Int. J. Open Problems Compt. Math., Vol. 9, No. 2, June 2016 ISSN 1998-6262; Copyright ©ICSRS Publication, 2016 www.i-csrs.org

On (β, α) -logarithmically convex functions in the first and second sense with their inequalities

Mevlüt TUNÇ, Abdullah AÇIKEL

Department of Mathematics, Faculty of Science and Arts, Mustafa Kemal University P.O.Box 31000 Hatay, Turkey e-mail:mevlutttunc@gmail.com e-mail:abdullahacikel3107@gmail.com

Abstract

In the paper, the authors introduce a new concept " (β, α) -logarithmically convex functions in the first and second sense" and establish Hermite-Hadamard type integral inequalities for these convexities.

Keywords: convexity, logarithmically convexity, Hermite-Hadamard inequality.

1 Preliminaries

A function $f: I \to \mathbb{R}$ is said to be convex on I if the inequality

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v)$$
(1)

holds for all $u, v \in I$ and $\lambda \in [0, 1]$. We say that f is concave if -f is convex.

In this section we give some necessary definitions which are used throughout this paper. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping and $u, v \in I$ with u < v. The following double inequality

$$f\left(\frac{u+v}{2}\right) \le \frac{1}{v-u} \int_{u}^{v} f(z) \, dz \le \frac{f(u)+f(v)}{2} \tag{2}$$

is known in the literature as Hadamard's inequality (or Hermite-Hadamard inequality) for convex mapping. Note that some of the classical inequalities for means can be derived from (2) for appropriate particular selections of the mapping f. If f is a positive concave function, then the inequalities are reversed. For some results which generalize, improve and extend the inequality (2) see [2, 3, 6, 8, 9, 10, 11, 12, 14] and the references therein.

Definition 1.1 [7] The function $f : I \to \mathbb{R}$ is said to be (α, β) -convex function if for all $(\alpha, \beta) \in [0, 1]^2$ and $\lambda \in [0, 1]$ we have

$$f\left(\lambda u + (1-\lambda)v\right) \le \lambda^{\alpha} f\left(u\right) + (1-\lambda)^{\beta} f\left(v\right).$$

The function $f: I \subset \mathbb{R} \to [0, \infty)$ is said to be log-convex or multiplicative convex if log f is convex, or, equivalently, if for all $u, v \in I$ and $\lambda \in [0, 1]$, one has the inequality

$$f(\lambda u + (1 - \lambda) v) \le [f(u)]^{\lambda} [f(v)]^{(1-\lambda)}.$$

In [1], Akdemir and Tunç defined the class of s-logarithmically convex functions in the first sense as the following:

Definition 1.2 [1] A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be s-logarithmically convex in the first sense if

$$f(\alpha u + \beta v) \le [f(u)]^{\alpha^s} [f(v)]^{\beta^s}$$
(3)

for some $s \in (0, 1]$, where $u, v \in I$ and $\alpha^s + \beta^s = 1$.

s-logarithmically convex functions in the second sense was defined in [13] as follows:

Definition 1.3 [13] A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be s-logarithmically convex in the second sense if

$$f(\lambda u + (1 - \lambda)v) \le [f(u)]^{\lambda^s} [f(v)]^{(1 - \lambda)^s}$$
(4)

for some $s \in (0, 1]$, where $u, v \in I$ and $\lambda \in [0, 1]$.

It can be easily checked for s = 1, in Definition 1.2 or inequality (4), then f becomes the ordinary logarithmically convex function on I.

Lemma 1.4 [3, Lemma 2.1]Let $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ be a differentiable mapping on I° , $a, b \in I$ with a < b. If $f' \in L[a, b]$, then the following equality holds:

$$\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{b-a}{2} \int_{0}^{1} (1-2\lambda) \, f'(\lambda a + (1-\lambda)b) \, d\lambda.$$

The main purpose of this paper is to define new classes of convex functions, which is called the (β, α) -logarithmically convex functions in the first sense and second sense. Some new Hermite-Hadamard inequalities to obtain for these two new extensions of logarithmically convex functions.

