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Abstract

This paper presents an alternative numerical computation of a
system of linear and nonlinear fractional partial differential equations
obtained by employing fractional reduced differential transform method
(FRDTM), where Caputo type fractional derivative is taken. The
effectiveness and convergence of FRDTM is tested by means of four
problems, which indicate the validity and great potential of the FRDTM
for solving system of fractional partial differential equations.
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1 Introduction

Fractional differential equation have achieved great attention among
researchers due to its wide range of applications in various meaningful
phenomena in fluid mechanics, electrical networks, signal processing, diffusion,
reaction processes and other fields of science and engineering [1]-[6], among
them, the non-linear oscillation of earthquake can be modeled with fractional
derivatives [7], the fluid-dynamic traffic model with fractional derivatives [8] can
eliminate the deficiency arising from the assumption of continuum traffic flow,

fractional non linear complex model for seepage flow in porous media in [9].
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Keeping all this in mind, a lot of vigorous techniques has been introduced for
getting an approximate solution of such type of fractional differential equations,
among others, generalized differential transform method [10], variation iteration
method (VIM) [11],[32],[34], local fractional variation iteration method [12],
modified Laplace decomposition method [13], reproducing kernel Hilbert space
method [14], homotopy analysis method (HAM) [15]-[17], [31], Adomian
decomposition method [18], homotopy perturbation method (HPM) [30], [33] and
homotopy perturbation Sumudu transform method [19].

Keskin and Oturanc proposed reduced differential transform method
(RDTM) for finding approximate analytic solutions of partial differential
equations [20]. After, seminal work of Keskin, FRDTM has been adopted to solve
vigorous type differential equations arising in mathematics, physics and
engineering [21]-[28]. The initial valued system of time-fractional partial
differential equation has been solved by many research articles, see [29], [35]-[41].

The main aim of this paper is to present an implementation of fractional
reduced differential transform (FRDT) method to compute an alternative
approximate solution of initial valued autonomous system of linear and nonlinear

fractional partial differential equations.

2 Background

The basic preliminaries on fractional calculus as appeared in [1], [2] is

revisited to complete this work.

Definition 1 Let zeR, meN. A function f:R* — R belongs to the space C,
if there exists a real number k eR with k> such that f(t)=t"g(t) ,
where g eC[0,c0] . Moreover, C,cC, whenever f<a and feC] if
fMe C,.

Definition 2 Let J” be Riemann — Liouville fractional integral operator and
let f €C ,then

u?
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(*):Jff(t)=ﬁj(t-f)“1f(f)df, o0

(**): 3°f (t) = f (), where ['(z) = j e 't**dt,z e C.
0

Moreover, if [a|=m, meN, feC] (u>-1),a,f20andy>-1, then the

operator J;* satisfy the following properties:
i) I I F(X)=37 o (x)=303¢ f(x),

r(1+y)

— 7 X , x>0.
Frl+y+a)

i) J X" =

Caputo and Mainardi [4] developed a modified fractional differentiation operator
D,’ to overcome the discrepancy of Riemann-Liouville derivative.

Definition 3 If m-1<a<m, meN,t>0, then Caputo fractional derivative
of f €C,[4] is read as:

X

m-a-1
——[(xt)" "™ (t)dt.
ey [0
The basic properties of D, are as follows:

Lemmallf m-1<a<m, meN and f eC], u>-1,then

a) DfD/f(t)=Df*”f(t)=DfDy f(t),

(1) Dy f(x)=37D]f (x)=

I(1+y)

77, >0
IFl+y-a)

b) DX =
o DI f(t)=f (1), t>0,
@) 37D (H)=F (1)-3 19 (0") %, o,

For details study of fractional derivatives we refer the readers to [1-6].

3 FRDT method

This section concerned with the discussion of some basic results as in [20]-
[28], on fractional reduced differential transform to complete the paper.
Throughout the paper, we denote the original function by ¢(x,t) (lowercase)



23 FRDTM for numerical ....

while it’s fractional reduced differential transform (FRDT) by @, (X,t)
(uppercase).

Definition 4 FRDT (spectrum) of an analytic and continuously differentiable
functionw(x,t) is defined by

@ W, ()= gy O]

where a is order of fractional derivative. The inverse FRDT of W, (x)is defined
as follows

(3) w(xt) ZW

From Eq. (2) and (3), one get
1

(4) W(X’t)ZZM{kaW(X’t)}t-% (t—to)ka

In particular for t, =0, we get

1
5 w xt W tk“ =y ——ID™w(x,t t*,
®) Z Z Ml O O,
Definition 5 The Mittag-Leffler function E_(z) with & >0 is defined by

0 Zk
6) E =y ———
® ()= 2 i)
It is valid in the whole complex plane, and is an advanced form ofexp(z)and
exp(z)=limE, (z).

