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Abstract

In the paper, the authors introduce a new concept ”(β, α)-logarithmically
convex functions in the first and second sense” and establish Hermite-Hadamard
type integral inequalities for these convexities.
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1 Preliminaries

A function f : I → R is said to be convex on I if the inequality

f (λu+ (1− λ) v) ≤ λf (u) + (1− λ) f (v) (1)

holds for all u, v ∈ I and λ ∈ [0, 1]. We say that f is concave if −f is convex.
In this section we give some necessary definitions which are used throughout

this paper. Let f : I ⊆ R → R be a convex mapping and u, v ∈ I with u < v.
The following double inequality

f

(

u+ v

2

)

≤ 1

v − u

∫ v

u

f (z) dz ≤ f (u) + f (v)

2
(2)

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard
inequality) for convex mapping. Note that some of the classical inequalities
for means can be derived from (2) for appropriate particular selections of the
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mapping f . If f is a positive concave function, then the inequalities are re-
versed. For some results which generalize, improve and extend the inequality
(2) see [2, 3, 6, 8, 9, 10, 11, 12, 14] and the references therein.

Definition 1.1 [7] The function f : I → R is said to be (α, β)-convex function
if for all (α, β) ∈ [0, 1]2 and λ ∈ [0, 1] we have

f (λu+ (1− λ) v) ≤ λαf (u) + (1− λ)β f (v) .

The function f : I ⊂ R → [0,∞) is said to be log-convex or multiplicative
convex if log f is convex, or, equivalently, if for all u, v ∈ I and λ ∈ [0, 1], one
has the inequality

f (λu+ (1− λ) v) ≤ [f (u)]λ [f (v)](1−λ)
.

In [1], Akdemir and Tunç defined the class of s-logarithmically convex
functions in the first sense as the following:

Definition 1.2 [1] A function f : I ⊂ R0 → R+ is said to be s-logarithmically
convex in the first sense if

f (αu+ βv) ≤ [f (u)]α
s

[f (v)]β
s

(3)

for some s ∈ (0, 1], where u, v ∈ I and αs + βs = 1.

s-logarithmically convex functions in the second sense was defined in [13]
as follows:

Definition 1.3 [13] A function f : I ⊂ R0 → R+ is said to be s-logarithmically
convex in the second sense if

f (λu+ (1− λ) v) ≤ [f (u)]λ
s

[f (v)](1−λ)s (4)

for some s ∈ (0, 1], where u, v ∈ I and λ ∈ [0, 1].

It can be easily checked for s = 1, in Definition 1.2 or inequality (4), then
f becomes the ordinary logarithmically convex function on I.

Lemma 1.4 [3, Lemma 2.1]Let f : I ⊂ R0 → R+ be a differentiable mapping
on I◦, a, b ∈ I with a < b. If f ′ ∈ L [a, b], then the following equality holds:

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx =
b− a

2

∫ 1

0

(1− 2λ) f ′ (λa+ (1− λ) b) dλ.

The main purpose of this paper is to define new classes of convex functions,
which is called the (β, α)-logarithmically convex functions in the first sense and
second sense. Some new Hermite-Hadamard inequalities to obtain for these
two new extensions of logarithmically convex functions.
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2 New Definitions

Motivated by Definitions 1.2 and 1.3, now we introduce concepts of (β, α)-
logarithmically convex functions in the first sense and second sense.

Definition 2.1 A function f : I ⊂ R0 → R+ is said to be (β, α)-logarithmically
convex in the first sense if

f (tx+ (1− t) y) ≤ [f (x)]t
β

[f (y)](1−tα) (5)

for some (β, α) ∈ (0, 1]2, where x, y ∈ I and t ∈ [0, 1]. We denote by L
β,α
1 (I)

the set of all (β, α)-logarithmically convex in the first sense functions on I.