2 New Definitions

Motivated by Definitions 1.2 and 1.3, now we introduce concepts of (β, α) -logarithmically convex functions in the first sense and second sense.

Definition 2.1 A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be (β, α) -logarithmically convex in the first sense if

$$f(tx + (1 - t)y) \le [f(x)]^{t^{\beta}} [f(y)]^{(1 - t^{\alpha})}$$
(5)

for some $(\beta, \alpha) \in (0, 1]^2$, where $x, y \in I$ and $t \in [0, 1]$. We denote by $L_1^{\beta, \alpha}(I)$ the set of all (β, α) -logarithmically convex in the first sense functions on I.

Remark 2.2 In Definition 2.1, if we take

i) $\beta = \alpha = 1$, then f is the standard logarithmically convex function on I. ii) $\beta = \alpha = s$, then f is the s-logarithmically convex function in the first sense on I.

Definition 2.3 A function $f : I \subset \mathbb{R}_0 \to \mathbb{R}_+$ is said to be (β, α) -logarithmically convex in the second sense if

$$f(tx + (1 - t)y) \le [f(x)]^{t^{\beta}} [f(y)]^{(1 - t)^{\alpha}}$$
(6)

for some $(\beta, \alpha) \in (0, 1]^2$, where $x, y \in I$ and $t \in [0, 1]$. We denote by $L_2^{\beta, \alpha}(I)$ the set of all (β, α) -logarithmically convex in the second sense functions on I.

Remark 2.4 In Definition 2.3, if we take

i) $\beta = \alpha = 1$, then f is the standard logarithmically convex function on I.

ii) $\beta = \alpha = s$, then f is the s-logarithmically convex function in the second sense on I.

Definition 2.5 Let $f : [0, b] = I \to \mathbb{R}$ be a function, $(\beta, \alpha) \in (0, 1]^2$. Then f is said to be (β, α) -Godunova-Levin-log-convex functions in the first sense if the inequality

$$f(ta + (1 - t)b) \le [f(a)]^{\frac{1}{t^{\beta}}} [f(b)]^{\frac{1}{1 - t^{\alpha}}}$$

holds for all $a, b \in I$ and $t \in (0, 1)$. It can be easily that for $(\beta, \alpha) \in \{(1, 1), (s, s), (\alpha, \alpha)\}$ one obtains the following classes of functions: Godunova-Levin-log-convex function, s-Godunova-Levin-log-convex function in the first sense, α -Godunova-Levin-log-convex function in the first sense.

Definition 2.6 Let $f : [0,b] = I \to \mathbb{R}$ be a function $(\beta, \alpha) \in (0,1]^2$. Then f is said to be (β, α) -Godunova-Levin-log-convex functions in the second sense if the inequality

$$f(ta + (1 - t)b) \le [f(a)]^{\frac{1}{t^{\beta}}} [f(b)]^{\frac{1}{(1 - t)^{\alpha}}}$$

holds for all $a, b \in I$ and $t \in (0, 1)$. It can be easily that for $(\beta, \alpha) \in \{(1, 1), (s, s), (\alpha, \alpha)\}$ one obtains the following classes of functions: Godunova-Levin-log-convex function, s-Godunova-Levin-log-convex function in the second sense, α -Godunova-Levin-log-convex function in the second sense.

Lemma 2.7 (See [13]) If $0 < \mu \le 1 \le \eta$, $0 < \alpha, s \le 1$, then

$$\mu^{\alpha^s} \le \mu^{s\alpha} \text{ and } \eta^{\alpha^s} \le \eta^{\alpha s+1-s}.$$
(7)

Lemma 2.8 *Let* $t \in [0, 1]$ *. Then*

$$\int_{0}^{1} |1 - 2t| \, k^{t} dt = \left[\frac{k - 1}{\ln k} - 2\left(\frac{\sqrt{k} - 1}{\ln k}\right)^{2} \right] = M\left(k; \beta, \alpha\right) \tag{8}$$

where $k = \frac{|f'(a)|^{\beta}}{|f'(b)|^{\alpha}}$.

Proof: Proof is directly clear via integrating by parts.

