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Abstract

In this paper B-elements and C-elements are defined in an
ortholattice. We obtain an equivalent condition for an or-
tholattice to become a distributive lattice and hence Boolean
algebra in terms of B-elements. Using B-elements two con-
gruences are studied. Finally for each C-element, we obtain a
decomposition for an ortholattice.
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1 Introduction

In [3], every Boolean algebra is isomorphic to the direct product of two element
Boolean algebras. The concept of Boolean algebra plays a key role in lattice
theory and mathematical logic. Ortholattices are one of the generalization of
Boolean algebras. Several authors discussed about the structure of an ortho-
lattice. In [2], Ivan chazda characterized the ideals of an ortholattice. By an
ortholattice we mean an algebra (L,∨,∧,′ , 0, 1) such that (L,∨,∧, 0, 1) is a
bounded lattice and ′ is an unary operations satisfying the following identities

x′′ = x
x ∧ x′ = 0 and x ∨ x′ = 1
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(x ∧ y)′ = x′ ∨ y′ and (x ∨ y)′ = x′ ∧ y′
0′ = 1 and 1′ = 0.

In this paper, we introduce B-elements in an ortholattice and obtain some
properties on them which are useful in consequent sections. If a is a B-element
in an ortholattice L, we obtain two congruences θa, ψa on L. In fact θa (and
ψa) need not be a congruence in an ortholattice L, where a ∈ L. We obtain
two ortholattices namely La and Ra, which are not subalgebras of L, for any
a ∈ L. We define C-elements in an ortholattice. If a is a C-element and a & a′

are ∧-distributive, then we prove that L is isomorphic to La×La′ . Similarly, if
a is a C-element and a & a′ are ∨-distributive, then L is isomorphic to Ra×Ra′ .

2 B-elements in ortholattices

In this section, we define B-elements in an ortholattice and provide several
examples for it. Mainly, we obtain a necessary and sufficient condition for an
ortholattice to become a Boolean algebra.

Definition 2.1 An element a of an ortholattice (L,∨,∧,′ , 0, 1) is said to
be a B-element with respect to ∧, if for any x, y ∈ L, a ∧ x = a ∧ y implies
a ∧ x′ = a ∧ y′. Correspondingly, we can define B-element with respect to ∨.

From now onwards by L we mean an ortholattice (L,∨,∧,′ , 0, 1) in this
paper unless and otherwise stated by the authors.

Note 2.2 1. 0 and 1 are always B-elements with respect to ∧ and ∨ in L.
2. For any a ∈ L, a is a B-element with respect to ∧ if and only if a′ is a
B-element with respect to ∨.

Example 2.3 Let L = {0, a, b, a′, b′, 1} be an ortholattice whose Hasse-
diagram is

0

1

a b'

a'b
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Then a and b′ are B-elements with respect to ∧.

Example 2.4 Let L = {0, a, b, a′, b′, 1} be an ortholattice whose Hasse-
diagram is

0

1

a

b'a'

b

Then a is a B-element with respect to ∧.

Example 2.5 Let L = {0, a, b, a′, b′, 1} be an ortholattice whose Hasse-
diagram is

0

1

a'b b'a

Then there is no B-elements with respect to ∧ or ∨ except 0 and 1.

Example 2.6 Let L = {0, a, b, c, d, a′, b′, c′, d′, 1} be an ortholattice whose
Hasse-diagram is
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0

c

a'

b'

c'
d

d'a

b

1

Then a, c, and d′ are B-elements with respect to ∧. b is neither B-element with
respect to ∧ nor ∨.

Theorem 2.7 Let L be an ortholattice in which every element is B-element
with respect to ∧. Then L is distributive and hence a Boolean algebra.

Proof: Suppose that L is an ortholattice in which every element is a B-element
with respect to ∧. We claim that L has no copy of N5 and M5.
Case 1. Let us assume that L has a copy of N5. Then there exist a, b, c ∈ L
such that a > b, a ∨ c = b ∨ c and a ∧ c = b ∧ c. Then a′ < b′, a′ ∨ c′ = b′ ∨ c′
and a′ ∧ c′ = b′ ∧ c′. Take x = a∧ b′. If x = 0, then a∧ b′ = x = 0 = a∧ a′. By
our hypothesis, a ∧ b = a ∧ a = a, which is not true in N5. So, x ̸= 0. Now,

