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Abstract

In this paper, we consider Adomian Decomposition Method (ADM),and
Variational Iteration Method (VIM), Homotopy Analysis Method (HAM),
Homotopy Analysis Transform Method (HATM) to solve the Fractional-
Order Logistic Equation (FOLE). Comparisons between the approxi-
mate analytical solution and exact solution of FOLE are shown.

2010 Mathematics Subject Classication: 34-XX , 34Lxx ,34L30
Key words and phrases: Adomian Decomposition Method, Variational It-
eration Method, Homotopy Analysis Method,Homotopy Analysis Transform
Method, Fractional-Order Logistic Equation.

1On leave from Taiz University , Yemen
2On leave from Al-Azhar University, Cairo, Egypt



1 Introduction

The logistic growth model for continuous version [18] is

dP (t)

dt
= µP (t)

(
1− P (t)

K

)
, (1.1)

where µ is the growth rate and K is the carrying capacity. Multiplying both
side of (1.1) by 1

K
and defining y = P/K the logistic growth model, becomes

dy(t)

dt
= µy(t)(1− y(t)). (1.2)

The fractional order logistic equation (FOLE) has been discussed in the lit-
erature [3, 6, 7, 17]. A detailed study of existence, uniqueness, stability and
approximate solutions of FOLE can be found in [6, 22, 24]. The paper is
organized as follows. Section 2 contains the basic of fractional Calculus. Sec-
tion 3 outlines the basic idea of the ADM, HAM, HATM and VIM. Section 4
deals with an application of the ADM, HAM, HATM and VIM to solve the
fractional-order logistic growth model. and Section 5 contains the conclusions.

2 Fractional calculus

Well-known definitions of a fractional derivative of order α > 0 have been given
by Riemann, Liouville, Grunwald, Letnikov and Caputo [1, 4, 15, 20] and are
based on generalized functions. The most commonly used definitions are those
of Riemann and Liouville and Caputo. Here we give some basic definitions and
properties of fractional calculus theory.

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ,
µ ∈ R, if there exists a real number p > µ such that f(t) = tpf1(t), where
f1(t) ∈ C[0,∞), and it is said to be in the space Cm

µ iff fm ∈ Cm, m ∈ N .

Definition 2.2. The Riemann-Liouville fractional integral operator of order
α ≥ 0 for a function f ∈ Cµ, µ ≥ −1, is defined as

Jα
0 f(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0,

23
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J0f(t) = f(t).

It has the following properties. For f ∈ Cµ, µ ≥ −1, α, β ≥ 0, and γ > −1,

1. JαJβf(t) = Jα+βf(t),

2. JαJβf(t) = JβJαf(t),

3. Jαtγ = Γ(γ+1)
Γ(α+γ+1)

tα+γ.

Definition 2.3. The fractional derivative of f(t) in the Caputo sense is defined
as

Dαf(t) = Jm−αDmf(t) =
1

Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ) dτ,

for m− 1 < α ≤ m,m ∈ N, t > 0, f ∈ Cm
µ , µ ≥ −1, then

DαJαf(t) = f(t)

JαDαf(t) = f(t)−
m−1∑
k=0

fk(0+)
tk

k!
.

3 Fractional-Order Logistic Equation

In this section we apply the ADM, VIM, HAM and HATM to solve the
fractional-order logistic equation. Consider

Dαy(t) = µy(t)(1− y(t)), t > 0, µ > 0, 0 < α ≤ 1, (3.3)

with the initial condition
y(0) = y0. (3.4)

The exact solution of this equation for α = 1, is

y(t) =
y0

y0 + (1− y0)e−µt
. (3.5)

3.1 Basic idea of ADM

We present the basic idea of the ADM [11] in this section by considering the
following nonlinear ordinary differential equation

Dα(y(t)) +R(y(t)) +N(y(t)) = g(t), α > 0 (3.6)

subject to the initial value

y(k)(0) = ck, k = 0, 1, 2, · · · , n− 1, n− 1 < α < n (3.7)
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where R is the remaining linear operator, which might include other fractional
derivatives operator Dν(ν < α), N represent a nonlinear operator and g(t) is
a given continuous function. Now, applying jα to both the sides of (3.6), we
get

y(t) =

[α]∑
k=0

ck
tk

k!
+ Jαg(t)− JαR(y(t))− JαN(y(t)). (3.8)

We employ the Adomian decomposition method to solve equations (3.7)–(3.8).
Let

y =
∞∑

m=0

ym, (3.9)

and

N(y) =
∞∑

m=0

Am, (3.10)

where Am are Adomin polynomials which depend upon y. In view of Equations
(3.9)–(3.10), (3.8) takes the form