3 Main Results

Theorem 3.1 Let $f : I \subset \mathbb{R} \to \mathbb{R}_+$ be a differentiable mapping on I° , $a, b \in I$ with a < b and $f \in L[a, b]$. If f is (β, α) -logarithmically convex in the second sense, $(\beta, \alpha) \in (0, 1]^2$, then the following inequality holds:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \begin{cases} L\left(\left[f(a)\right]^{\beta}, \left[f(b)\right]^{\alpha}\right) &, \quad 0 < f(a), f(b) \leq 1\\ \left[f(b)\right]^{1-\alpha} L\left(\left[f(a)\right]^{\beta}, \left[f(b)\right]^{\alpha}\right) &, \quad 0 < f(a) \leq 1 \leq f(b)\\ \left[f(a)\right]^{1-\beta} L\left(\left[f(a)\right]^{\beta}, \left[f(b)\right]^{\alpha}\right) &, \quad 0 \leq f(b) \leq 1 \leq f(a)\\ \left[f(a)\right]^{1-\beta} \left[f(b)\right]^{1-\alpha} L\left(\left[f(a)\right]^{\beta}, \left[f(b)\right]^{\alpha}\right) &, \quad 1 \leq f(a), f(b) \end{cases}$$

where L is logarithmic mean.

Proof: Since $f \in L_2^{\beta,\alpha}(I)$, we have

$$f(ta + (1 - t)b) \le [f(a)]^{t^{\beta}} [f(b)]^{(1-t)^{\alpha}}$$
(9)

for all $t \in [0, 1]$. Integrating this inequality on [0, 1], we get

$$\int_{0}^{1} f(ta + (1-t)b) dt = \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \int_{0}^{1} [f(a)]^{t^{\beta}} [f(b)]^{(1-t)^{\alpha}} dt.$$

From (7), if $0 < f(a), f(b) \le 1$, we get

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leq [f(b)]^{\alpha} \int_{0}^{1} \left(\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}} \right)^{t} dt
= [f(b)]^{\alpha} \left[\frac{\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}} - 1}{\ln\left(\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}}\right)} \right]
= \frac{[f(a)]^{\beta} - [f(b)]^{\alpha}}{\ln[f(a)]^{\beta} - \ln[f(b)]^{\alpha}} = L\left([f(a)]^{\beta}, [f(b)]^{\alpha} \right).$$

If $0 < f(a) \le 1 \le f(b)$, it is easy to see that

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leq [f(b)] \int_{0}^{1} \left(\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}} \right)^{t} dt$$
$$= [f(b)]^{1-\alpha} L\left([f(a)]^{\beta}, [f(b)]^{\alpha} \right).$$

If $0 \leq f(b) \leq 1 \leq f(a)$, it is easy to see that

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leq [f(a)]^{1-\beta} [f(b)]^{\alpha} \int_{0}^{1} \left(\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}} \right)^{t} dt$$
$$= [f(a)]^{1-\beta} L \left([f(a)]^{\beta}, [f(b)]^{\alpha} \right).$$

If $1 \leq f(a), f(b)$, so we reach

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \leq [f(a)]^{1-\beta} [f(b)] \int_{0}^{1} \left(\frac{[f(a)]^{\beta}}{[f(b)]^{\alpha}}\right)^{t} dt$$
$$= [f(a)]^{1-\beta} [f(b)]^{1-\alpha} L\left([f(a)]^{\beta}, [f(b)]^{\alpha}\right)$$

The proof is completed by combining the above four inequality.

Remark 3.2 i) In Theorem 3.1, if we take $\beta = \alpha = 1$, then we have (see [4])

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx \leq L\left(\left[f\left(a\right)\right],\left[f\left(b\right)\right]\right).$$

ii) In Theorem 3.1, if we choose $\beta = \alpha = s$, then we obtain following inequality

