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Abstract 

     A two-point boundary value problem involving the non-
homogeneous differential equation of Sir George Biddell Airy with a 
right-hand-side that is a function of the independent variable, is 
considered. Solution is expressed in terms of two recently introduced 
integral functions that are expressible in terms of ascending series. 
Evaluation of these functions gives rise to an open problem that is 
stated in this work.  

     Keywords: Airy’s inhomogeneous equation, variable forcing function,  
ascending series representation, Nield-Kuznetsov function 

1      Introduction 

Airy’s differential equation continues to receive considerable attention in 

the literature due to its mathematical implications and physical applications, [6]. 

Mathematically, finding and expressing solutions to Airy’s equation provides us 

with further insights into series convergence and the introduction of innovative 
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series techniques. In addition, advances in the knowledge of behaviour of this 

equation and its solution can provide us with the ability to reduce mathematical 

and physical problems to Airy’s equation. Recently, the use of Airy’s functions in 

the study of flow over porous layers, [5], resulted in the introduction of a new 

function that was further analyzed by Hamdan and Kamel [3] to discover its 

salient features and the differential equations that this function satisfies. From an 

applications point of view, Airy’s equation arises in various applications of 

mathematical physics, including fluid flow and the study of optics. [1,4]. 

Although analysis of Airy’s equation has been directed in the main part to 

the homogeneous Airy’s differential equation and the inhomogeneous equation 

with a constant forcing function, recent analysis has branched into the 

inhomogeneous equation with a variable forcing function. In fact, in a recent 

article, [2], an initial value problem was considered in which solution to the 

variable forcing function equation was obtained in terms of two recently 

introduced integral functions, whose approximations were obtained using 

asymptotic series. These same integral functions arise in two-point boundary 

value problem associated with Airy’s differential equation with a variable right-

hand-side, as will be illustrated in the current work. The goal here is to analyze 

the two-point boundary value problem, find the general solution and express it in 

ascending series form, and deduce a solution satisfying the boundary conditions. 

The method used, that is ascending series approximations of the resulting integral 

functions, is also valid for initial boundary value problem. We end this work with 

a statement of an open problem associated with series approximations.  

 

2      Problem Formulations 

We wish to solve the following inhomogeneous Airy’s ordinary differential 

equation 

 

(1)             )(xfxyy          

 

With two-point boundary conditions expressed as 

 

(2)            )(ay                                                             

(3)            )(by                                                                 

where  , and ],[ bax . 
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Equation (1) is the well-known Airy’s differential equation that has its 

roots in the 19
th

 Century work of Airy, and continues to receive considerable 

attention in the literature due to its applications in mathematical physics (c.f. [1,6] 

and the references therein).  

 

General solution to (1) has been discussed in detail in [3], and takes the form 

                    

(4)             )()()()()( 21 xNxfxKxBcxAcy iiiig                                                    

 

In which 1c  and 1c  are arbitrary constants, and )(xAi and )(xBi are the well-known 

Airy’s functions of the first and second kind, respectively, defined by, [6]: 
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and have the following non-zero wronskian, [1] 
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The function )(xN i  is the recently introduced Nield-Kuznetsov function, [5], 

defined in terms of Airy’s functions as 
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and has the following integral representation 
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The function, )(xK i , introduced in [3], is defined by either of the following 

forms: 
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Now, upon using boundary conditions (2) and (3) in (4), we can obtain the 

following values of the arbitrary constants and render the boundary value problem 

solved: 
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It is clear from the above discussion that finding the arbitrary constants, and 

evaluating the solution over the interval [a,b], necessitates evaluating )(xAi , 

)(xBi , )(xN i and )(xKi  for bxa  . While this is a challenging task, we will 

attempt to approximate these integral functions on the given interval using series 

approximations. 

 

 

3      Ascending Series Approximations 

Airy’s functions, )(xAi  and )(xBi , their derivatives and integrals can be 

approximated using infinite series. Two popular series approximations are the 

asymptotic series and ascending series methods that have been reported in the 

literature (cf. [1,6] and the references therein). These same series can be used to 

derive series expressions for )(xN i and )(xKi . Asymptotic series approximations 

have been discussed in a previous article, [2], in connection with initial value 

problems. We will in the current work discuss ascending series approximations 

for the boundary value problem at hand. 

 

Ascending series representations for Ni(x), Ki(x) and their derivatives and 

integrals are developed using the ascending series representations of )(xAi  and 

)(xBi , their derivatives and integrals, reported in [6]. 

 

Letting 
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where kb)( is the Pochhammer symbol, defined as, [6]: 
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the following representations can then be obtained, [12]: 

 

(22) )()()( 2211 xFaxFaxAi
                        

(23) )]()([3)( 2211 xFaxFaxBi
                 

(24) )()()( 2211

0

xFaxFadttA

x

i                     

(25) )(3)(3)( 2211

0

xFaxFadttB

x

i  .                            