Theorem 1 Let U, (x) and V, (x) be spectrum of analytic and continuously

0

differentiable function u(x,t)andv(x,t) respectively, then

a) If w(x,t)=u(xt)v(xt), then

W, (X)=U, (x)®V, (x)= YU, (x)V,_

r=0

b) If w(x,t)=C(u(xt)£0,v(xt), then
W, (x)=0,U, (X) £V, ().
c) Ify(xt)=u(xt)v(xt)w(x,t), then

¥, (X)=U, (X)®V, (X)®W, (x) = Zk:iui (X) V_, (X)W, _, (x).

r=0 i=0
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1+(k+N)a)
I'(1+ka) on (%)

d) If y(xt)=D""u(xt), then ‘Pk(x):r(
e) If 9(x,t)=x"t"w(x,t), then

@k(x):{

f) 1f 9(x,t)=x"t", then

X"W,, ,(x), ifka>=n
0, else.

O, (x)=x"5 (ke —n),
. . 1 if k=0
where ¢ is defined by 5(k) = L
0 otherwise
4 Numerical study

This section deals with the main goal of the paper, is to obtain approximate
analytical solution of initial valued autonomous systems of linear and nonlinear
FPDEs, by adopting FRDTM.

Problem 1 Consider the following initial valued autonomous system of the linear
fractional partial differential equations with (0 < e, £ <1) as:

Dau(x,t) —v, (X, t) +v(x,t) +u(x,t) =0
(7) DAv(x,t)—u (X,t) +Vv(x,t) +u(x,t) =0

u(x,0) =sinh(x) , v(x,0)=cosh(x)
FRDTM on Eq. (4.1) leads the following recurrence relation
ri+@+k)e d
(r(1+—m))Uk+l(X,t) =5 (x )=V (xt)-U, (x,t)
I(1+@1+k)p)

r@d+kp)

U, (x) =sinh(x),V,(x) = cosh(x)

®) Vs (k) = U, (X0 -V, (X0 -U, (x)
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On solving the recurrence relation (8), we

_ (D : _ =D
U,(x) = f(ta) cosh(x); V,(x) = T A) sinh(x)
_ DT _ (Y’
U,(x)= Lt 20) sinh(x); V,(x) = Ut 25) cosh(x)
_ (Y : I G VI
getU,(x) = (L1 30) cosh( x); V,(X) = FL:37) sinh(x)
u(x,t)

Fig. 1: The solution behavior of u,v of the IVS (7) in the computational domain (-, 7).
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By using inverse FRDTM, we have

_ S ak__ a1 (_1) a (_1)2 H 2a
(9) u(x,t)_g(‘;uk(x)t _S|nh(x)+r(1+a) cosh(x)t +—F(1+2a) sinh(X)t** +

:sinh(x)[1+L+---]—cosh(x)[ t + t +]
I'l+2a) I'l+a) TI'(l+3a)

_N pr_ () (-1’ 2 ...
(20 v(x,t)_k;vk(x)t _COSh(X)+F(1+ﬂ) h(x)t” + (1+2ﬁ)cosh(x)t +

t?/ : t’ t*’
=cosh(X)| 1+ ——————+--- |—sinh(x) + 4+
( F@1+2p) j (F(1+ﬂ) I'(1+3p) J

This is the required exact solution of system of linear fractional partial
differential equations (7).

Moreover, fora = =1, Eq. (11) & (12) reduces to
(1D  u(x,t) =sinh(x-t); v(x,t) =cosh(x—t).

The same exact solution is obtained by employing HAM [31], VIM [32] and
HPM [33]. The solution behavior of u,v of the IVS (7) with a=£=1is
depicted in Fig. 1.

Example 2 Consider the following initial valued nonlinear autonomous system of
FPDEs:

Diu+v,w, —v, W, =—U
s —
12) Div+uw, +u w, =V
/4 —
Diw+uyv, +uyv, =w

u(x,y,0)=e"" v(x,y,0)=e*" ,w(x,y,0)=e™", O<a, B,y <1
FRDTM on Eq. (12) leads the following recurrence relation

{1+ (1+k)a} K 5 5 5
TTarka) 0T Z{( ‘j[ay “}_[EVJ(&W“}
L, o S 20 2, ) {202

N X R R e )

Yy X

0

W, (X, y) =W, — Zu
T(1+ky) (% Y) =W, ;{(GX
Uy(x,y)=e"", Vo(x,y)=e"", W, (x, y) =e7"
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On solving the system (13), we get

U, y) = — D s v (x,y) =

M+ a) ra ¢ M= ra 0

_ Yy o*y 1 1 .y
Va6 y) = 1+ 2) ’VZ(X'y)_r(1+2ﬁ) Wa(x,y) = r(1+2 )e

_ (_ )3 px* _ 1 x-y — 1 —X+y
Us(x,y) = —F(l +30) TV (x ) = —r(1+3ﬂ)e W (X, Y) —r(1+3y)e

— (_1)k 1 —X+y
Uk(x,y)—r(Hka) TV (X Y) = Tk kﬁ) W, (X, ) = s k )e vV k>1.