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \begin{cases} L\left([f(a)]^{s}, [f(b)]^{s}\right) &, \quad 0 < f(a), f(b) \leq 1\\ [f(b)]^{1-s} L\left([f(a)]^{s}, [f(b)]^{s}\right) &, \quad 0 < f(a) \leq 1 \leq f(b)\\ [f(a)]^{1-s} L\left([f(a)]^{s}, [f(b)]^{s}\right) &, \quad 0 \leq f(b) \leq 1 \leq f(a)\\ [f(a)]^{1-s} [f(b)]^{1-s} L\left([f(a)]^{s}, [f(b)]^{s}\right) &, \quad 1 \leq f(a), f(b) \end{cases}$$

Theorem 3.3 Let $f : I \subset \mathbb{R} \to \mathbb{R}_+$ be a differentiable mapping on I° , $a, b \in I^\circ$ with a < b and $f \in L[a, b]$. If $|f'| \in L_2^{\beta, \alpha}(I)$, $(\beta, \alpha) \in (0, 1]^2$, then the following inequality holds:

$$\left|\frac{f(a)+f(b)}{2} - \frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right| \leq \begin{cases} |f'(b)|^{\alpha}\,M(k;\beta,\alpha) &, \quad 0 < f'(a),f'(b) \le 1\\ |f'(b)|\,M(k;\beta,\alpha) &, \quad 0 < f'(a) \le 1 \le f'(b)\\ |f'(a)|^{1-\beta}\,|f'(b)|^{\alpha}\,M(k;\beta,\alpha) &, \quad 0 \le f'(b) \le 1 \le f'(a)\\ |f'(a)|^{1-\beta}\,|f'(b)|\,M(k;\beta,\alpha) &, \quad 1 \le f'(a),f'(b) \end{cases}$$

where $M(k; \beta, \alpha)$ and k are given by Lemma 2.8.

Proof: As $|f'| \in L_2^{\beta,\alpha}(I)$, using Lemma 2.7 and 2.8 respectively, additionally if we take $0 < f'(a), f'(b) \leq 1$, then

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| &\leq \int_{0}^{1} |1 - 2t| \, f'(ta + (1-t)b) dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{t^{\beta}} \, |f'(b)|^{(1-t)^{\alpha}} \, dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{\beta t} \, |f'(b)|^{\alpha(1-t)} \, dt \\ &= |f'(b)|^{\alpha} \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta}}{|f'(b)|^{\alpha}} \right]^{t} \, dt \\ &= |f'(b)|^{\alpha} \int_{0}^{1} |1 - 2t| \, k^{t} dt \\ &= |f'(b)|^{\alpha} \, M(k; \beta, \alpha) \, . \end{aligned}$$

If we take $0 < f'(a) \le 1 \le f'(b)$, we obtain

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| &\leq \int_{0}^{1} |1 - 2t| \, f'(ta + (1 - t)b) dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{t^{\beta}} \, |f'(b)|^{(1 - t)\alpha} \, dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{\beta t} \, |f'(b)|^{\alpha(1 - t) + 1 - \alpha} \, dt \\ &= |f'(b)| \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta}}{|f'(b)|^{\alpha}} \right]^{t} \, dt \\ &= |f'(b)| \, M(k; \beta, \alpha) \, . \end{aligned}$$

If we obtain $0 \leq f'(b) \leq 1 \leq f'(a)$, we get

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| &\leq \int_{0}^{1} |1 - 2t| \, f'(ta + (1-t)b) dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{t^{\beta}} \, |f'(b)|^{(1-t)^{\alpha}} \, dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{\beta t + 1 - \beta} \, |f'(b)|^{\alpha(1-t)} \, dt \\ &= |f'(a)|^{1-\beta} \, |f'(b)|^{\alpha} \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta}}{|f'(b)|^{\alpha}} \right]^{t} \, dt \\ &= |f'(a)|^{1-\beta} \, |f'(b)|^{\alpha} \, M(k; \beta, \alpha) \,. \end{aligned}$$

If we take $1 \leq f'(a), f'(b)$, we get

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| &\leq \int_{0}^{1} |1 - 2t| \, f'(ta + (1-t)b) dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{t^{\beta}} \, |f'(b)|^{(1-t)\alpha} \, dt \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{\beta t + 1 - \beta} \, |f'(b)|^{\alpha(1-t) + 1 - \alpha} \, dt \\ &= |f'(a)|^{1-\beta} \, |f'(b)| \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta}}{|f'(b)|^{\alpha}} \right]^{t} \, dt \\ &= |f'(a)|^{1-\beta} \, |f'(b)| \, M(k; \beta, \alpha) \, .\end{aligned}$$

We reach required result.