∞∑
m=0

ym =

[α]∑
k=0

ck
tk

k!
+ Jαg(t)− JαR(y(t))− Jα

∞∑
m=0

Am(y). (3.11)

We set

y0(t) =

[α]∑
k=0

ck
tk

k!
+ Jαg(t); (3.12)

ym = −JαR(y(t))− Jα

∞∑
m=0

Am(y),m = 0, 1, · · · (3.13)

In order to determine the Adomian polynomials, we introduce a parameter λ
and (3.10) becomes

N

(
∞∑

m=0

ymλ
m

)
=

∞∑
m=0

Amλ
m. (3.14)

Let yλ(t) =
∑∞

m=0 ymλ
m. Then

Am =
1

m!

[
dm

dλm
Nλ(y)

]
λ=0

, (3.15)

where

Nλ(y) = N(yλ). (3.16)
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In view of (3.15) and (3.16), we get

Am =
1

m!

dm

dλm
[Nyλ]λ=0

=
1

m!

dm

dλm

[
N(

∞∑
m=0

ymλ
m)

]
λ=0

=

[
1

m!

dm

dλm
N(

∞∑
m=0

ymλ
m)

]
λ=0

. (3.17)

Hence, (3.12)–(3.13) and (3.17) lead to the following recurrence relations

y0(t) =

[α]∑
k=0

ck+Jαg(t), ym(t) = −JαR(y(t))−Jα

[
1

m!

dm

dλm
N(

∞∑
m=0

ymλ
m)

]
λ=0

(3.18)
We can approximate the solution y by the truncated series

ϕk =
k−1∑
m=0

ym, limk→∞ϕk = y(t).

3.2 Basic idea of HAM

The principles of the HAM and its applicability for various kinds of differential
equations are given in [2, 8, 12, 13, 14, 23, 26, 27]. For convenience, we will
present a review of the HAM [13]. To describe the basic idea of the standard
HAM [5], we consider the nonlinear differential equation

N [y(t)] = 0, t ≥ 0, (3.14)

where N is nonlinear differential operator and y(t) is an unknown function.
Liao [12] constructed the so-called zeroth-order deformation equation :

(1− q)L[ϕ(t; q)− y0(t)] = qhH(t)N [ϕ(t; q)], (3.15)

where q ∈ [0, 1] is an embedding parameter , h ̸= 0 is an auxiliary parameter,
H(t) ̸= 0 is an auxiliary function, L ia an auxiliary linear operator, ϕ(t; q)
is an unknown function , and y0(t) is an initial guess for y(t) which satisfies
the initial conditions. It should be emphasized that one has great freedom in
choosing the initial guess y0(t), L, h and H(t). Obviously, when q = 0 and
q = 1, the following relations hold respectively

ϕ(t; 0) = y0(t), ϕ(t; 1) = y1(t).
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Expanding ϕ(t; q) in Taylor series with respect to q, one has

ϕ(t; q) = y0(t) +
∞∑

m=1

ym(t)q
m, (3.16)

where

ym(t) =
1

m!

∂mϕ(t; q)

∂qm
|q=0. (3.17)

We assume that the auxiliary parameter h, the auxiliary function H(t), the
initial approximation y0(t) and the auxiliary linear operator L are selected
such that the series (3.16) converges at q = 1, and one has

y(t) = y0(t) +
∞∑

m=1

ym(t). (3.18)

We can deduced the governing equation from the zero order deformation equa-
tion by define the vector

−→yn = {y0(t), y1(t), y2(t), . . . , yn(t)}. (3.19)

Differentiating (3.15) m-times with respect to q, then setting q = 0 and divid-
ing them by m!, we have, using (3.17) , the so-called mth-order deformation
equation

L[ym(t)− χmym−1(t)] = ~H(t)Rm(
−→y m−1(t)), m = 1, 2, 3, ...., n, (3.20)

where

Rm(
−→y m−1) =

1

(m− 1)!

