Int. J. Open Problems Compt. Math., Vol. 9, No. 3, September 2016 ISSN 1998-6262; Copyright ©ICSRS Publication, 2016 www.i-csrs.org

## Decomposition of an Ortholattice

#### P. Sundarayya, Ramesh Sirisetti

Department of Mathematics, GIT, GITAM University, INDIA e-mail:psundarayya@yahoo.co.in, ramesh.sirisetti@gmail.com

#### V. Sriramani

Department of Mathematics, Vasavi College of Engineering, Hyderabad, INDIA e-mail: ramaniv80@gmail.com

#### Abstract

In this paper B-elements and C-elements are defined in an ortholattice. We obtain an equivalent condition for an ortholattice to become a distributive lattice and hence Boolean algebra in terms of B-elements. Using B-elements two congruences are studied. Finally for each C-element, we obtain a decomposition for an ortholattice.

Keywords: Ortholattice, Congruence and Decomposition.

2010 Mathematics Subject Classification: 06C15, 06B10.

### 1 Introduction

In [3], every Boolean algebra is isomorphic to the direct product of two element Boolean algebras. The concept of Boolean algebra plays a key role in lattice theory and mathematical logic. Ortholattices are one of the generalization of Boolean algebras. Several authors discussed about the structure of an ortholattice. In [2], Ivan chazda characterized the ideals of an ortholattice. By an ortholattice we mean an algebra  $(L, \lor, \land, ', 0, 1)$  such that  $(L, \lor, \land, 0, 1)$  is a bounded lattice and ' is an unary operations satisfying the following identities

$$\begin{aligned} x'' &= x \\ x \wedge x' &= 0 \text{ and } x \vee x' = 1 \end{aligned}$$

$$(x \wedge y)' = x' \vee y'$$
 and  $(x \vee y)' = x' \wedge y'$   
 $0' = 1$  and  $1' = 0$ .

In this paper, we introduce B-elements in an ortholattice and obtain some properties on them which are useful in consequent sections. If a is a B-element in an ortholattice L, we obtain two congruences  $\theta_a$ ,  $\psi_a$  on L. In fact  $\theta_a$  (and  $\psi_a$ ) need not be a congruence in an ortholattice L, where  $a \in L$ . We obtain two ortholattices namely  $L_a$  and  $R_a$ , which are not subalgebras of L, for any  $a \in L$ . We define C-elements in an ortholattice. If a is a C-element and a & a'are  $\wedge$ -distributive, then we prove that L is isomorphic to  $L_a \times L_{a'}$ . Similarly, if a is a C-element and a & a' are  $\vee$ -distributive, then L is isomorphic to  $R_a \times R_{a'}$ .

#### 2 B-elements in ortholattices

In this section, we define B-elements in an ortholattice and provide several examples for it. Mainly, we obtain a necessary and sufficient condition for an ortholattice to become a Boolean algebra.

**Definition 2.1** An element a of an ortholattice  $(L, \lor, \land, ', 0, 1)$  is said to be a B-element with respect to  $\land$ , if for any  $x, y \in L$ ,  $a \land x = a \land y$  implies  $a \land x' = a \land y'$ . Correspondingly, we can define B-element with respect to  $\lor$ .

From now onwards by L we mean an ortholattice  $(L, \lor, \land, ', 0, 1)$  in this paper unless and otherwise stated by the authors.

**Note 2.2** 1. 0 and 1 are always B-elements with respect to  $\land$  and  $\lor$  in L. 2. For any  $a \in L$ , a is a B-element with respect to  $\land$  if and only if a' is a B-element with respect to  $\lor$ .

**Example 2.3** Let  $L = \{0, a, b, a', b', 1\}$  be an ortholattice whose Hassediagram is



Then a and b' are B-elements with respect to  $\wedge$ .

**Example 2.4** Let  $L = \{0, a, b, a', b', 1\}$  be an ortholattice whose Hassediagram is



Then a is a B-element with respect to  $\wedge$ .

**Example 2.5** Let  $L = \{0, a, b, a', b', 1\}$  be an ortholattice whose Hassediagram is



Then there is no B-elements with respect to  $\land$  or  $\lor$  except 0 and 1.

**Example 2.6** Let  $L = \{0, a, b, c, d, a', b', c', d', 1\}$  be an ortholattice whose Hasse-diagram is



Then a, c, and d' are B-elements with respect to  $\wedge$ . b is neither B-element with respect to  $\wedge$  nor  $\vee$ .

