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In this paper, we present some new results of symmetric
derivative on time scales by using induction.
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1 Introduction

Symmetric derivative (Schwarz derivative) is very useful in a large number of
problems. Particularly, in the theory of trigonometric series, applications of
such properties are well known[1]. Recently, in [5], the authors introduced the
notation of symmetric derivative on time scales. The theory of time scales,
which has received a lot of attention, was introduced by Hilger in his PHD
thesis in [6] in order to unify continuous and discrete analysis.

The aim of this paper is to present some new results of symmetric derivative
on time scales based on reference [5].
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2 Notations and lemmas

2.1 Notations

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
The forward and backward jump operators σ, ρ : T→ T are defined by

σ(t) = inf {s ∈ T : s > t} ,

ρ(t) = sup {s ∈ T : s < t} ,

where the supremum of the empty set is defined to be the infimum of T. A
point t ∈ T is said to be right-scattered if σ(t) > t and right-dense if σ(t) = t,
and t ∈ T with t > inf T is said to be left-scattered if ρ(t) < t and left-dense
if ρ(t) = t . A point t ∈ T is dense if it is right and left dense; isolated if it
is right and left scattered. A function g : T → R is said to be rd-continuous
provided g is continuous at right-dense points and has finite left-sided limits at
left-dense points in T. The graininess function µ for a time scale T is defined
by µ(t) = σ(t) − t, and for every function f : T → R the notation fσ means
the composition f ◦ σ. We also need the set Tκ and Tκ which are derived
from the time scale T as follows: If T has a left-scattered maximum m, then
Tκ = T− {m}. Otherwise, Tκ = T. If inf T is finite and right- scattered, then
Tκ = T − {inf T}. Otherwise, Tκ = T. We set Tκκ = Tκ ∩ Tκ. For more, the
readers may refer to [2].

Definition 2.1 [5, Definition 3.1] We say that a function f : T → R is
symmetric continuous at t ∈ T. If for any ε > 0, there exists a neighbor-
hood Ut ⊆ T of t such that for all s ∈ Ut for which 2t − s ∈ Ut one has
|f(s)− f(2t− s)| ≤ ε.

Definition 2.2 [5, Definition 3.4] Let f : T→ R and t ∈ Tκκ. The symmet-
ric derivative at t ∈ T, denoted by f♦(t), is the real number (provide it exists)
with the property that, for any ε > 0, there exists a neighborhood U ⊆ T of t
such that∣∣fσ(t)− f(s) + f(2t− s)− fρ(t)− f♦(t)[σ(t) + 2t− 2s− ρ(t)]

∣∣
≤ ε |σ(t) + 2t− 2s− ρ(t)|

for all s ∈ U for which 2t− s ∈ U .

2.2 Lemmas

Lemma 2.3 [5, Theorem 3.5] Let f : T → R and t ∈ Tκκ. The following
holds:

(i)Function f has at most one symmetric derivative at t.
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(ii)If f is symmetric differentiable at t, then f is symmetric continuous at
t.

(iii)If f is continuous at t and t is not dense, then f is symmetric differ-

entiable at t with f♦(t) = fσ(t)−fρ(t)
σ(t)−ρ(t) .

(iv)If t is dense, then f is symmetric differentiable at t if and only if the

limit lim
s→t

f(2t−s)−f(s)
2t−2s exists as a finite number. In this case f♦(t) = lim

s→t
f(2t−s)−f(s)

2t−2s =

lim
h→0

f(t+h)−f(t−h)
2h

.

Lemma 2.4 [5, Theorem 3.11] Let f, g : T → R be two symmetric differ-
entiable functions at t ∈ Tκκ and λ ∈ R. The following holds:

(i)Function f+g is symmetric differentiable at t with (f+g)♦(t) = f♦(t)+
g♦(t).

(ii)Function λf is symmetric differentiable at t with (λf)♦(t) = λf♦(t).
(iii)If f and g are continuous at t, then Functions fg is symmetric differ-

entiable at t with (fg)♦(t) = f♦(t)gσ(t) + fρ(t)g♦(t).
(iv)If f is continuous at t and fσ(t)fρ(t) 6= 0, then 1

f
is symmetric differ-

entiable at t with
(

1
f

)♦
(t) = −f♦(t)

fσ(t)fρ(t)
.