Remark 3.4 *i)* In Theorem 3.3, if we take $\beta = \alpha = 1$, then we have

$$\left|\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx\right| \le |f'(b)| \, M(k; 1, 1) \,,$$

ii) In Theorem 3.3, if we take $\beta = \alpha = s$, then we have

$$\left|\frac{f(a)+f(b)}{2} - \frac{1}{b-a}\int_{a}^{b}f(x)\,dx\right| \leq \begin{cases} |f'(b)|^{s}\,M(k;s,s) &, \quad 0 < f'(a), f'(b) \le 1\\ |f'(b)|\,M(k;s,s) &, \quad 0 < f'(a) \le 1 \le f'(b)\\ |f'(a)|^{1-s}\,|f'(b)|^{s}\,M(k;s,s) &, \quad 0 \le f'(b) \le 1 \le f'(a)\\ |f'(a)|^{1-s}\,|f'(b)|\,M(k;s,s) &, \quad 1 \le f'(a), f'(b) \end{cases}$$

where $M(k; \beta, \alpha)$ is as in Lemma 2.8.

Theorem 3.5 Under the conditions of Theorem 3.3, if $|f'|^q \in L_2^{\beta,\alpha}(I)$, $(\beta, \alpha) \in (0,1]^2$ for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then the following inequality holds:

$$\begin{split} \left| \frac{f\left(a\right) + f\left(b\right)}{2} - \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \right| &\leq \left(\frac{1}{p+1}\right)^{1/p} \times \\ & \left[L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 0 < f'\left(a\right), f'\left(b\right) \leq 1 \\ & \left[|f'\left(b\right)|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 0 < f'\left(a\right) \leq 1 \leq f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 0 \leq f'\left(b\right) \leq 1 \leq f'\left(a\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'(a)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right|^{1-\alpha} L\left(\left[f'\left(a\right)\right]^{\beta q}, \left[f'\left(b\right)\right]^{\alpha q} \right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1-\alpha} L\left(|f'\left(a\right)\right]^{\beta q} \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1-\alpha} L\left(|f'\left(a\right)\right]^{\beta q} \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1-\alpha} L\left(|f'\left(a\right)|^{1-\alpha} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1-\alpha} L\left(|f'\left(a\right)|^{1-\alpha} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(a\right), f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'\left(b\right) \right]^{1/q} &, \quad 1 \leq f'\left(b\right) \\ & \left[|f'\left(a\right)|^{1-\beta} \left| f'$$

where $M(k; \beta, \alpha)$ and k are given by Lemma 2.8.

Proof: Under the assumptions, using Hölder inequality, we obtain

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| &\leq \int_{0}^{1} |1 - 2t| \left| f'(ta + (1-t)b) \right| dt \\ &\leq \left(\int_{0}^{1} |1 - 2t|^{p} \, dt \right)^{1/p} \left(\int_{0}^{1} |f'(ta + (1-t)b)|^{q} \, dt \right)^{1/q} \\ &\leq \left(\frac{1}{p+1} \right)^{1/p} \left(\int_{0}^{1} |f'(a)|^{qt^{\beta}} \left| f'(b) \right|^{q(1-t)^{\alpha}} dt \right)^{1/q}. \end{aligned}$$

For $0 < f'(a), f'(b) \le 1$, we get

$$\int_{0}^{1} |f'(a)|^{qt^{\beta}} |f'(b)|^{q(1-t)^{\alpha}} dt \leq \int_{0}^{1} |f'(a)|^{\beta qt} |f'(b)|^{\alpha q(1-t)} dt$$

$$= |f'(b)|^{\alpha q} \int_{0}^{1} \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt$$

$$= |f'(b)|^{\alpha q} \left[\frac{\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} - 1}{\ln \left(\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right)} \right]$$