**Theorem 2.7** Let L be an ortholattice in which every element is B-element with respect to  $\wedge$ . Then L is distributive and hence a Boolean algebra.

*Proof:* Suppose that L is an ortholattice in which every element is a B-element with respect to  $\wedge$ . We claim that L has no copy of  $N_5$  and  $M_5$ .

Case 1. Let us assume that L has a copy of  $N_5$ . Then there exist  $a, b, c \in L$ such that  $a > b, a \lor c = b \lor c$  and  $a \land c = b \land c$ . Then  $a' < b', a' \lor c' = b' \lor c'$ and  $a' \land c' = b' \land c'$ . Take  $x = a \land b'$ . If x = 0, then  $a \land b' = x = 0 = a \land a'$ . By our hypothesis,  $a \land b = a \land a = a$ , which is not true in  $N_5$ . So,  $x \neq 0$ . Now,

$$c \wedge x = c \wedge (a \wedge b') = (c \wedge a) \wedge b' = (c \wedge b) \wedge b' = 0 = 0 \wedge x$$
$$c' \wedge x = c' \wedge (b' \wedge a) = (c' \wedge b') \wedge a = (c' \wedge a') \wedge a = 0$$

By our hypothesis,  $0 = x \wedge c' = x \wedge 0' = x \wedge 1 = x$ . Which is a contradiction to  $x \neq 0$ . Therefore L has no copy of  $N_5$ .

Case 2. Let us assume that L has a copy of  $M_5$ . Then there exist  $a, b, c \in L$  such that  $a \vee b = a \vee c = b \vee c$  and  $a \wedge b = a \wedge c = b \wedge c$ . We have same conditions on a', b', c'. Take  $x = a \wedge b'$ . If x = 0, then  $a \wedge b' = x = 0 = a \wedge a'$ . By our hypothesis,  $a \wedge b = a \wedge a = a$ . But this implies  $a \leq b$ , which is not true in  $M_5$ . So,  $x \neq 0$ . Now,

$$c \wedge x = c \wedge (a \wedge b') = (c \wedge a) \wedge b' = (c \wedge b) \wedge b' = 0 = 0 \wedge x$$
$$c' \wedge x = c' \wedge (b' \wedge a) = (c' \wedge b') \wedge a = (c' \wedge a') \wedge a = 0.$$

By our hypothesis, we get  $0 = x \wedge c' = x \wedge 0' = x \wedge 1 = x$ . Which is a contradiction to  $x \neq 0$ . Therefore *L* has no copy of  $M_5$ . Thus *L* is distributive and hence a Boolean algebra.

**Corollary 2.8** Let L be an ortholattice in which every element is B-element with respect to  $\lor$ . Then L is distributive and hence a Boolean algebra.

#### 3 Congruences on ortholattices

Let us denote B be the set of B-elements with respect to  $\wedge$  and B' is the set of B-elements with respect to  $\vee$ . For each B-element, we study two congruences. In an ortholattice, we present two ortholattice structures which are not sub ortholattices.

**Theorem 3.1** For any  $a \in B$ , the set  $\theta_a = \{(x, y) \mid a \land x = a \land y\}$  is a congruence on L.

*Proof:* It is easy to verify that  $\theta_a$  is an equivalence relation on L. Let  $x_1, y_1, x_2, y_2 \in L$  such that  $a \wedge x_1 = a \wedge y_1$  and  $a \wedge x_2 = a \wedge y_2$ . Then  $a \wedge x'_1 = a \wedge y'_1$  and  $a \wedge x'_2 = a \wedge y'_2$  (since  $a \in B$ ). Now,

$$a \wedge x_1 \wedge x_2 = a \wedge a \wedge x_1 \wedge x_2$$
  
=  $a \wedge x_1 \wedge a \wedge x_2$   
=  $a \wedge y_1 \wedge a \wedge y_2$  (by our assumption)  
=  $a \wedge a \wedge y_1 \wedge y_2$   
=  $a \wedge y_1 \wedge y_2$ 

and

$$a \wedge (x_1 \vee x_2)' = a \wedge x'_1 \wedge x'_2$$
  
=  $a \wedge x'_1 \wedge a \wedge x'_2$   
=  $a \wedge y'_1 \wedge a \wedge y'_2$  (by our assumption)  
=  $a \wedge y'_1 \wedge y'_2$   
=  $a \wedge (y_1 \vee y_2)'$ .