(v)If f and g are continuous at t and gσ(t)gρ(t) 6= 0, then f
g

is symmetric

differentiable at t with
(
f
g

)♦
(t) = f♦(t)gρ(t)−fρ(t)g♦(t)

gσ(t)gρ(t)
.

3 Main results

Theorem 3.1 Let α be a constant and n ∈ N.
(i) For f defined by f(t) = (t− α)n, we have

f♦(t) =
n−1∑
k=0

(σ(t)− α)k(ρ(t)− α)n−1−k. (3.1)

(ii)For g defined by g(t) = 1
(t−α)n , we have

g♦(t) = −
n−1∑
k=0

1

(σ(t)− α)n−k(ρ(t)− α)k+1
(3.2)

provided (ρ(t)− α)(σ(t)− α) 6= 0.

Proof. We will prove (3.1) by induction. If n = 1, then f(t) = t − α and
f♦(t) = 1 holds. If n = 2, then f(t) = (t−α)2 and f♦(t) = (σ(t)−α)+(ρ(t)−α)
holds.
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Now, we assume that (3.1) holds for f(t) = (t−α)n. Using Lemma 2.2, we
have [

(t− α)n+1
]♦

= [(t− α)(t− α)n]♦

= (t− α)♦(σ(t)− α)n + (ρ(t)− α) [(t− α)n]♦

= (σ(t)− α)n +
n−1∑
k=0

(σ(t)− α)k(ρ(t)− α)n−k

=
n∑
k=0

(σ(t)− α)k(ρ(t)− α)n−k.

To (3.2), using Lemma 2.2 and (i) of Theorem 3.1, it can easily obtain

g♦(t) =

(
1

f

)♦
(t) =

−f♦(t)

fσ(t)fρ(t)

= −

n−1∑
k=0

(σ(t)− α)k(ρ(t)− α)n−1−k

(σ(t)− α)n(ρ(t)− α)n

= −
n−1∑
k=0

1

(σ(t)− α)n−k(ρ(t)− α)k+1
.

Definition 3.2 For a function f : T → R, we shall talk about the second
derivative f♦♦(t) provided f♦(t) is symmetric differentiable on Tκ2 = (Tκ)κ
with derivative f♦♦(t) = (f♦(t))♦. Similarly, we define higher order symmetric
derivatives f♦

n
: Tκn → R. Finally, for t ∈ T, we denote σ2(t) = σ(σ(t)),

ρ2(t) = ρ(ρ(t)), σn(t) and ρn(t) are defined accordingly.

Theorem 3.3 Let f, g : T→ R be two functions whose n symmetric deriva-
tive exists at t ∈ Tκκ. Let S

(n)
k and C

(n)
k be the set consisting of all possible string

of length n ∈ N, containing exactly k times ρ and n− k times ♦, and k times
♦ and n− k times σ each other. If f∧ and g∨ exist for all ∧ ∈ S(n)

k ,∨ ∈ C(n)
k ,

then

(fg)♦
n

=
n∑
k=0

∑
∧∈S(n)

k

∨∈C(n)
k

(f∧g∨) . (3.3)

Proof. We will prove (3.3) by mathematical induction. First, if n = 1, then
(3.3) holds.
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Next, we assume that (3.3) is true for n ∈ N, then

(fg)♦
(n+1)

=


n∑
k=0

∑
∧∈S(n)

k

∨∈C(n)
k

(f∧g∨)


♦

=
n∑
k=0


∑
∧∈S(n)

k

∨∈C(n)
k

(
f∧g∨σ + f∧ρg∨♦

)


=
n+1∑
k=1

∑
∧∈S(n)

k−1

∨∈C(n)
k−1

(
f∧♦g∨σ

)
+

n−1∑
k=0

∑
∧∈S(n)

k

∨∈C(n)
k

(
f∧ρg∨♦

)

