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Abstract

In this paper we give some rigorous conditions to determine the exact
number of zeros of certain even degree polynomails. The analysis is based on
the so called Sharkovsky theorem that gives a complete description of possible
sets of periods for continuous mappings de�ned on an interval. Two open
problems are given based on some rigorous analysis focused to certain type of
real polynomial functions with several conditions on their coe¢ cients.
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1 Introduction

The problem of �nding or characterizing the zeros of polynomial functions
has a long history. The obtained results varied from theory, algorithms and
numerical simulations. Historically, this study began with the fundamental
theorem of algebra proved by Gauss. The most known results in this direc-
tion is the fact that a real polynomial of degree n has at most n real zeros.
There is also the so called Descartes rule of signs concerning the number of
positive zeros. Some generalizations of Descartes rule are know such as the
Budan-Fourier theorem that gives an upper bound for the number of zeros
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of a polynomial. Also, the Sturm�s theorem that gives a method for deter-
mining the exact number of zeros in an interval [9, chapter 6] and [6, chapter
2]. Recent results uses the classical Enestrôm-Kakeya theorem to restricts the
location of the zeros based on a condition imposed on the coe¢ cients of the
polynomial under invistigation. See [7] and references therain.
In this paper, we will use a dynamical system result concerning periodic

points of a continuous function. The result is called Sharkovsky theorem [1-2-3-
4-5] that gives a complete description of possible sets of periods for continuous
mappings de�ned on an interval. The interval need not be closed or bounded.
The main idea used here is the notion of topological conjugation between con-
tinuous mappings. In this case we construct in�nitely many polynomials with
any desired number of real zeros. Generally, the use of the Sharkovsky the-
orem is known in the �eld of dynamical mappings (the study of iterations of
mappings), but as far as we know, this result is never used to investigate the
nature and the number of zeros of ceratin polynomial functions.

2 Sharkovsky theorem and counting zeros of
certain polynomials

Let us consider the function

f (x) = ax2 + bx+ c; a 6= 0 (1)

Then we get8>><>>:
f 2 (x) = a3x4 + 2a2bx3 + a (b+ 2ac+ b2)x2 + b (b+ 2ac)x+ c (b+ ac+ 1)

f 3 (x) = �1x
8 + �2x

7 + �3x
6 + �4x

5 + �5x
4 + �6x

3 + �7x
2 + �8x+ �9

:::

fk (x) = f
�
fk�1 (x)

�
= a

�
fk�1 (x)

�2
+ bfk�1 (x) + c; k = 2; 3; :::

(2)
where8>>>>>>>>>>>><>>>>>>>>>>>>:

�1 = a
7

�2 = 4a
6b

�3 = 4ca
6 + 6a5b2 + 2a5b

�4 = 12ca
5b+ 4a4b3 + 6a4b2

�5 = a
3 (6a2c2 + 12ab2c+ 6abc+ 2ac+ b4 + 6b3 + b2 + b)

�6 = 2a
2b (6a2c2 + 2ab2c+ 6abc+ 2ac+ b3 + b2 + b)

�7 = a (4a
2c2 + 4a3c3 + b2 + b3 + b4 + 6a2b2c2 + 4ab2c+ 6ab3c+ 6a2bc2 + 4abc)

�8 = b (4a
3c3 + 6a2bc2 + 4a2c2 + 2ab2c+ 4abc+ b2)

�9 = c (a
3c3 + 2a2bc2 + 2a2c2 + ab2c+ 3abc+ ac+ b2 + b+ 1)

(3)
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In (2), fk represents the composition of f with itself k times. It is a 2k-degree
polynomial function verifying the functional equation described in the last part
of (2).
In this paper, we are interested mainlely on the number of real zeros of the

following equation:
fk (x)� x = 0 (4)

From (2) we remark that the expression of fk become very complicated with
the increasing of the value of the integer k. So, it is impossible to solves (4)
directely or know the number of its real zeros. To resolve this problem we use
the Sharkovsky theorem described as follow: De�ne a periodic point x of f as
the real zero of the equation (4) and k is called the period of x: If k = 1, then
x is called �xed point. A Sharkovsky ordering of the set of natural numbers N
is given by:

3 B 5 B 7::: B 2:3 B 2:5 B 2:7 B ::: B 22:3 B 22:5::: B 23 B 22 B 2 B 1: (5)

This is a total ordering of the set N. Hence, the Sharkovsky theorem can be
stated as follow:

Theorem 1 If m is a period for f and m B l in the ordering (5), then l is
also a period for f .

All proofs of the Sharkovsky theorem 1 are elementary. For example the
intermediate value theorem is the deepest method. From the ordering (5), we
remark that if f has a periodic point of period 3, then it has periodic points of
all periods. This result is also proved by Li and York in [10] con�rming that
the existence of a 3-periodic orbit can be considered as a route to chaos. See
[11-12-13-14-15] for more details on chaos theory. In particular, Li and Yorke
proved the following theorem:

Theorem 2 Let J be an interval and let ' : J ! J be continuous. Assume
there is a point u 2 J for which the points v = ' (u) ; w = '2 (u) ; d = '3 (u) ;
satisfy 8<:

d � u < v < w
or

d � u > v > w
(6)

then for every k = 1; 2; ::: there is a periodic point in J having period k; i.e.,
the equation 'k (x)� x = 0 has exactely k real and distinct zeros.