$$= \frac{|f'(a)|^{\beta q} - |f'(b)|^{\alpha q}}{\ln |f'(a)|^{\beta q} - \ln [f'(b)]^{\alpha q}}$$

$$= L \left([f'(a)]^{\beta q}, [f'(b)]^{\alpha q} \right).$$

For $0 < f'(a) \le 1 \le f'(b)$, we get

$$\begin{split} \int_{0}^{1} |f'(a)|^{qt^{\beta}} |f'(b)|^{q(1-t)^{\alpha}} dt &\leq \int_{0}^{1} |f'(a)|^{\beta qt} |f'(b)|^{\alpha q(1-t)+1-\alpha} dt \\ &= |f'(b)|^{\alpha q+1-\alpha} \int_{0}^{1} \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt \\ &= |f'(b)|^{1-\alpha} \frac{[f'(a)]^{\beta q} - [f'(b)]^{\alpha q}}{\ln [f'(a)]^{\beta q} - \ln [f'(b)]^{\alpha q}} \\ &= |f'(b)|^{1-\alpha} L\left([f'(a)]^{\beta q}, [f'(b)]^{\alpha q} \right). \end{split}$$

For $0 \leq f'(b) \leq 1 \leq f'(a)$, we get

$$\begin{split} \int_{0}^{1} |f'(a)|^{qt^{\beta}} |f'(b)|^{q(1-t)^{\alpha}} dt &\leq \int_{0}^{1} |f'(a)|^{\beta qt+1-\beta} |f'(b)|^{\alpha q(1-t)} dt \\ &= |f'(a)|^{1-\beta} |f'(b)|^{\alpha q} \int_{0}^{1} \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt \\ &= |f'(a)|^{1-\beta} \frac{[f'(a)]^{\beta q} - [f'(b)]^{\alpha q}}{\ln [f'(a)]^{\beta q} - \ln [f'(b)]^{\alpha q}} \\ &= |f'(a)|^{1-\beta} L \left([f'(a)]^{\beta q}, [f'(b)]^{\alpha q} \right). \end{split}$$

For $1 \leq f'(a), f'(b)$, we get

$$\begin{split} \int_{0}^{1} |f'(a)|^{qt^{\beta}} |f'(b)|^{q(1-t)^{\alpha}} dt &\leq \int_{0}^{1} |f'(a)|^{\beta qt+1-\beta} |f'(b)|^{\alpha q(1-t)+1-\alpha} dt \\ &= |f'(a)|^{1-\beta} |f'(b)|^{\alpha q+1-\alpha} \int_{0}^{1} \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt \\ &= |f'(a)|^{1-\beta} |f'(b)|^{1-\alpha} \frac{[f'(a)]^{\beta q} - [f'(b)]^{\alpha q}}{\ln [f'(a)]^{\beta q} - \ln [f'(b)]^{\alpha q}} \\ &= |f'(a)|^{1-\beta} |f'(b)|^{1-\alpha} L\left([f'(a)]^{\beta q}, [f'(b)]^{\alpha q} \right). \end{split}$$

The proof is completed.

Theorem 3.6 Under the conditions of Theorem 3.3, if $|f'|^q \in L_2^{\beta,\alpha}(I)$, for $q \ge 1$ and $(\beta, \alpha) \in (0, 1]^2$, then the following inequality holds:

$$\begin{split} \left| \frac{f\left(a\right) + f\left(b\right)}{2} - \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \right| &\leq \frac{1}{2^{(q-1)/q}} \times \\ \left\{ \begin{array}{cc} \left[|f'\left(b\right)|^{\alpha q} M\left(k^{q};\beta q,\alpha q\right) \right]^{1/q} &, & 0 < f'\left(a\right), f'\left(b\right) \leq 1 \\ \left[|f'\left(b\right)|^{\alpha q+1-\alpha} M\left(k^{q};\beta q,\alpha q\right) \right]^{1/q} &, & 0 < f'\left(a\right) \leq 1 \leq f'\left(b\right) \\ \left[|f'(a)|^{1-\beta} |f'\left(b\right)|^{\alpha q} M\left(k^{q};\beta q,\alpha q\right) \right]^{1/q} &, & 0 \leq f'\left(b\right) \leq 1 \leq f'\left(a\right) \\ \left[|f'(a)|^{1-\beta} |f'\left(b\right)|^{\alpha q+1-\alpha} M\left(k^{q};\beta q,\alpha q\right) \right]^{1/q} &, & 1 \leq f'\left(a\right), f'\left(b\right) \end{split}$$

where $M(k; \beta, \alpha)$ and k are defined by Lemma 2.8.