∂m−1N [ϕ(t; q)]

∂qm−1
|q=0, (3.21)

and

χm =

{
0, m ≤ 1
1, m > 1

(3.22)

3.3 Basic idea of VIM

To illustrate the basic concept of the variational iteration method, we consider
the following general nonlinear equation

Dαy(t) +Ny(t) = g(t), (3.33)

According to the variational iteration method [9, 10, 25], we can construct a
correction functional in the form

ym+1(t) = y0(t) +

∫ t

0

λ(s) (Dα(ym(s) +N(ỹm(s))− g(s)) ds, (3.34)
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where y0(x) is an initial approximation with possible unknowns, λ(s) is a La-
grange multiplier which can be identified optimally via variational theory, the
subscript m denotes the m-th approximation, and ỹm is considered as a re-
stricted variation [10, 9], i.e. δỹm = 0 . It is shown that this method is very
effective and easy for linear problems as its exact solution can be obtained
by only one iteration because λ(s) can be exactly identified. To solve (3.33)
by the VIM, we must first evaluate λ(s) that will be identified optimally via
integration by parts. Then the successive approximation ym(t),m = 0, 1, · · · ,
of the solution y(t) will be readily obtained upon using λ(s) and y0(t). The
zeroth approximation y0 may be any function that satisfies at least the initial
and boundary conditions with λ(s) determined. Then successive approxima-
tions ym(t),m = 0, 1, 2, · · · follows immediately, and consequently the exact
solution may be arrived since: y = limm→∞ym.

3.4 Basic idea of HATM

In this section, we introduce an approximate analytical method, namely the
HATM, which is a combination of the HAM and the LDM [28, 29, 30, 31, 32].
This scheme is simple to apply to linear and nonlinear fractional differential
equations and requires less computational effort compared with other exiting
methods.

3.4.1 Laplace Transform

Let f(t) be defined for 0 ≤ t < ∞. Then, when the improper integral exists,
the Laplace transform F (s) of f(t), written symbolically as F (s) = L{f(t)},
is defined by

F (s) =

∫ ∞

0

e−stf(t)dt.

Lemma Ifm−1 < α ≤ m,m ∈ N, then the Laplace transform of the fractional
derivative Dαf(t) is

L(Dαf(t)) = sαF (s)−
m−1∑
k=0

f (k)(0+)sα−k−1, t > 0, (3.35)

where F (s) is the Laplace transform of f(t).

Apply the Laplace transform to both sides of Equation (3.6) we obtain

L (Dα(t)) + L (Ry(t) +Ny(t)) = Lg(t). (3.36)

Using (3.35) we then have

Ly(t)− 1

sα

m−1∑
i=0

y(i)(0)sα−i−1 − 1

sα
(L (Ry(t) +N y(t))− Lg(t)) = 0. (3.37)
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We define the nonlinear operator

N [ϕ(t; q)] = L [ϕ(t; q)]− 1

sα

m−1∑
i=0

ϕ(t; q)(i)(0)sα−i−1− 1

sα
(L (Rϕ(t; q) +Nϕ(t; q))− Lg(t)) .

(3.38)
In similar procedure with HAM, we can obtain the m-th-order deformation
equation.

4 Applications

In this section we apply the ADM, VIM, HAM and HATM to solve FOLE.
Consider

Dαy(t) = µy(t)(1− y(t)), t > 0, µ > 0, 0 < α ≤ 1, (4.1)

with the initial condition
y(0) = y0. (4.2)

The exact solution of this equation for α = 1, is

y(t) =
y0

y0 + (1− y0)e−µt
. (4.3)

4.1 The ADM for FOLE

In this section, we apply the ADM to solve (7.24). According to the Adomian
decomposition

y(t) =
m−1∑
i=0

y(i)
ti

i!
+ Jαµ(y − y2), (4.4)

y0(t) =
m−1∑
i=0

y(i)
ti

i!
, (4.5)

yi+1(t) = Jαµ(y − y2). (4.6)

The Adomian polynomials are as follows
A0 = µ(y0 − y20), A1 = µ(y1 − 2y0y1), A2 =

1
2
µ (−2y21 + 2y2 − 4y0y2), · · ·

Now if we take y0(t) = y(0) = y0, we obtain

y1(t) = −(y20 − y0)µ
tα

Γ(1 + α)
, (4.7)

y2(t) =
(
2y30 − 3y20 + y0

)
µ2 t2α

Γ(2α + 1)
, (4.8)

...
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4.2 The HAM for FOLE

In this section, we apply the HAM to solve ( 7.24). According to the explana-
tions in section 3.2 we have y0(t) = y0 and have the m-th-order deformation

ym(t) = χmym−1(t) + ~Jα[Rm(
−→y m−1(t))], (4.9)

where

Rm(
−→y m−1(t)) = Dαym−1(t)− µym−1(t) + µ

m−1∑
i=0

yi(t) ym−1−i(t). (4.10)

The first two terms of the HAM series solution take following form:-

y1(t) = µh(y0 − y20)
tα

Γ(α + 1)
, (4.11)

and

y2(t) = (1 + h)y1 + µ2h2(y20 − y0)(2y0 − 1)
t2α

Γ(2α+ 1)
. (4.12)

Hence, according to equation (3.18), the approximate solution is:

y(t) = y0(t) + y1(t) + y2(t) + · · · (4.13)

The series (4.13) contains the auxiliary parameter h. The result (4.13) is
the same approximate solution is obtained in [19, 24]. Similar to [21] we can
obtain the value of h so that the solution series is convergent for −2 < h < 0.
The obtimal value of h is −0.834348 [7].