c ∧ x = c ∧ (a ∧ b′) = (c ∧ a) ∧ b′ = (c ∧ b) ∧ b′ = 0 = 0 ∧ x

c′ ∧ x = c′ ∧ (b′ ∧ a) = (c′ ∧ b′) ∧ a = (c′ ∧ a′) ∧ a = 0

By our hypothesis, 0 = x ∧ c′ = x ∧ 0′ = x ∧ 1 = x. Which is a contradiction
to x ̸= 0. Therefore L has no copy of N5.
Case 2. Let us assume that L has a copy of M5. Then there exist a, b, c ∈ L
such that a ∨ b = a ∨ c = b ∨ c and a ∧ b = a ∧ c = b ∧ c. We have same
conditions on a′, b′, c′. Take x = a ∧ b′. If x = 0, then a ∧ b′ = x = 0 = a ∧ a′.
By our hypothesis, a∧ b = a∧ a = a. But this implies a ≤ b, which is not true
in M5. So, x ̸= 0. Now,

c ∧ x = c ∧ (a ∧ b′) = (c ∧ a) ∧ b′ = (c ∧ b) ∧ b′ = 0 = 0 ∧ x

c′ ∧ x = c′ ∧ (b′ ∧ a) = (c′ ∧ b′) ∧ a = (c′ ∧ a′) ∧ a = 0.

By our hypothesis, we get 0 = x ∧ c′ = x ∧ 0′ = x ∧ 1 = x. Which is a
contradiction to x ̸= 0. Therefore L has no copy of M5. Thus L is distributive
and hence a Boolean algebra. �

Corollary 2.8 Let L be an ortholattice in which every element is B-element
with respect to ∨. Then L is distributive and hence a Boolean algebra.
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3 Congruences on ortholattices

Let us denote B be the set of B-elements with respect to ∧ and B′ is the set of
B-elements with respect to ∨. For each B-element, we study two congruences.
In an ortholattice, we present two ortholattice structures which are not sub
ortholattices.

Theorem 3.1 For any a ∈ B, the set θa = {(x, y) | a ∧ x = a ∧ y} is a
congruence on L.

Proof: It is easy to verify that θa is an equivalence relation on L. Let
x1, y1, x2, y2 ∈ L such that a ∧ x1 = a ∧ y1 and a ∧ x2 = a ∧ y2. Then
a ∧ x′1 = a ∧ y′1 and a ∧ x′2 = a ∧ y′2 (since a ∈ B). Now,

a ∧ x1 ∧ x2 = a ∧ a ∧ x1 ∧ x2
= a ∧ x1 ∧ a ∧ x2
= a ∧ y1 ∧ a ∧ y2 (by our assumption)
= a ∧ a ∧ y1 ∧ y2
= a ∧ y1 ∧ y2

and
a ∧ (x1 ∨ x2)′ = a ∧ x′1 ∧ x′2

= a ∧ x′1 ∧ a ∧ x′2
= a ∧ y′1 ∧ a ∧ y′2 (by our assumption)
= a ∧ y′1 ∧ y′2
= a ∧ (y1 ∨ y2)′.

So, a∧ (x1∨x2) = a∧ (y1∨y2) (since a ∈ B). Therefore (x1∧x2, y1∧y2), (x1∨
x2, y1 ∨ y2) ∈ θa. Hence θa is a congruence on L. �

Note 3.2 If a is not a B-element with respect to ∧, then θa need not be
a congruence on L. For, see Example 2.3., θb is not a congruence (because
(a′, b′) ∈ θb but (a, b) /∈ θb), where as b is not a B-element with respect to ∧.

Theorem 3.3 For any a ∈ B′, the set ψa = {(x, y) | a ∨ x = a ∨ y} is a
congruence on L.

Proof: It is easy to prove that ψa is an equivalence relation on L. Let
x1, y1, x2, y2 ∈ L such that a ∨ x1 = a ∨ y1 and a ∨ x2 = a ∨ y2. Then
a ∨ x′1 = a ∨ y′1 and a ∨ x′2 = a ∨ y′2 (since a ∈ B′). Now,

a ∨ x1 ∨ x2 = a ∨ a ∨ x1 ∨ x2
= a ∨ x1 ∨ a ∨ x2
= a ∨ y1 ∨ a ∨ y2 (by our assumption)
= a ∨ y1 ∨ y2
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and
a ∨ (x1 ∧ x2)′ = a ∨ x′1 ∨ x′2

= a ∨ x′1 ∨ x′2
= a ∨ a ∨ x′1 ∨ x′2
= a ∨ y′1 ∨ a ∨ y′2 (by our assumption)
= a ∨ y′1 ∨ y′2
= a ∨ (y1 ∧ y2)′.