If ' has a periodic orbit fzig0�i�2 with period 3, then equation (4) has
exactely k real and distinct zeros for every k = 1; 2; :::
By using (6) for the polynomial function f given by (1) we get the following

theorem:
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Theorem 3 Assume there is a point u 2 J such that8<:
f 3 (u) � u < f (u) < f 2 (u)

or
f 3 (u) � u > f (u) > f 2 (u)

(7)

where f (u) ; f2 (u) and f 3 (u) are de�ned in (2) by setting x = u, then for
every k = 1; 2; ::: the polynomial equation (4) has exactely k real and distinct
zeros.

Solving a double inequality of the form (7) is quite di¢ culte or impossible.
Then we must use the conditions for the periodic orbit fzig0�i�2 as follow:8>><>>:

zi+1 = f (zi) ; i = 0; 1; 2
z3 = f (z2) = z0

zi = f
3 (zi) ; i = 0; 1; 2

zi 6= f j (zi) ; i; j = 0; 1; 2:

(8)

The last conditions of (8) means that the resulting periodic orbit fzig0�i�2 is
not a �xed point, not a periodic point of period 2 of the function f .
The �xed points of f are the real zeros of the equation ax2 + (b� 1)x +

c = 0 denoted by u1 = � b+
p
�2b�4ac+b2+1�1

2a
and u2 = �b+

p
�2b�4ac+b2+1+1

2a
if

�2b�4ac+b2+1 > 0 and u1 = u2 = � b�1
2a
if �2b�4ac+b2+1 = 0: A periodic

point of period 2 of the function f is the real solution of the equation f 2 (x)�
x = 0 which is not a �xed point, i.e., a3x4 + 2a2bx3 + (a (b2 + 2ac) + ab)x2 +
(b2 + 2acb� 1)x+(c+ ac2 + bc) = 0: This is a quartic equation which can have
at most 4 zeros deonted by fwjg1�j�4 with the conditions u1; u2 =2 fwjg1�j�4 :

Hence, it is easy to prove the following result:

Theorem 4 Assume that there exists a set of 3 points fzig0�i�2 such that8>>><>>>:
zi+1 = az

2
i + bzi + c; i = 0; 1; 2

z0 = az
2
2 + bz2 + c = z3

�1z
8
i + �2z

7
i + �3z

6
i + �4z

5
i + �5z

4
i + �6z

3
i + �7z

2
i + (�8 � 1) zi + �9 = 0; i = 0; 1; 2

z0; z1; z2 =2
n
fwjg1�j�4 ; u1; u2

o
(9)

Then for all integer k � 1 there exists a set of k points
n
u
(k)
i

o
0�i�k�1

such

that: 8>>>>>><>>>>>>:

u
(k)
i+1 = a

�
u
(k)
i

�2
+ bu

(k)
i + c; i = 0; :::; k � 1

u
(k)
0 = a

�
u
(k)
k�1

�2
+ b

�
u
(k)
k�1

�
+ c = u

(k)
k

u
(k)
i = fk

�
u
(k)
i

�
; i = 0; :::; k � 1

u
(k)
i 6= f j

�
u
(k)
i

�
; i = 0; :::; k � 1; j = 1; ::k � 1:

(10)
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that is, the polynomial equation (4) has exactely k distinct real zeros for all
integer k � 1.

Note that the set of conditions (9) is not empty since it was proved ana-
lytically that the special case of the logistic map g (x) = rx (1� x) ; 0 � r � 4
has a periodic point of period 3 for r ' 3:83187405::: [8], i.e., the equation
gk (x)� x = 0 has exactely k distinct real zeros for all integer k � 1.
From this analytical result we can show that there exists in�nitely many

functions of the form (1) such that the equations (4) has exactely k distinct
real zeros:

Theorem 5 For all 0 < r � 4, there exists in�nitely many functions of the
form (1) such that the equation (4) has exactely k distinct real zeros for all
integer k � 1:

Indeed, we say that the functions f (x) = ax2+bx+c and g (x) = rx (1� x)
are a¢ nely conjugate if there exists an a¢ ne transformation h (x) = px + q
(p 6= 0) such that:

(g � h) (x) = (h � f) (x) ; (11)

for all x 2 R: This implies that the dynamical mappings de�ned by f (x) and
g (x) have identical topological properties. In particular, they have the same
number of �xed and periodic points. Hence, for certain values of a; b and c,
the equation (4) has exactely k distinct real zeros for all integer k � 1. Indeed,
equation (11) is equivalent to:�
�rp2 � ap

