
 

 
 

Fig. 3: The solution behavior of ) , )a u b v  of  (18) in domain ( 10,10)  at different time levels for 

1 (upper)  
 
and 1/ 3, 0.2 (lower).    
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Fig. 4: Behavior of ,u v  of system (18) in domain ( , )   at different time levels. 

 

Example 4 Consider the coupled system of nonlinear fractional 

reaction diffusion equation as in [30]: 

(23)  

2 0.50.5

(1 ) , 0,

,

1
( ,0) , ( ,0) ,

11

t xx

t xx

kx

kxkx

u u u v u t

v v uv

e
u x v x

ee








    


 

  
      

                                         

where k  is constant.  

 

The FRDT method on Eq. (23) reduces to a set of recurrence relation 

as follows: 

(24)  
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On simplifying (24), we get  
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( , ): 1.0u x t    

 
( , ): 0.8u x t    

 
( , ): 1.0v x t    

 
( , ): 0.8v x t    

Fig. 5: The behaviour andu v   of the Problem (23) for 0.8,1   at (0,1)t with 0.9, ( 10,10).k x    
 

The inverse FRDT method leads to  
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which is the required solution of the IVS of reaction-diffusion equation (23).  The 

same solution is obtained by HPM [30]. The solution behavior of the system of 

reaction-diffusion equation (23) is depicted in Fig. 5.  

 

5    Concluding remark  
     
         This paper is successfully implemented the FRDTM to solve the initial value 

autonomous system of time-fractional partial differential equations, including 

coupled viscous Burgers equations. The fractional derivative is taken into Caputo 

sense. The proposed solutions are obtained in the form of power series. The 

validity and efficiency of FRDTM has been confirmed by four test problems. It is 

found that the obtained solutions are agreed well with the solution obtained by 

HAM [31], HPM [30], [33] and VIM [32], [34].  

 

            The solutions are approximated without any discretization, perturbation, or 

restrictive conditions. The small size of computation of the scheme is the strength 

of the scheme.   

6     Open Problem 

          The implementaion of finite difference method / collocation method for the 

numerical computation of the initial values nonlinear autonomous system of time-

fractional partial differential equations is still a challenging problem.   
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