So, a∨ (x1∧x2) = a∨ (y1∧y2) (since a ∈ B′). Therefore (x1∧x2, y1∧y2), (x1∨
x2, y1 ∨ y2) ∈ ψa. Hence ψa is a congruence on L. �

Note 3.4 If a is not a B-element with respect to ∨, then ψa need not be
a congruence on L. For, see Example 2.3., ψb′ is not a congruence (because
(a, b) ∈ ψb′ but (a

′, b′) /∈ ψb′), where as b′ is not a B-element with respect to ∨.

Definition 3.5 An element a of L is said to be ∧-distributive, if for any
x, y ∈ L, a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y).

It is easy to prove that if a, b are ∧-distributive, then a∧b is also ∧-distributive.

Theorem 3.6 Let a be a ∧-distributive element in L. Then the set La =
{a ∧ x | x ∈ L} is itself an ortholattice with induced operations ∨,∧ and the
unary operation ∗ defined by x∗ = (a ∧ x)∗ = a ∧ x′, for all x ∈ La.

Proof: It is easy to verify that (La,∨,∧, 0, a) is a bounded lattice. Let x, y ∈ L
such that x = a ∧ x, y = a ∧ y. Then,

x∗∗ = (a ∧ x)∗∗ = a ∧ (a ∧ x′)′ = a ∧ (a′ ∨ x) = a ∧ x = x,

(x ∨ y)∗ = a ∧ (x ∨ y)′ = a ∧ x′ ∧ y′ = (a ∧ x′) ∧ (a ∧ y′) = x∗ ∧ y∗,

and

(x ∧ y)∗ = a ∧ (x ∧ y)′
= a ∧ (x′ ∨ y′)
= (a ∧ x′) ∨ (a ∧ y′) (since a is ∧ -distributive)
= x∗ ∨ y∗

Therefore (La,∨,∧,∗ , 0, a) is itself an ortholattice. �

Theorem 3.7 Let a be a ∧-distributive element in B. Then the mapping
f : L→ La defined by f(x) = a∧ x, for all x ∈ L, is a homomorphism from L
onto La.
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Proof: Let x, y ∈ L. Then

f(x ∧ y) = a ∧ x ∧ y = (a ∧ x) ∧ (a ∧ y) = f(x) ∧ f(y)

f(x ∨ y) = a ∧ (x ∨ y)
= (a ∧ x) ∨ (a ∧ y) (since a is ∧ -distributive)
= f(x) ∨ f(y)

and f(x′) = a ∧ x′ = a ∧ (a′ ∨ x′) (since a is ∧-distributive) = a ∧ (a ∧ x)′ =
(f(x))∗. Therefore f is a homomorphism from L onto La. �

Definition 3.8 An element a of L is said to be ∨-distributive, if for any
x, y ∈ L, a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y).
It is easy to prove that if a and b are ∨-distributive, then a ∨ b is also ∨-
distributive.

Theorem 3.9 Let a be a ∨-distributive element in L. Then the set Ra =
{a∨x | x ∈ L} is itself an ortholattice with the induced operations ∨ & ∧, and
the unary operation ∗ is defined by x∗ = (a ∨ x)∗ = a ∨ x′, for all x ∈ Ra.

Proof: Let x, y ∈ L such that x = a ∨ x and y = a ∨ y. Then,

x ∨ y = (a ∨ x) ∨ (a ∨ y) = a ∨ (x ∨ y) ∈ Ra,

x ∧ y = (a ∨ x) ∧ (a ∨ y) = a ∨ (x ∧ y) ∈ Ra (since a is ∨ −distributive),

and
x∗ = a ∨ x′ ∈ Ra.

Therefore (Ra,∨,∧,∗ , a, 1) is a bounded lattice. For x, y ∈ L,

x∗∗ = (a ∨ x′)∗
= a ∨ (a′ ∧ x′′)
= (a ∨ a′) ∧ (a ∨ x) (since a is ∨ −distributive)
= 1 ∧ (a ∨ x)
= a ∨ x
= x.

(x ∧ y)∗ = a ∨ (x ∧ y)′
= a ∨ (x′ ∨ y′)
= (a ∨ x′) ∨ (a ∨ y′)
= x∗ ∨ y∗.

(x ∨ y)∗ = a ∨ (x ∨ y)′
= a ∨ (x′ ∧ y′)
= (a ∨ x′) ∧ (a ∨ y′) (since a is ∨ −distributive)
= x∗ ∧ y∗.