Remark 2.2 In Definition 2.1, if we take
i) β = α = 1, then f is the standard logarithmically convex function on I.
ii) β = α = s, then f is the s-logarithmically convex function in the first

sense on I.

Definition 2.3 A function f : I ⊂ R0 → R+ is said to be (β, α)-logarithmically
convex in the second sense if

f (tx+ (1− t) y) ≤ [f (x)]t
β

[f (y)](1−t)α (6)

for some (β, α) ∈ (0, 1]2, where x, y ∈ I and t ∈ [0, 1]. We denote by L
β,α
2 (I)

the set of all (β, α)-logarithmically convex in the second sense functions on I.

Remark 2.4 In Definition 2.3, if we take
i) β = α = 1, then f is the standard logarithmically convex function on I.
ii) β = α = s, then f is the s-logarithmically convex function in the second

sense on I.

Definition 2.5 Let f : [0, b] = I → R be a function, (β, α) ∈ (0, 1]2. Then f

is said to be (β, α)-Godunova-Levin-log-convex functions in the first sense if
the inequality

f (ta + (1− t) b) ≤ [f (a)]
1

tβ [f (b)]
1

1−tα

holds for all a, b ∈ I and t ∈ (0, 1). It can be easily that for (β, α) ∈
{(1, 1) , (s, s) , (α, α)} one obtains the following classes of functions: Godunova-
Levin-log-convex function, s-Godunova-Levin-log-convex function in the first
sense, α-Godunova-Levin-log-convex function in the first sense.

Definition 2.6 Let f : [0, b] = I → R be a function (β, α) ∈ (0, 1]2. Then f

is said to be (β, α)-Godunova-Levin-log-convex functions in the second sense
if the inequality

f (ta + (1− t) b) ≤ [f (a)]
1

tβ [f (b)]
1

(1−t)α
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holds for all a, b ∈ I and t ∈ (0, 1). It can be easily that for (β, α) ∈
{(1, 1) , (s, s) , (α, α)} one obtains the following classes of functions: Godunova-
Levin-log-convex function, s-Godunova-Levin-log-convex function in the sec-
ond sense, α-Godunova-Levin-log-convex function in the second sense.

Lemma 2.7 (See [13]) If 0 < µ ≤ 1 ≤ η, 0 < α, s ≤ 1, then

µαs ≤ µsα and ηα
s ≤ ηαs+1−s. (7)

Lemma 2.8 Let t ∈ [0, 1]. Then

1
∫

0

|1− 2t| ktdt =





k − 1

ln k
− 2

(√
k − 1

ln k

)2


 = M (k; β, α) (8)

where k = |f ′(a)|β

|f ′(b)|α
.

Proof: Proof is directly clear via integrating by parts.

3 Main Results

Theorem 3.1 Let f : I ⊂ R → R+ be a differentiable mapping on I◦, a, b ∈ I

with a < b and f ∈ L [a, b]. If f is (β, α)-logarithmically convex in the second
sense, (β, α) ∈ (0, 1]2, then the following inequality holds:

1
b−a

b
∫

a

f(x)dx ≤































L
(

[f (a)]β , [f (b)]α
)

, 0 < f (a) , f (b) ≤ 1

[f (b)]1−α
L
(

[f (a)]β , [f (b)]α
)

, 0 < f (a) ≤ 1 ≤ f (b)

[f (a)]1−β
L
(

[f (a)]β , [f (b)]α
)

, 0 ≤ f (b) ≤ 1 ≤ f (a)

[f (a)]1−β [f (b)]1−α
L
(

[f (a)]β , [f (b)]α
)

, 1 ≤ f (a) , f (b)

where L is logarithmic mean.

Proof: Since f ∈ L
β,α
2 (I), we have

f (ta+ (1− t) b) ≤ [f (a)]t
β

[f (b)](1−t)α (9)

for all t ∈ [0, 1]. Integrating this inequality on [0, 1], we get

1
∫

0

f (ta + (1− t) b) dt =
1

b− a

b
∫

a

f(x)dx ≤
1
∫

0

[f (a)]t
β

[f (b)](1−t)α
dt.