B

2 B oz

Fig. 2: The behavior of U,v,w of the IVS (12) with & = # =y =1 in computational domain (0, 1.5).

The inverse FRDTM leads to
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(14) u(x,y,t)=iuk(x,y)t“k **yzm ¢ R

(15) v(x,y,t)= ZV (x, Yt =e* yz ) _ e VE,(t”),

s 1+ k,B)
t7
16 t W t;/k —X+y ( e XYE (17
45) Wix Y= D e ™S e ()
Moreover, for o —ﬂ =y =1 Eq. (4.8)-(4.10) reduces to
@7) u(x,y,t)y=e"",  v(xyt)=e", w(x, y,t) =e "

This is the required exact solution of system (12) of non linear fractional
partial differential equations (FPDESs), which is same as obtained in [31] using
HAM. The solution behavior of u, v, w att =1 is depicted in Fig. 2.

Example 3: Consider the time-fractional coupled Burgers’ equations [34]:

2
D“u_a—2+2ua—u—£(uv)
OX OX OX
(18) Dﬂv—ﬂ+2v@—£(uv)
ox’ OX OX
u(x,0) = f(x)=sinx, v(x,0)=g(x)=sinx, 0<ea,f<1

FRDTM on Eq. (18) leads the following recurrence relation

2 k
w U, = d U Z 2U —(Ui iV|<4 +V, iukfi J
F(+ka) = ax dx

ISACLYT V. dz vl +Zk:(2v ivk ] —( JLRVERNY iuk_i))
rl+kp) = dx dx dx

U, =sinx

V, =sinx

On solving the system (19), we have

D __ (=D
Ul(X)—r(lm)SmX, Vi(x) = T 4)
U, (x) = sin x _Zsinxcosx+25|nxcosxF(1+a)

\r@+2a) T@+2a) T@+2a)T1+p)
Vz(x)=( 1 _2cosx_2c0sx[(L+f) ]sinx

r@+2p) r@+25) r+28rl+a)

(19)

sin X
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(X) = 8cosx 1 8cosx[(1+a)l(1+2a) inx
: [(1+32) T(+32)  [+32)C(1+p)
4sinxcosx 4sinxcos2x 4sinxcos2xI'(1+a)  2sinxcosx[(1+2a) 4sin xcos’x  2sinxcos’ XU (1+a)
I'(l+3a) I'(l+3a) F(+32)(1+p) T@U+3a{Il+a)¥ T+3a) T(+3a)C(1+B)
_[sinxcosxI'(1+2a) 2sinxcos2xI'(1+2a) . 2sinxcos 2xI'(1+2a)I (1 + B)
IQ+3)l(1+20) T1+32)I(1+20) T+3)I(1+28)(1+e)
2sin xcos xI'(1+2ax) . sin®x_ 2sin’ xcos N 2sin® xcos xI'(1+ )
IFA+3e)l+a)l(1+p4) T'l+3a) T(1+3a) T+3)C(1+5)
sin”XU(1+2a)  2sinxcosxI(1+20) . 2sin? xcos XI'(1+ 2a)T(1+ ﬁ)]

F+3)C(1+26) TA+3a)(1+25) T+3)I(1+28)(1+a)

0= - sinx +85inxcosx_85inxcosxl"(1+ﬂ)1"(1+2ﬂ)
L T@+38)  T(+3p) T(L+36)(L+a)
45|nxcosx 45mxcost+4smxc052xl"(1+,8) 2sinxcosxI'(1+2/) 4sinxcoszx+25inxcoszxr(1+/;’)
r1+3p) r'(1+3p) F1+38)T(l+a) TA+3/{CA+B)Y T@+3p) r+38)rl+a)
sinxcosxI'(1+2/) 2sinxcos2xI(1+2) . 2sinxcos2xI'(L+ 2/ (1+ )
Fl+38)r(l+2a) TE+34/T(1+2a) TL+38)(L+2a)(1+ )
2sin xcos xI'(1+2)9) sinx_ 2sin®xcosx  2sin® xcos X (1+ /)
TFL+38)r+prl+a) TA+38) T(1+3P) r1+3p5)r(l+a)
sin®xD(1+24)  2sinxcosX(1+2) | 2sin® xcos X' (1+ 28)(1+a)
TFL+38)r(l+2a) TE+38)T(1+2a) T'L+38)(L+2a)C(L+ f)

The inverse FRDTM, leads to
(20) u(x,t)=> U, ()t
k=0

sin x “. sin x _23inxcosx+25inxcosxF(1+a) 2a
I'l+2a) T(@Q+2a) T@+22)(1+p)

@) v(x1) =3V, ()t

sinx— SinX 4 sinx  2sinxcosx 2sinxcosXI'(1+ f3) | o
- 1+ p) r1+28) T@+28) T@+28)(l+a)

The same solution is obtained by Yildirim and Kelleci [33] using HPM.