Therefore Ra is an ortholattice. �



8 P.Sundarayya, Ramesh Sirisetti, V.Sriramani

Theorem 3.10 Let a be a ∨-distributive element in B. Then the mapping
g : L→ Ra defined by g(x) = a∨ x, for all x ∈ L, is a homomorphism from L
onto Ra.

Proof: Let x, y ∈ L. Then

g(x ∧ y) = a ∨ (x ∧ y)
= (a ∨ x) ∧ (a ∨ y) (since a is ∨ −distributive)
= g(x) ∧ g(y)

g(x ∨ y) = a ∨ (x ∨ y) = (a ∨ x) ∨ (a ∨ y) = g(x) ∨ g(y).
and g(x′) = a∨x′ = 1∧ (a∨x′) = a∨ (a′∧x′) = a∨ (a∨x)′ = a∨g(x)′ = g(x)∗

(since a is ∨-distributive). Therefore g is a homomorphism from L onto Ra.
�

4 C-elements in ortholattices

In this section, we define C-elements in an ortholattice. For each C-element,
we obtain a factor congruence and hence it leads to a decomposition for an
ortholattice.

Definition 4.1 A B-element a with respect to ∧ (or with respect to ∨ ) of an
ortholattice L is said to be a C-element, if it satisfies the following conditions;
for any x, y ∈ L,

(i) (a ∨ a′) ∧ x = (a ∧ x) ∨ (a′ ∧ x) = x
(ii) a ∧ [(a ∧ x) ∨ (a′ ∧ y)] = a ∧ x
(iii) a′ ∧ [(a ∧ x) ∨ (a′ ∧ y)] = a′ ∧ y

It can be easy to verify that if a is a C-element of L, then a′ is also a C-element
of L.

Note 4.2 Every B-element need not be a C-element in L. For, see Example
2.3., a is a B-element but not a C-element in L (because a = (a∧b)∨(a′∧b) ̸= b)

Lemma 4.3 For any C-element a of L, θa ∩ θa′ = ∆.

Proof: Let (x, y) ∈ θa ∩ θa′ . Then a ∧ x = a ∧ y and a′ ∧ x = a′ ∧ y. Now,

x = 1 ∧ x = (a ∨ a′) ∧ x
= (a ∧ x) ∨ (a′ ∧ x) (since a is a C-element)
= (a ∧ y) ∨ (a′ ∧ y)
= (a ∨ a′) ∧ y (since a is a C-element)
= 1 ∧ y = y

Therefore θa ∩ θa′ = ∆. �
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Lemma 4.4 For any C-element a of L, θao θa′ = L× L.

Proof: Let x, y ∈ L. Take t = (a ∧ x) ∨ (a′ ∧ y). Then a ∧ t = a ∧ [(a ∧ x) ∨
(a′ ∧ y)] = a∧x (since a is a central element). Therefore (t, x) ∈ θa. Similarly,
a′∧ t = a′∧ [(a∧x)∨ (a′∧ y)] = a′∧ y (since a is a central element). Therefore
(t, y) ∈ θa′ . Hence (x, y) ∈ θao θa′ . Thus θaoθa′ = L× L. �

Now, we have the following from the above two lemmas

Theorem 4.5 If a is a C-element of L, then θa is a factor congruence on
L.

Theorem 4.6 If a is a C-element of L and a & a′ are ∧-distributive then
L ∼= La × La′ .

Proof: Define h : L→ La×La′ by h(x) = (a∧x, a′∧x) for all x ∈ L. Then h is
well-defined and onto. Let x, y ∈ L such that h(x) = h(y). Then a∧ x = a∧ y
and a′ ∧ x = a′ ∧ y. Now,

x = (a ∨ a′) ∧ x
= (a ∧ x) ∨ (a′ ∧ x) (since a is a C-element)
= (a ∧ y) ∨ (a′ ∧ y)
= (a ∨ a′) ∧ y (since a is a C-element)
= y

Therefore h is one-one. Hence h is bijective. It is easy to verify that h is a
homomorphism and hence h is an isomorphism from L onto La × La′ . �

We conclude this paper with the following which are similar to 4.3, 4.4, 4.5
and 4.6.

Lemma 4.7 If a is a C-element of L, then
(i) ψa ∩ ψa′ = ∆
(ii) ψa o ψa′ = L× L.

Lemma 4.8 If a is a C-element of L, then ψa is a factor congruence on L

Theorem 4.9 If a is a C-element of L and a & a′ are ∨-distributive, then
L ∼= Ra ×Ra′.

5 Open problems

1. If one can exhibit algebraic operations on congruences (θa and ψa) in
an ortholattice, then it may leads some fruitful results in terms of B-
elements and vice versa.
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