On (β, α)-logarithmically convex functions 43

From (7), if 0 < f (a) , f (b) ≤ 1, we get

1

b− a

b
∫

a

f(x)dx ≤ [f (b)]α
1
∫

0

(

[f (a)]β

[f (b)]α

)t

dt

= [f (b)]α





[f(a)]β

[f(b)]α
− 1

ln
(

[f(a)]β

[f(b)]α

)





=
[f (a)]β − [f (b)]α

ln [f (a)]β − ln [f (b)]α
= L

(

[f (a)]β , [f (b)]α
)

.

If 0 < f (a) ≤ 1 ≤ f (b), it is easy to see that

1

b− a

b
∫

a

f(x)dx ≤ [f (b)]

1
∫

0

(

[f (a)]β

[f (b)]α

)t

dt

= [f (b)]1−α
L
(

[f (a)]β , [f (b)]α
)

.

If 0 ≤ f (b) ≤ 1 ≤ f (a), it is easy to see that

1

b− a

b
∫

a

f(x)dx ≤ [f (a)]1−β [f (b)]α
1
∫

0

(

[f (a)]β

[f (b)]α

)t

dt

= [f (a)]1−β
L
(

[f (a)]β , [f (b)]α
)

.

If 1 ≤ f (a) , f (b), so we reach

1

b− a

b
∫

a

f(x)dx ≤ [f (a)]1−β [f (b)]

1
∫

0

(

[f (a)]β

[f (b)]α

)t

dt

= [f (a)]1−β [f (b)]1−α
L
(

[f (a)]β , [f (b)]α
)

.

The proof is completed by combining the above four inequality.

Remark 3.2 i) In Theorem 3.1, if we take β = α = 1, then we have (see [4])

1

b− a

b
∫

a

f(x)dx ≤ L ([f (a)] , [f (b)]) .

ii) In Theorem 3.1, if we choose β = α = s, then we obtain following
inequality

1
b−a

b
∫

a

f(x)dx ≤















L ([f (a)]s , [f (b)]s) , 0 < f (a) , f (b) ≤ 1

[f (b)]1−s
L ([f (a)]s , [f (b)]s) , 0 < f (a) ≤ 1 ≤ f (b)

[f (a)]1−s
L ([f (a)]s , [f (b)]s) , 0 ≤ f (b) ≤ 1 ≤ f (a)

[f (a)]1−s [f (b)]1−s
L ([f (a)]s , [f (b)]s) , 1 ≤ f (a) , f (b)
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Theorem 3.3 Let f : I ⊂ R → R+ be a differentiable mapping on I◦, a, b
∈ I◦ with a < b and f ∈ L [a, b]. If |f ′| ∈ L

β,α
2 (I), (β, α) ∈ (0, 1]2, then the

following inequality holds:

∣

∣

∣

f(a)+f(b)
2

− 1
b−a

∫ b

a
f (x) dx

∣

∣

∣
≤















|f ′ (b)|αM (k; β, α) , 0 < f ′ (a) , f ′ (b) ≤ 1
|f ′(b)|M (k; β, α) , 0 < f ′ (a) ≤ 1 ≤ f ′ (b)

|f ′(a)|1−β |f ′ (b)|αM (k; β, α) , 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a)

|f ′(a)|1−β |f ′(b)|M (k; β, α) , 1 ≤ f ′ (a) , f ′ (b)

where M (k; β, α) and k are given by Lemma 2.8.