In particular, for o = =1, the solutions (20)-(21) reduces to
(22) u(x,t)=etsinx,  v(xt)=e"sinx
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This is the required exact solution of the initial values system of classical
coupled viscous Burgers equation (18). This is same as the solution obtained by
HPM [33], VIM [34] fora = =1. The physical behavior of u, v in domain
(-, 7) is depicted in Fig. 4, whereas Fig. 3 depicts the physical behavior of
u, v in domain (-10,10) for different values of «, S.

a

0.00

10
Fig. 3: The solution behavior of a)u, b)v of (18) in domain (-10,10) at different time levels for
a= =1 (upper) and a =1/3, 5 =0.2 (lower).
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Analytical Solution

FRDTM for numerical ....

Fig. 4: Behavior of u, v of system (18) in domain (-, ) at different time levels.

Example 4 Consider the coupled system of nonlinear fractional
reaction diffusion equation as in [30]:

(23)

u' =u(l-u-v)+u,, t>0,
Ve =V, —uv,

kx

e 1
u(x,0) = ———, V(X,0)=c—-r-=,
9 [1+e°'5‘“]2 0 [1+6%% ]

where k IS constant.

The FRDT method on Eq. (23) reduces to a set of recurrence relation
as follows:

(24)

%, ()

PG9S0, 0000, () ()

I'l+ke)

@+ @+ k))a 62V (x) K
TTika) Via(X) = ;U WV, (%),

et _;
[1+ eO'SKX]Z S [1+e°% ]’

U, =

On simplifying (24), we get
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1 2pl8kx _ n2gkx (_2 + eO.Skx)

Lo I+ «] 2(1+ Q05kx )4 '
1 el (—e"* +e),
L I+ o] 4(1+ RES )3
g1 e (16ekX +4c%e" (786" + ™ ) ¢ (-8+33e°% ~18e" + " )) |
? T+ 2a] 8(1+¢™ )

1 (16e1'5kX (e 1) —8c’e™ (456" + e )+ ' (- +11e™ ~ 116" + ¢ ))

V, = :
F[1+ 2a] 16 (1+ eO.5kx )

=

1.0

x,1): =08

v(x,t): @ =1.0 v(
Fig. 5: The behaviour uand v of the Problem (23) for « =0.8,1 at t € (0,1) with k =0.9, x € (-10,10).

The inverse FRDT method leads to
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( t) ekx 1 2el.5kx _ Czekx (_2 + eO.Skx ) »
ux,t)= + +
[1+ese] TIl+al 2(1+e°%)’
1 e (16ekx 1 40205 (7 _ 805k 4 gk ) _ct (—8+ 33005k _ 18" 4 gl oKX ))
I+ 2] 8(l+ Q05kx )6
V(X’ t) _ 1 1 4" 42 (_eO.Skx 1 ek ) o

[1+ eO'SKXJ ’ M+ea] 4 (1_|_ 05k )3

1 (16e1.5kx (eO.Skx -1) _8c2e™ (4 _5glske | gk ) et (_eo.skx £11e" —11eM5% 4 g2k ))

I+ 2a] 16 (1+ Q05kx )5

which is the required solution of the IVS of reaction-diffusion equation (23). The
same solution is obtained by HPM [30]. The solution behavior of the system of
reaction-diffusion equation (23) is depicted in Fig. 5.

5 Concluding remark

This paper is successfully implemented the FRDTM to solve the initial value
autonomous system of time-fractional partial differential equations, including
coupled viscous Burgers equations. The fractional derivative is taken into Caputo
sense. The proposed solutions are obtained in the form of power series. The
validity and efficiency of FRDTM has been confirmed by four test problems. It is
found that the obtained solutions are agreed well with the solution obtained by
HAM [31], HPM [30], [33] and VIM [32], [34].

The solutions are approximated without any discretization, perturbation, or
restrictive conditions. The small size of computation of the scheme is the strength
of the scheme.

6 Open Problem

The implementaion of finite difference method / collocation method for the
numerical computation of the initial values nonlinear autonomous system of time-
fractional partial differential equations is still a challenging problem.

Conflict of interests: The author declares that there is no conflict of
interest regarding the publication of this article.
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