4.3 The VIM for FOLE

In this section, we apply the VIM to solve ( 7.24). According to the variational
iteration method, formula (3.34) for (7.24) can be expressed in the following
form:

ym(t) = ym−1(t) + Jαλ(s)
(
Dαym−1(s) + µym−1(s)− µy2m−1(s)

)
. (4.14)

We can find the value of λ(s) as in [9, 10, 16]. This value is λ(s) = −1.
Substituting this value of λ(s) into (4.14), we obtain

ym(t) = ym−1(t)− Jα
(
Dαym−1(s) + µym−1(s)− µy2m−1(s)

)
. (4.15)

Finally the exact solution is obtained by

y(t) = limm→∞ym(t). (4.16)
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With the initial approximation y0(t) = y0, and using the iteration (4.15), we
can directly obtain the components of the solution. The first two components
of the solution y(t) by using (4.15) of the fractional-order logistic equation
are given by

y2(t) = y1(t) + (6 + µt(3 + 2y0(−3 + (y0 − 1)µ t))Γ(2− α))
y20 − y0

6Γ(2− α)
t

+
y20 − y0

Γ(2− α)(α− 2)
µ t2−α, (4.17)

...

4.4 The HATM for FOLE

In this section, we apply the HATM to solve ( 7.24). The Laplace transform
to both sides of equation ( 7.24) is

L{y(t)} − 1

s
y(0) +

1

sα
L{µy(t)} − 1

sα
L{µy2(t)} = 0. (4.19)

So as the procedure in section 3.4 we get

ym(t) = χmym−1(t) + hL−1{Rm(
−→y m−1(t))}, m = 1, 2, 3, ...., n, (4.20)

where

Rm(
−→y m−1(t)) = L{ym−1(t)}−

1

s
(1−χm)y(0)+

µ

sα
L{ym−1(t)}−

µ

sα
L{

m−1∑
i=0

yi(t)ym−1−i(t)}.

(4.21)
Consequently, the first tow terms of the HATM series approximate solution
with y0(t) = y0 are

y1(t) =
hµ(−y0 + y20)

Γ(1 + α)
tα, (4.22)

y2(t) = y1(t)

(
1 + h

(
1 +

µ(2y0 − 1)Γ(1 + α)

Γ(1 + 2α)
tα
))

. (4.23)

5 A Comparison Results

Now through the plotting the previous approximate analytical solutions with
the exact solution we can compare which the solution is better. Of course We’ve
deliberately to keep an equal number of approximations in the four methods.
We use only the 2-term approximate solution. But in the VIM we obtained
the approximate analytical solution by (y(t) = y2(t)). Figure 1, shows that the
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error between the exact solution y(t) of (7.24) and the approximate analytic
solution using ADM, HAM, VIM and HATM for α = 1, µ = y0 = 0.5, h =
−0.834348. From this figure we can conclude that solution obtained by VIM
is very close to the exact solution than the solutions obtained by ADM, HAM
and HATM.

6 Conclusion

In this paper ADM, VIM, HAM and HATMmethods have used to solve FOLE.
The efficiency and accuracy of these methods is obvious from the graph, when
compared with the exact solution. Comparisons of ADM, VIM, HAM and
HATM methods with exact solution have been shown by graphs which show
the efficiency of the methods and we find that VIM results better than ADM,
HAM and HATM.

7 Open Problem

As future work, we will extend this work to find the analytic approximation
for the Fisher equation. i.e.

∂αy

∂tα
=

∂βy

∂xβ
+ µy(1− y), (x, t) ∈ (−∞,∞)× (0,∞), (7.24)

where y is a function of x and t, and 0 < α ≤ 1, 0 < β ≤ 2.
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Figure 1: Comparison of the approximate analytical solutions obtained by
ADM, HAM, VIM, and HATM for the (7.24)at α = 1, µ = y0 = 0.5, h =
−0.834348