Proof: By virtue of Definition 2.3, Lemma 2.7 and 2.8, and Hölder inequality, $q \ge 1$, we have

$$\begin{aligned} \left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \\ &\leq \int_{0}^{1} |1 - 2t| \, |f'(ta + (1 - t)b)| \, dt \\ &\leq \left(\int_{0}^{1} |1 - 2t| \, dt \right)^{(q-1)/q} \left(\int_{0}^{1} |1 - 2t| \, |f'(ta + (1 - t)b)|^{q} \, dt \right)^{1/q} \\ &\leq \frac{1}{2^{(q-1)/q}} \left(\int_{0}^{1} |1 - 2t| \, |f'(a)|^{qt^{\beta}} \, |f'(b)|^{q(1 - t)^{\alpha}} \, dt \right)^{1/q} \end{aligned}$$

If $0 < f'(a), f'(b) \le 1$, we obtain

$$\begin{split} \int_{0}^{1} |1 - 2t| |f'(a)|^{qt^{\beta}} |f'(b)|^{q(1-t)^{\alpha}} dt &\leq \int_{0}^{1} |1 - 2t| |f'(a)|^{\beta qt} |f'(b)|^{\alpha q(1-t)} dt \\ &= |f'(b)|^{\alpha q} \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt \\ &= |f'(b)|^{\alpha q} \int_{0}^{1} |1 - 2t| k^{qt} dt \\ &= |f'(b)|^{\alpha q} M(k^{q}; \beta q, \alpha q). \end{split}$$

If $0 < f'(a) \le 1 \le f'(b)$, we get

$$\begin{split} \int_{0}^{1} |1 - 2t| \, |f'(a)|^{qt^{\beta}} \, |f'(b)|^{q(1-t)^{\alpha}} \, dt &\leq \int_{0}^{1} |1 - 2t| \, |f'(a)|^{\beta qt} \, |f'(b)|^{\alpha q(1-t)+1-\alpha} \, dt \\ &= |f'(b)|^{\alpha q+1-\alpha} \int_{0}^{1} |1 - 2t| \left[\frac{|f'(a)|^{\beta q}}{|f'(b)|^{\alpha q}} \right]^{t} dt \\ &= |f'(b)|^{\alpha q+1-\alpha} \int_{0}^{1} |1 - 2t| \, k^{qt} dt \\ &= |f'(b)|^{\alpha q+1-\alpha} \, M \left(k^{q}; \beta q, \alpha q \right). \end{split}$$

If $0 \leq f'(b) \leq 1 \leq f'(a)$, hence

$$\begin{split} &\int_{0}^{1} |1 - 2t| \left| f'(a) \right|^{qt^{\beta}} \left| f'(b) \right|^{q(1-t)^{\alpha}} dt \\ &\leq \int_{0}^{1} |1 - 2t| \left| f'(a) \right|^{\beta qt + 1 - \beta} \left| f'(b) \right|^{\alpha q(1-t)} dt \\ &= \left| f'(a) \right|^{1 - \beta} \left| f'(b) \right|^{\alpha q} \int_{0}^{1} |1 - 2t| \left[\frac{\left| f'(a) \right|^{\beta q}}{\left| f'(b) \right|^{\alpha q}} \right]^{t} dt \\ &= \left| f'(a) \right|^{1 - \beta} \left| f'(b) \right|^{\alpha q} \int_{0}^{1} |1 - 2t| k^{qt} dt \\ &= \left| f'(a) \right|^{1 - \beta} \left| f'(b) \right|^{\alpha q} M(k^{q}; \beta q, \alpha q). \end{split}$$