 

Using (16)-(21) in (22)-(25) we obtain the following ascending series 

representations of Airy’s functions and their integrals: 
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In order to obtain an ascending series representation for )(xN i , we substitute 

(22)-(25) in (8) to get either 
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Equations (30) and (31) have the following equivalent summation expressions, 

respectively 
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In order to obtain an ascending series representation for )(xK i , we express the 

integrals on RHS of (10) in terms (22) to (25) as follows: 
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Upon integrating by parts and using (18) and (19), we obtain 
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Using (36) and (37) in (34) and (35) we obtain, respectively 
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Equation (10) then takes the following form with the help of (38) and (39): 
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which simplifies to the following final form of )(xK i : 
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Ascending series form of the general solution (4) is obtained by substituting 

(26), (27), (33) and (41) in equation (4). After some simplification we obtain: 
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







































































 



 





















0

3

0 0

13

21121

0

13

0 0

3

21122

)!3(

3

3

1

*
)!13(

3

3

2
)(32]3[

)!13(

3

3

2

*
)!3(

3

3

1
)(32]3[

k

kk

k

x

k

kk

k

k

kk

k

x

k

kk

k

g

k

x

dt
k

t
tfaacca

k

x

dt
k

t
tfaaccay





                       

           

 

Values of the arbitrary constants are obtained from (12) and (13) once the 

values of )(),(),(),( xKxNxBxA iiii  at x = a and x = b are obtained from (26), (27), 

(33) and (41). A concrete example is implemented in the following section to 

illustrate the procedure. 

 

4      An Illustrative Example 

Suppose we are required to solve equation (1) with xxf )(  with the 

boundary conditions 0)0( y and 1)1( y . Substituting xxf )(  in (41) and 

(42), and integrating, the function )(xK i  and the general solution take the forms, 

respectively: 
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(43) 

 

 







































































0

2/33

11

0

2/53

22

)2/33()!3(

3

3

1
)()(3

)2/53()!13(

3

3

2

*)()(3)()(

k

kk

k

ii

k

kk

k

iiii

kk

x
xBaxAa

kk

x

xBaxAaxNxxK

  

 

 

(44) 
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



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






























































































































0

3

0

2/53

21121

0

13

0

2/33

21122

)!3(

3

3

1

*
)2/53()!13(

3

3

2
32]3[

)!13(

3

3

2

*
)2/33()!3(

3

3

1
32]3[

k

kk

k

k

kk

k

k

kk

k

k

kk

k

g

k

x

kk

x
aacca

k

x

kk

x
aaccay




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In order to satisfy the given boundary conditions, we find the arbitrary 

constants, 1c  and 2c , given by equations (12) and (13). This requires calculating 

)(),(),(),( xKxNxBxA iiii  and f(x) at x = 0 and x = 1. Definitions (8) and (11) give 

us the values 0)0( iN  and 0)0( iK . The literature, [1,6], reports the 

values 388781720.35502805)0( iA  and 744600070.61492662)0(3)0(  ii AB . 

We thus need to calculate ).1(),1(),1(),1( iiii KNBA These are computed from 

equations (26), (27), (33) and (43) where we have used the first five terms of the 

series and retained 16 significant digits in the calculations. It is noted that the first 

omitted term (sixth term) in each of the series (16)-(19) is less than 810  at x = 1. 

This is considered as a measure of accuracy of the computed solutions. 

 

The following values are thus obtained: 

547424380.13529241)1( iA  

29708251.20742359)1( iB  

205652510.16725609)1( iN  

    388681980.07914735)1( iK  

  

and the values of arbitrary constants, computed using (12) and (13), are: 
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27818221.287255811 c     

002549560.743197492 c . 

 

Upon using these values of arbitrary constants in (44), equation (44) 

represents the complete solution to the boundary value problem. 

  

4      Conclusion 

In this work, we have considered Airy’s non-homogeneous equation with 

a right-hand-side that is a function of the independent variable, subject to 

boundary conditions. Solution is cast in terms of four integral functions (the two 

Airy’s functions and two recently introduced integral functions). All functions are 

expressed in terms of ascending series in order to facilitate accurate computations.   

 

5      Open Problem 

Accurate evaluation of the integral functions )(xN i  and )(xK i  represents 

a challenge at two levels: 1) Both functions are defined in terms of the functions 

)(xAi  and )(xBi , thus embedding a dependence of )(xN i  and )(xK i  on Airy’s 

functions. 2) Evaluation of )(xN i  and )(xK i  relies heavily on our ability to 

accurately evaluate Airy’s functions, and choosing the most efficient 

representation. 

The above two points warrant further investigation into the possibility of 

finding different or better representations of the integral functions in terms of 

elementary functions, or in terms of functions with less elaborate computational 

requirements. 
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