Proof: As |f ′| ∈ L
β,α
2 (I), using Lemma 2.7 and 2.8 respectively, addition-

ally if we take 0 < f ′ (a) , f ′ (b) ≤ 1, then

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| f ′(ta + (1− t)b)dt

≤
1
∫

0

|1− 2t| |f ′(a)|t
β

|f ′ (b)|(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βt |f ′ (b)|α(1−t)
dt

= |f ′ (b)|α
1
∫

0

|1− 2t|
[

|f ′(a)|β
|f ′ (b)|α

]t

dt

= |f ′ (b)|α
1
∫

0

|1− 2t| ktdt

= |f ′ (b)|αM (k; β, α) .
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If we take 0 < f ′ (a) ≤ 1 ≤ f ′ (b), we obtain

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| f ′(ta + (1− t)b)dt

≤
1
∫

0

|1− 2t| |f ′(a)|t
β

|f ′ (b)|(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βt |f ′ (b)|α(1−t)+1−α
dt

= |f ′ (b)|
1
∫

0

|1− 2t|
[

|f ′(a)|β
|f ′ (b)|α

]t

dt

= |f ′ (b)|M (k; β, α) .

If we obtain 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a), we get

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| f ′(ta+ (1− t)b)dt

≤
1
∫

0

|1− 2t| |f ′(a)|t
β

|f ′ (b)|(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βt+1−β |f ′ (b)|α(1−t)
dt

= |f ′(a)|1−β |f ′ (b)|α
1
∫

0

|1− 2t|
[

|f ′(a)|β
|f ′ (b)|α

]t

dt

= |f ′(a)|1−β |f ′ (b)|αM (k; β, α) .
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If we take 1 ≤ f ′ (a) , f ′ (b), we get

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| f ′(ta+ (1− t)b)dt

≤
1
∫

0

|1− 2t| |f ′(a)|t
β

|f ′ (b)|(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βt+1−β |f ′ (b)|α(1−t)+1−α
dt

= |f ′(a)|1−β |f ′ (b)|
1
∫

0

|1− 2t|
[

|f ′(a)|β
|f ′ (b)|α

]t

dt

= |f ′(a)|1−β |f ′ (b)|M (k; β, α) .

We reach required result.

Remark 3.4 i) In Theorem 3.3, if we take β = α = 1, then we have
∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤ |f ′ (b)|M (k; 1, 1) ,

ii) In Theorem 3.3, if we take β = α = s, then we have

∣

∣

∣

f(a)+f(b)
2

− 1
b−a

∫ b

a
f (x) dx

∣

∣

∣ ≤















|f ′ (b)|sM (k; s, s) , 0 < f ′ (a) , f ′ (b) ≤ 1
|f ′(b)|M (k; s, s) , 0 < f ′ (a) ≤ 1 ≤ f ′ (b)

|f ′(a)|1−s |f ′ (b)|sM (k; s, s) , 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a)

|f ′(a)|1−s |f ′(b)|M (k; s, s) , 1 ≤ f ′ (a) , f ′ (b)

where M (k; β, α) is as in Lemma 2.8.

Theorem 3.5 Under the conditions of Theorem 3.3, if |f ′|q ∈ L
β,α
2 (I), (β, α) ∈

(0, 1]2 for p, q > 1 with 1
p
+ 1

q
= 1, then the following inequality holds:

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
(

1

p+ 1

)1/p

×


































[

L
(

[f ′ (a)]βq , [f ′ (b)]αq
)]1/q

, 0 < f ′ (a) , f ′ (b) ≤ 1
[

|f ′ (b)|1−α
L
(

[f ′ (a)]βq , [f ′ (b)]αq
)]1/q

, 0 < f ′ (a) ≤ 1 ≤ f ′ (b)
[

|f ′(a)|1−β
L
(

[f ′ (a)]βq , [f ′ (b)]αq
)]1/q

, 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a)
[

|f ′(a)|1−β |f ′ (b)|1−α
L
(

[f ′ (a)]βq , [f ′ (b)]αq
)]1/q

, 1 ≤ f ′ (a) , f ′ (b)

where M (k; β, α) and k are given by Lemma 2.8.