If $1 \leq f'(a), f'(b)$, then

$$\begin{split} &\int_{0}^{1} |1 - 2t| \left| f'(a) \right|^{qt^{\beta}} \left| f'(b) \right|^{q(1-t)^{\alpha}} dt \\ &\leq \int_{0}^{1} |1 - 2t| \left| f'(a) \right|^{\beta qt + 1 - \beta} \left| f'(b) \right|^{\alpha q(1-t) + 1 - \alpha} dt \\ &= |f'(a)|^{1 - \beta} \left| f'(b) \right|^{\alpha q + 1 - \alpha} \int_{0}^{1} |1 - 2t| \left[\frac{\left| f'(a) \right|^{\beta q}}{\left| f'(b) \right|^{\alpha q}} \right]^{t} dt \\ &= |f'(a)|^{1 - \beta} \left| f'(b) \right|^{\alpha q + 1 - \alpha} \int_{0}^{1} |1 - 2t| k^{qt} dt \\ &= |f'(a)|^{1 - \beta} \left| f'(b) \right|^{\alpha q + 1 - \alpha} M(k^{q}; \beta q, \alpha q). \end{split}$$

We reach desired result.

4 Open Problem

It is a well-known fact that if f is a convex function on the interval $I \subset \mathbb{R}$, then the Hadamard's inequality retains for the convex functions. As a matter of fact, it has been demonstrated lots of this type inequalities for several convex functions. Therefore, there is one questions as follows:

Under what conditions, the composition $f \circ g$ or fg are (β, α) -logarithmically convex function on I? Can we prove Hadamard type inequalities for $f \circ g$ or fg.

ACKNOWLEDGEMENTS. The authors also thank the careful referee for helpful suggestions which have improved the final version of this paper.

References

- [1] Akdemir A.O., Tunç M., On some integral inequalities for slogarithmically convex functions, Submitted.
- [2] Bai R.F., Qi F., Xi B.Y., Hermite-Hadamard type inequalities for the mand (α, m) -logarithmically convex functions, Filomat, 27 (2013), 1–7.
- [3] Dragomir S.S., Agarwal R.P., Two Inequalities for Differentiable Mappings and Applications to Special Means of Real Numbers and to Trapezoidal Formula, Appl. Math. Lett. 11 (5) (1998) 91–95.
- [4] Dragomir S.S., Mond B., Integral inequalities of Hadamard type for logconvex functions, Demonstratio Mathematica, 31 (2) (1998) 354–364.
- [5] Dragomir S.S., Refinements of the Hermite-Hadamard integral inequality for log-convex functions, RGMIA Research Report Collection, 3 (4) (2000) 527-533.
- [6] Dragomir S.S., Pearce C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [7] Ekinci A., Klasik Eşitsizlikler Yoluyla Konveks Fonksiyonlar için Integral Eşitsizlikler, Ph.D. Thesis, Thesis ID: 361162 in tez2.yok.gov.tr Atatürk University, 2014.
- [8] Niculescu C.P., The Hermite-Hadamard inequality for log-convex functions, Nonlinear Analysis, 75 (2012), 662–669.
- [9] Noor M. A., Hermite-Hadamard integral inequalities for log-φ-convex functions, Nonlinear Analysis Forum, 13 (2) (2008) 119–124.
- [10] Sarıkaya M.Z., Yaldız H. and Bozkurt H., On The Hermite-Hadamard type integral inequalities involving several log-convex functions, International Journal of Open Problems in Computer Science and Mathematics(IJOPCM), 5 (3) (2012) 61–67.

- [11] Sulaiman W.T., Refinements to Hadamard's inequality for log-convex functions, Applied Mathematics, 2 (2011), 899–903
- [12] Tunç M., Some integral inequalities for logarithmically convex functions, Journal of the Egyptian Mathematical Society, 22 (2014), 177–181.
- [13] Xi B-Y., Qi F. Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions, Acta Mathematica Scientia, Chinese Series, 33 (2013) 1–12.
- [14] Yang G-S. Tseng K-L., Wang H-T., A note an integral inequalities of Hadamard type for log-convex and log-concave functions, Taiwenese Journal of Mathematics, 16 (2) (2012) 479–496.