So,  $a \wedge (x_1 \vee x_2) = a \wedge (y_1 \vee y_2)$  (since  $a \in B$ ). Therefore  $(x_1 \wedge x_2, y_1 \wedge y_2), (x_1 \vee x_2, y_1 \vee y_2) \in \theta_a$ . Hence  $\theta_a$  is a congruence on L.

**Note 3.2** If a is not a B-element with respect to  $\wedge$ , then  $\theta_a$  need not be a congruence on L. For, see Example 2.3.,  $\theta_b$  is not a congruence (because  $(a', b') \in \theta_b$  but  $(a, b) \notin \theta_b$ ), where as b is not a B-element with respect to  $\wedge$ .

**Theorem 3.3** For any  $a \in B'$ , the set  $\psi_a = \{(x, y) \mid a \lor x = a \lor y\}$  is a congruence on L.

*Proof:* It is easy to prove that  $\psi_a$  is an equivalence relation on L. Let  $x_1, y_1, x_2, y_2 \in L$  such that  $a \vee x_1 = a \vee y_1$  and  $a \vee x_2 = a \vee y_2$ . Then  $a \vee x'_1 = a \vee y'_1$  and  $a \vee x'_2 = a \vee y'_2$  (since  $a \in B'$ ). Now,

$$a \lor x_1 \lor x_2 = a \lor a \lor x_1 \lor x_2$$
  
=  $a \lor x_1 \lor a \lor x_2$   
=  $a \lor y_1 \lor a \lor y_2$  (by our assumption)  
=  $a \lor y_1 \lor y_2$ 

and

$$a \vee (x_1 \wedge x_2)' = a \vee x_1' \vee x_2'$$
  
=  $a \vee x_1' \vee x_2'$   
=  $a \vee a \vee x_1' \vee x_2'$   
=  $a \vee y_1' \vee a \vee y_2'$  (by our assumption)  
=  $a \vee y_1' \vee y_2'$   
=  $a \vee (y_1 \wedge y_2)'$ .

So,  $a \lor (x_1 \land x_2) = a \lor (y_1 \land y_2)$  (since  $a \in B'$ ). Therefore  $(x_1 \land x_2, y_1 \land y_2), (x_1 \lor x_2, y_1 \lor y_2) \in \psi_a$ . Hence  $\psi_a$  is a congruence on L.

**Note 3.4** If a is not a B-element with respect to  $\lor$ , then  $\psi_a$  need not be a congruence on L. For, see Example 2.3.,  $\psi_{b'}$  is not a congruence (because  $(a,b) \in \psi_{b'}$  but  $(a',b') \notin \psi_{b'}$ ), where as b' is not a B-element with respect to  $\lor$ .

**Definition 3.5** An element a of L is said to be  $\wedge$ -distributive, if for any  $x, y \in L, a \wedge (x \vee y) = (a \wedge x) \vee (a \wedge y).$ 

It is easy to prove that if a, b are  $\wedge$ -distributive, then  $a \wedge b$  is also  $\wedge$ -distributive.

**Theorem 3.6** Let a be a  $\wedge$ -distributive element in L. Then the set  $L_a = \{a \land x \mid x \in L\}$  is itself an ortholattice with induced operations  $\lor, \land$  and the unary operation \* defined by  $x^* = (a \land x)^* = a \land x'$ , for all  $x \in L_a$ .

*Proof:* It is easy to verify that  $(L_a, \lor, \land, 0, a)$  is a bounded lattice. Let  $x, y \in L$  such that  $x = a \land x, y = a \land y$ . Then,

$$x^{**} = (a \wedge x)^{**} = a \wedge (a \wedge x')' = a \wedge (a' \vee x) = a \wedge x = x,$$

$$(x \lor y)^* = a \land (x \lor y)' = a \land x' \land y' = (a \land x') \land (a \land y') = x^* \land y^*,$$

and

$$(x \wedge y)^* = a \wedge (x \wedge y)'$$
  
=  $a \wedge (x' \vee y')$   
=  $(a \wedge x') \vee (a \wedge y')$  (since a is  $\wedge$ -distributive)  
=  $x^* \vee y^*$ 

Therefore  $(L_a, \lor, \land, *, 0, a)$  is itself an ortholattice.