On (β, α)-logarithmically convex functions 47

Proof: Under the assumptions, using Hölder inequality, we obtain

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| |f ′ (ta + (1− t)b)| dt

≤





1
∫

0

|1− 2t|p dt





1/p



1
∫

0

|f ′ (ta + (1− t)b)|q dt





1/q

≤
(

1

p+ 1

)1/p




1
∫

0

|f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt





1/q

.

For 0 < f ′ (a) , f ′ (b) ≤ 1, we get

1
∫

0

|f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|f ′(a)|βqt |f ′ (b)|αq(1−t)
dt

= |f ′ (b)|αq
1
∫

0

[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′ (b)|αq




[f ′(a)]βq

[f ′(b)]αq − 1

ln
(

[f ′(a)]βq

[f ′(b)]αq

)





=
[f ′ (a)]βq − [f ′ (b)]αq

ln [f ′ (a)]βq − ln [f ′ (b)]αq

= L
(

[f ′ (a)]
βq
, [f ′ (b)]

αq
)

.

For 0 < f ′ (a) ≤ 1 ≤ f ′ (b), we get

1
∫

0

|f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|f ′(a)|βqt |f ′ (b)|αq(1−t)+1−α
dt

= |f ′ (b)|αq+1−α

1
∫

0

[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′ (b)|1−α [f ′ (a)]βq − [f ′ (b)]αq

ln [f ′ (a)]βq − ln [f ′ (b)]αq

= |f ′ (b)|1−α
L
(

[f ′ (a)]
βq
, [f ′ (b)]

αq
)

.
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For 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a), we get

1
∫

0

|f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|f ′(a)|βqt+1−β |f ′ (b)|αq(1−t)
dt

= |f ′(a)|1−β |f ′ (b)|αq
1
∫

0

[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′(a)|1−β [f ′ (a)]βq − [f ′ (b)]αq

ln [f ′ (a)]βq − ln [f ′ (b)]αq

= |f ′(a)|1−β
L
(

[f ′ (a)]
βq
, [f ′ (b)]

αq
)

.

For 1 ≤ f ′ (a) , f ′ (b), we get

1
∫

0

|f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|f ′(a)|βqt+1−β |f ′ (b)|αq(1−t)+1−α
dt

= |f ′(a)|1−β |f ′ (b)|αq+1−α

1
∫

0

[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′(a)|1−β |f ′ (b)|1−α [f ′ (a)]βq − [f ′ (b)]αq

ln [f ′ (a)]βq − ln [f ′ (b)]αq

= |f ′(a)|1−β |f ′ (b)|1−α
L
(

[f ′ (a)]
βq
, [f ′ (b)]

αq
)

.

The proof is completed.

Theorem 3.6 Under the conditions of Theorem 3.3, if |f ′|q ∈ L
β,α
2 (I), for

q ≥ 1 and (β, α) ∈ (0, 1]2, then the following inequality holds:

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤ 1

2(q−1)/q
×



























[|f ′ (b)|αq M (kq; βq, αq)]
1/q

, 0 < f ′ (a) , f ′ (b) ≤ 1
[

|f ′ (b)|αq+1−α
M (kq; βq, αq)

]1/q
, 0 < f ′ (a) ≤ 1 ≤ f ′ (b)

[

|f ′(a)|1−β |f ′ (b)|αq M (kq; βq, αq)
]1/q

, 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a)
[

|f ′(a)|1−β |f ′ (b)|αq+1−α
M (kq; βq, αq)

]1/q

, 1 ≤ f ′ (a) , f ′ (b)

where M (k; β, α) and k are defined by Lemma 2.8.
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Proof: By virtue of Definition 2.3, Lemma 2.7 and 2.8, and Hölder in-
equality, q ≥ 1, we have