�
x2+(�r (p (q � 1) + pq)� bp)x� (q + cp+ qr (q � 1)) = 0 (12)

for all x 2 R: This implies that all the coe¢ cients in (12) are zero, that is, if
r 6= 0; then p = �a

r
; q = r�b

2r
and c = b2�2b�r2+2r

4a
since a 6= 0: Finally, there

exists in�nitely many functions of the form f (x) = ax2+ bx+ b2�2b�r2+2r
4a

such
that the equation (4) has exactely k distinct real zeros for all integer k � 1:

3 Counting zeros of some polynomials of de-
gree 2k

For k � 1; let us consider an arbitrary polynomial function of degree 2k of the
form:

p2k (x) = a2kx
2k + a2k�1x

2k�1 + :::+ a1x+ a0 =

2kX
j=0

ajx
j; a2k 6= 0 (13)
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and consider w2k (x) = fk (x)� x as a polynomial function of the form:

w2k (x) = �2kx
2k + �2k�1x

2k�1 + :::+ (�1 � 1)x+ �0 =
2kX
j=0

�jx
j; �2k 6= 0 (14)

which has exactely k real zeros (generally, w2k (x) can be considered as any
polynomial function with k real zeros). We wante to �nd some conditions
on the coe¢ cients a0; a2; :::a2k in which the number of real zeros of p2k (x) is
exactely the integer k � 1. To do this, we use the realtion conjugation relation:

(p2k � h) (x) = (h � w2k) (x) (15)

with h (x) = px+ q (p 6= 0) for all x 2 R and we get the equation:

a2k (px+ q)
2k+:::+a1 (px+ q)+a0�

�
p�2kx

2k + :::+ p (�1 � 1)x+ p�0 + q
�
= 0

(16)
By using the Newton�s binomial theorem we get:

8>>>>>>>>>>>><>>>>>>>>>>>>:

(px+ q)2
k

= q2
k
+ p2

k
x2

k
+ 2kp2

k�1qx2
k�1 +

2k�2X
m=1

2k!

m!(2k�m)!
pmxmq2

k�m

(px+ q)2
k�1 = q2

k�1 + p2
k�1x2

k�1 +
2k�2X
m=1

(2k�1)!
m!(2k�1�m)!

pmxmq2
k�1�m

:::::

(px+ q)2
k�d = q2

k�d + p2
k�dx2

k�d +
2k�d�1X
m=1

(2k�d)!
m!(2k�d�m)!

pmxmq2
k�d�m; d = 0; :::; 2k

(17)
Thus, the coe¢ cient of the polynomial in the right side of (16) are given by:

8>>>>><>>>>>:

x2
k
: a2kp

2k � p�2k
x2

k�1 : a2k2
kp2

k�1q + a2k�1p
2k�1 � p�2k�1

::::

x0 :
2kX
m=0

amq
m � p�0 � q

(18)

Letting these coe¢ cient equal to zero (because (15) holds for all x 2 R) we can
�nd the expressions (with possible conditions) for the coe¢ cients (ai)0�i�2k by
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solving the system of equations:8>>>>><>>>>>:

a2kp
2k � p�2k = 0

a2k2
kp2

k�1q + a2k�1p
2k�1 � p�2k�1 = 0

::::
2kX
m=0

amq
m � p�0 � q = 0

(19)

If the system of equations (19) has one real solution with respect to p and q and
no contradictions in the expressions of (ai)0�i�2k and their possible conditions,
then it is easy to prove the following theorem:

Theorem 6 For any polynomial function of degree 2k with k distinct real ze-
ros, there exist another non trivial polynomial function of degree 2k with k
distinct real zeros.

If (19) has no real solutions or it has several real solutions with respect to
p and q then no polynomial function of degree 2k with k distinct real zeros can
exists by using this method.
As some examples, let us consider the cases k = 1 and k = 2: For k = 1,

we get p2 (x) = a2x
2 + a1x + a0 (a2 6= 0); w2 (x) = �2x

2 + �1x + �0 (�2 6=
0; �21 � 4�2�0 = 0), p = �2

a2
; q = �1�a1

2a2
and a0 =

2�1�2a1��21+a21+4�0�2
4a2

: For k = 2,
we get p4 (x) = a4x4+ a3x3+ a2x2+ a1x+ a0 (a4 6= 0), w4 (x) = �4x4+ �3x3+
�2x

2+�1x+�0 (�4 6= 0), p = 3

q
�4
a4
; q = �3�p2a3

4p2a4
; a0 = q+p�0�qa1�q2a2�q3a3�

q4a4; a1 = �1 � 2qa2 � 3q2a3 � 4q3a4 and a2 = �1
p
(��2 + 3pqa3 + 6pq2a4) :

4 Open problems

In this section, we propose the following open problems:

Problem 1 Is it possible that the above analysis given for f de�ned by (1) can be
extended to arbitrary polynomials of the form p (x) = anxn+an�1xn�1+
::: + a1x + a0 (n � 2) and checking the conditions for a periodic point
of period three? If so, then any equation of the form pk (x) � x = 0
has exactely k zeros. The choice of f in (1) is the minimum case where
periodic three point can be found since chaos cannot appear in linear
mapping.

Problem 2 Is a similar approach possible for the case of odd degree polynomails?
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