**Theorem 3.7** Let a be a  $\wedge$ -distributive element in B. Then the mapping  $f: L \to L_a$  defined by  $f(x) = a \wedge x$ , for all  $x \in L$ , is a homomorphism from L onto  $L_a$ .

*Proof:* Let  $x, y \in L$ . Then

$$f(x \wedge y) = a \wedge x \wedge y = (a \wedge x) \wedge (a \wedge y) = f(x) \wedge f(y)$$
  

$$f(x \vee y) = a \wedge (x \vee y)$$
  

$$= (a \wedge x) \vee (a \wedge y) \text{ (since } a \text{ is } \wedge \text{-distributive)}$$
  

$$= f(x) \vee f(y)$$

and  $f(x') = a \wedge x' = a \wedge (a' \vee x')$  (since a is  $\wedge$ -distributive) =  $a \wedge (a \wedge x)' = (f(x))^*$ . Therefore f is a homomorphism from L onto  $L_a$ .

**Definition 3.8** An element a of L is said to be  $\lor$ -distributive, if for any  $x, y \in L, a \lor (x \land y) = (a \lor x) \land (a \lor y).$ 

It is easy to prove that if a and b are  $\lor$ -distributive, then  $a \lor b$  is also  $\lor$ -distributive.

**Theorem 3.9** Let a be a  $\lor$ -distributive element in L. Then the set  $R_a = \{a \lor x \mid x \in L\}$  is itself an ortholattice with the induced operations  $\lor \& \land$ , and the unary operation \* is defined by  $x^* = (a \lor x)^* = a \lor x'$ , for all  $x \in R_a$ .

*Proof:* Let  $x, y \in L$  such that  $x = a \lor x$  and  $y = a \lor y$ . Then,

$$x \lor y = (a \lor x) \lor (a \lor y) = a \lor (x \lor y) \in R_a$$

 $x \wedge y = (a \vee x) \wedge (a \vee y) = a \vee (x \wedge y) \in R_a$  (since a is  $\vee$  -distributive), and

$$x^* = a \lor x' \in R_a.$$

Therefore  $(R_a, \lor, \land, *, a, 1)$  is a bounded lattice. For  $x, y \in L$ ,

$$x^{**} = (a \lor x')^{*}$$

$$= a \lor (a' \land x'')$$

$$= (a \lor a') \land (a \lor x) \quad (\text{since } a \text{ is } \lor -\text{distributive})$$

$$= 1 \land (a \lor x)$$

$$= a \lor x$$

$$= x.$$

$$(x \land y)^{*} = a \lor (x \land y)'$$

$$= a \lor (x' \lor y')$$

$$= (a \lor x') \lor (a \lor y')$$

$$= a \lor (x' \land y')$$

$$= a \lor (x' \land y')$$

$$= a \lor (x' \land y')$$

$$= (a \lor x') \land (a \lor y') \quad (\text{since } a \text{ is } \lor -\text{distributive})$$

$$= x^{*} \land y^{*}.$$

Therefore  $R_a$  is an ortholattice.

**Theorem 3.10** Let a be a  $\lor$ -distributive element in B. Then the mapping  $g: L \to R_a$  defined by  $g(x) = a \lor x$ , for all  $x \in L$ , is a homomorphism from L onto  $R_a$ .

*Proof:* Let  $x, y \in L$ . Then

$$g(x \wedge y) = a \lor (x \wedge y)$$
  
=  $(a \lor x) \land (a \lor y)$  (since a is  $\lor$  -distributive)  
=  $g(x) \land g(y)$ 

$$g(x \lor y) = a \lor (x \lor y) = (a \lor x) \lor (a \lor y) = g(x) \lor g(y).$$

and  $g(x') = a \lor x' = 1 \land (a \lor x') = a \lor (a' \land x') = a \lor (a \lor x)' = a \lor g(x)' = g(x)^*$ (since a is  $\lor$ -distributive). Therefore g is a homomorphism from L onto  $R_a$ .  $\Box$ 

### 4 C-elements in ortholattices

In this section, we define C-elements in an ortholattice. For each C-element, we obtain a factor congruence and hence it leads to a decomposition for an ortholattice.