∣

∣

∣

∣

f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
1
∫

0

|1− 2t| |f ′ (ta + (1− t)b)| dt

≤





1
∫

0

|1− 2t| dt





(q−1)/q



1
∫

0

|1− 2t| |f ′ (ta + (1− t)b)|q dt





1/q

≤ 1

2(q−1)/q





1
∫

0

|1− 2t| |f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt





1/q

If 0 < f ′ (a) , f ′ (b) ≤ 1, we obtain

1
∫

0

|1− 2t| |f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|1− 2t| |f ′(a)|βqt |f ′ (b)|αq(1−t)
dt

= |f ′ (b)|αq
1
∫

0

|1− 2t|
[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′ (b)|αq
1
∫

0

|1− 2t| kqtdt

= |f ′ (b)|αq M (kq; βq, αq) .

If 0 < f ′ (a) ≤ 1 ≤ f ′ (b), we get

1
∫

0

|1− 2t| |f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt ≤

1
∫

0

|1− 2t| |f ′(a)|βqt |f ′ (b)|αq(1−t)+1−α
dt

= |f ′ (b)|αq+1−α

1
∫

0

|1− 2t|
[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′ (b)|αq+1−α

1
∫

0

|1− 2t| kqtdt

= |f ′ (b)|αq+1−α
M (kq; βq, αq) .
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If 0 ≤ f ′ (b) ≤ 1 ≤ f ′ (a), hence

1
∫

0

|1− 2t| |f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βqt+1−β |f ′ (b)|αq(1−t)
dt

= |f ′(a)|1−β |f ′ (b)|αq
1
∫

0

|1− 2t|
[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′(a)|1−β |f ′ (b)|αq
1
∫

0

|1− 2t| kqtdt

= |f ′(a)|1−β |f ′ (b)|αq M (kq; βq, αq) .

If 1 ≤ f ′ (a) , f ′ (b), then

1
∫

0

|1− 2t| |f ′(a)|qt
β

|f ′ (b)|q(1−t)α
dt

≤
1
∫

0

|1− 2t| |f ′(a)|βqt+1−β |f ′ (b)|αq(1−t)+1−α
dt

= |f ′(a)|1−β |f ′ (b)|αq+1−α

1
∫

0

|1− 2t|
[

|f ′(a)|βq
|f ′ (b)|αq

]t

dt

= |f ′(a)|1−β |f ′ (b)|αq+1−α

1
∫

0

|1− 2t| kqtdt

= |f ′(a)|1−β |f ′ (b)|αq+1−α
M (kq; βq, αq) .

We reach desired result.

4 Open Problem

It is a well-known fact that if f is a convex function on the interval I ⊂ R, then
the Hadamard’s inequality retains for the convex functions. As a matter of
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fact, it has been demonstrated lots of this type inequalities for several convex
functions. Therefore, there is one questions as follows:

Under what conditions, the composition f◦g or fg are (β, α)−logarithmically
convex function on I? Can we prove Hadamard type inequalities for f ◦ g or
fg.
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[1] Akdemir A.O., Tunç M., On some integral inequalities for s-
logarithmically convex functions, Submitted.

[2] Bai R.F., Qi F., Xi B.Y., Hermite-Hadamard type inequalities for the m-
and (α,m)-logarithmically convex functions, Filomat, 27 (2013), 1–7.

[3] Dragomir S.S., Agarwal R.P., Two Inequalities for Differentiable Map-
pings and Applications to Special Means of Real Numbers and to Trape-
zoidal Formula, Appl. Math. Lett. 11 (5) (1998) 91–95.

[4] Dragomir S.S., Mond B., Integral inequalities of Hadamard type for log-
convex functions, Demonstratio Mathematica, 31 (2) (1998) 354–364.

[5] Dragomir S.S., Refinements of the Hermite-Hadamard integral inequal-
ity for log-convex functions, RGMIA Research Report Collection, 3 (4)
(2000) 527–533.

[6] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard
Inequalities and Applications, RGMIA Monographs, Victoria University,
2000.
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