=
∑
∧∈S(n)n

∨∈C(n)
n

(
f∧♦g∨σ

)
+

n∑
k=1


∑
∧∈S(n)

k−1

∨∈C(n)
k−1

(
f∧♦g∨σ

)
+
∑
∧∈S(n)

k

∨∈C(n)
k

(
f∧ρg∨♦

)
+

∑
∧∈S(n)0

∨∈C(n)
0

(
f∧ρg∨♦

)

=
∑

∧∈S(n+1)
n+1

∨∈C(n+1)
n+1

(f∧g∨) +
n∑
k=1

∑
∧∈S(n+1)

k

∨∈C(n+1)
k

(f∧g∨) +
∑

∧∈S(n+1)
0

∨∈C(n+1)
0

(f∧g∨)

=
n+1∑
k=0

∑
∧∈S(n+1)

k

∨∈C(n+1)
k

(f∧g∨) .

(3.4)
So that (3.3) holds for n + 1, by the principle of induction. Then (3.3) holds
for all n ∈ N.

Theorem 3.4 Let f : [a, b]T → R be continuous function. If f♦♦(t) = 0
and t ∈ [a, b]Tκκ is dense, then f(t) is a linear function.

Proof. For any given positive number ε, we set

ϕ(t) = f(t)−
[
f(a) +

f(b)− f(a)

b− a
(t− a)

]
+ ε(t− a)(t− b). (3.5)

It is easily known that ϕ(t) is continuous in [a, b] and ϕ(a) = ϕ(b) = 0. Since
t is dense, we have σ(t) = t = ρ(t). Easy computation yields ϕ♦♦(t) = 2ε.

Next, we will prove ϕ(t) ≤ 0. If ϕ(t) > 0, then exist a local maximum in
x0 ∈ (a, b) such that

ϕ(x0 + h)− 2ϕ(x0) + ϕ(x0 − h)

h2
≤ 0.
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Using Lemma 2.1, we have ϕ♦♦(x0) ≤ 0. It is a contradiction. On the other
hand, Taking

ψ(t) = −
{
f(t)−

[
f(a) +

f(b)− f(a)

b− a
(t− a)

]}
+ ε(t− a)(t− b). (3.6)

Similarly method yield ψ(t) ≤ 0. Hence, we obtain∣∣∣∣f(t)−
[
f(a) +

f(b)− f(a)

b− a
(t− a)

]∣∣∣∣ ≤ ε |(t− a)(t− b)| . (3.7)

By virtue of random of ε, the proof is completed.

4 Example

Definition 4.1 Factorial function t(k) and binomial coefficient

(
α

β

)
by

t(k) =
Γ(t+ 1)

Γ(t− k + 1)
(4.1)

and (
α

β

)
=

α(β)

Γ(β + 1)
. (4.2)

Example 4.2 Assume α, k ∈ C and ♦ is symmetric differentiation with
respect to t on time scale T = Z. Show that

(i)
(
(t+ α)(k)

)♦
=

(
k +

k(1− k)

2(t+ α)

)
(t+ α)(k−1).

(ii)
(
αt
)♦

=

(
α2 − 1

2α

)
αt.

(iii)

(
t

α

)♦
=

(
1 +

1− α
2t

)(
t

α− 1

)
.
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Proof. Since T = Z, then we have σ(t) = t + 1, ρ(t) = t − 1. Using Lemma
2.1, it can easily obtain

(
(t+ α)(k)

)♦
=

(t+ 1 + α)(k) − (t− 1 + α)(k)

2
=

1

2

Γ(t+ α)

Γ(t− k + α)

=

(
k +

k(1− k)

2(t+ α)

)
Γ(t+ α + 1)

Γ(t− k + α + 2)
=

(
k +

k(1− k)

2(t+ α)

)
(t+ α)(k−1),

(
αt
)♦

=
αt+1 − αt−1

2
=

(
α2 − 1

2α

)
αt,

and(
t

α

)♦
=

(
t(α)

Γ(α + 1)

)♦
=

(
1 +

1− α
2t

)
t(α−1)

Γ(α)
=

(
1 +

1− α
2t

)(
t

α− 1

)
.

5 Open Problem

Let f1, f2, · · · , fm : T → R be some of these functions whose n symmetric
derivative exists at t ∈ Tκκ. Compute

(f1f2 · · · fm)♦
n

(5.1)
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