**Definition 4.1** A B-element a with respect to  $\land$  (or with respect to  $\lor$ ) of an ortholattice L is said to be a C-element, if it satisfies the following conditions; for any  $x, y \in L$ ,

$$(i) (a \lor a') \land x = (a \land x) \lor (a' \land x) = x$$
  

$$(ii) a \land [(a \land x) \lor (a' \land y)] = a \land x$$
  

$$(iii) a' \land [(a \land x) \lor (a' \land y)] = a' \land y$$

It can be easy to verify that if a is a C-element of L, then a' is also a C-element of L.

**Note 4.2** Every B-element need not be a C-element in L. For, see Example 2.3., a is a B-element but not a C-element in L (because  $a = (a \land b) \lor (a' \land b) \neq b$ )

**Lemma 4.3** For any C-element a of L,  $\theta_a \cap \theta_{a'} = \Delta$ .

*Proof:* Let  $(x, y) \in \theta_a \cap \theta_{a'}$ . Then  $a \wedge x = a \wedge y$  and  $a' \wedge x = a' \wedge y$ . Now,

$$\begin{aligned} x &= 1 \land x &= (a \lor a') \land x \\ &= (a \land x) \lor (a' \land x) \quad (\text{since } a \text{ is a C-element}) \\ &= (a \land y) \lor (a' \land y) \\ &= (a \lor a') \land y \quad (\text{since } a \text{ is a C-element}) \\ &= 1 \land y = y \end{aligned}$$

Therefore  $\theta_a \cap \theta_{a'} = \Delta$ .

**Lemma 4.4** For any C-element a of L,  $\theta_a o \ \theta_{a'} = L \times L$ .

Proof: Let  $x, y \in L$ . Take  $t = (a \land x) \lor (a' \land y)$ . Then  $a \land t = a \land [(a \land x) \lor (a' \land y)] = a \land x$  (since a is a central element). Therefore  $(t, x) \in \theta_a$ . Similarly,  $a' \land t = a' \land [(a \land x) \lor (a' \land y)] = a' \land y$  (since a is a central element). Therefore  $(t, y) \in \theta_{a'}$ . Hence  $(x, y) \in \theta_a \circ \theta_{a'}$ . Thus  $\theta_a \circ \theta_{a'} = L \times L$ .

Now, we have the following from the above two lemmas

**Theorem 4.5** If a is a C-element of L, then  $\theta_a$  is a factor congruence on L.

**Theorem 4.6** If a is a C-element of L and a & a' are  $\wedge$ -distributive then  $L \cong L_a \times L_{a'}$ .

*Proof:* Define  $h: L \to L_a \times L_{a'}$  by  $h(x) = (a \wedge x, a' \wedge x)$  for all  $x \in L$ . Then h is well-defined and onto. Let  $x, y \in L$  such that h(x) = h(y). Then  $a \wedge x = a \wedge y$  and  $a' \wedge x = a' \wedge y$ . Now,

$$x = (a \lor a') \land x$$
  
=  $(a \land x) \lor (a' \land x)$  (since *a* is a C-element)  
=  $(a \land y) \lor (a' \land y)$   
=  $(a \lor a') \land y$  (since *a* is a C-element)  
=  $y$ 

Therefore h is one-one. Hence h is bijective. It is easy to verify that h is a homomorphism and hence h is an isomorphism from L onto  $L_a \times L_{a'}$ .  $\Box$ 

We conclude this paper with the following which are similar to 4.3, 4.4, 4.5 and 4.6.

**Lemma 4.7** If a is a C-element of L, then (i)  $\psi_a \cap \psi_{a'} = \Delta$ (ii)  $\psi_a \circ \psi_{a'} = L \times L$ .

**Lemma 4.8** If a is a C-element of L, then  $\psi_a$  is a factor congruence on L

**Theorem 4.9** If a is a C-element of L and a & a' are  $\lor$ -distributive, then  $L \cong R_a \times R_{a'}$ .

## 5 Open problems

1. If one can exhibit algebraic operations on congruences ( $\theta_a$  and  $\psi_a$ ) in an ortholattice, then it may leads some fruitful results in terms of B-elements and vice versa.

# References

- [1] G. Birkhoff, *lattice theory*, 3 ed. Amer. Math. Soc. Colloquium Pub., 1967.
- [2] I. Chajda, A note on congruence kernels in ortholattice, Math. Bohemica, 125 (2000), 169–172.
- [3] B. Stainley and H. P. Sankappanavar, A first course in universal algebra, Springer verlag, 1981.
- [4] U. M. Swamy and G. S. Murty, Boolean centre of a universal algebra, Algebra Universalis, 13 (1981), 202–205.