Int. J. Open Problems Compt. Math., Vol. 8, No. 4, December, 2015 ISSN 1998-6262; Copyright ©ICSRS Publication, 2015 www.i-csrs.org

Certain Results on Starlike and Parabolic Starlike Functions

Richa Brar and S. S. Billing

Department of Mathematics
Sri Guru Granth Sahib World University
Fatehgarh Sahib-140 407, Punjab, India
E-mail: richabrar4@gmail.com
E-mail: ssbilling@gmail.com

Abstract

Using the technique of differential subordination, we obtain certain results for starlike and parabolic starlike functions involving the differential operator $\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)$. We study the above operator for multivalent functions and also conclude some results for univalent functions.

Keywords: Analytic function, Differential Subordination, Multivalent function, Parabolic starlike function, Starlike function.

2010 Mathematics Subject Classification: 30C80, 30C45.

1 Introduction

Let \mathcal{A}_p denote the class of functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad (p \in \mathbb{N}; z \in \mathbb{E})$$

which are analytic and p-valent in the open unit disk \mathbb{E} . Obviously, $\mathcal{A}_1 = \mathcal{A}$, the class of all analytic functions f, normalized by the conditions f(0) = f'(0) - 1 = 0. Let the functions f and g be analytic in $\mathbb{E} = \{z : |z| < 1\}$. We say that f is subordinate to g in \mathbb{E} (written as $f \prec g$,) if there exists a Schwarz

function ϕ in \mathbb{E} (i.e. ϕ is regular in $|z| < 1, \phi(0) = 0$ and $|\phi(z)| \le |z| < 1$) such that

$$f(z) = g(\phi(z)), |z| < 1.$$

Let $\Phi: \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p an analytic function in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \Phi(p(0), 0; 0) = h(0). \tag{1}$$

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1), is said to be the best dominant of (1). The best dominant is unique up to a rotation of \mathbb{E} .

A function $f \in \mathcal{A}_p$ is said to be p-valent starlike of order $\alpha(0 \le \alpha < p)$ in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, z \in \mathbb{E}.$$
 (2)

We denote by $S_p^*(\alpha)$, the class of p-valent starlike functions of order α . Note that $S_p^*(0) = S_p^*$, which is the class of p-valent starlike functions.

A function $f \in \mathcal{A}_p$ is said to be p-valent parabolic starlike in \mathbb{E} , if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \left|\frac{zf'(z)}{f(z)} - p\right|, z \in \mathbb{E}.$$
 (3)

We denote by $\mathcal{S}_{\mathcal{P}}^p$, the class of p-valent parabolic starlike functions. Note that $\mathcal{S}_{\mathcal{P}}^1 = \mathcal{S}_{\mathcal{P}}$, the class of parabolic starlike functions. Define the parabolic domain Ω as under

$$\Omega = \{ u + iv : u > \sqrt{(u - p)^2 + v^2} \}.$$

Clearly the function

$$q(z) = p + \frac{2p}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$$

maps the unit disk \mathbb{E} onto the domain Ω . Hence the condition (3) is equivalent to

$$\frac{zf'(z)}{f(z)} \prec q(z), z \in \mathbb{E},$$

where q(z) is given above. In the literature of univalent function theory, the differential operator

 $\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)$ is investigated by many authors for obtaining star-likenes of analytic functions. We refer to Lewandowski et al. [8], Ramesha et al. [1], Obradovič et al. [4], Padmanabhan [3], Li and Owa [2], Ravichandran et al. [6],[7]. In 1976, Lewandowski et al. [8] proved the following result:

Theorem 1.1 If $f \in A$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > 0, z \in \mathbb{E},\tag{4}$$

then $f \in \mathcal{S}^*$.

In 1995, Ramesha et al. [1] gave the following sufficient condition for starlikeness:

Theorem 1.2 If $f \in A$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)\right\} > 0, z \in \mathbb{E}, for some \ \alpha \ge 0,$$
 (5)

then $f \in \mathcal{S}^*$.

Later on, Li and Owa [2] improved the above results and gave the following sufficient conditions for starlikeness:

Theorem 1.3 If $f \in A$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)\right\} > \frac{-\alpha}{2}, z \in \mathbb{E}, for \ some \ \alpha \ge 0, \tag{6}$$

then $f \in \mathcal{S}^*$.

Theorem 1.4 If $f \in A$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)\right\} > \frac{-\alpha^2(1-\alpha)}{4}, z \in \mathbb{E}, for \ some \ (0 \le \alpha < 2),$$

$$then \ f \in \mathcal{S}^*(\alpha/2).$$

$$(7)$$

Later on, Ravichandran et al. [6] proved the following result:

Theorem 1.5 If $f \in A$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)\right\} > \alpha\beta\left[\beta-\frac{1}{2}\right] + \left[\beta-\frac{\alpha}{2}\right], z \in \mathbb{E}, \alpha \ge 0, 0 \le \beta \le 1,$$

$$(8)$$
then $f \in \mathcal{S}^*(\beta)$.

In the present paper, we obtain certain results pertaining parabolic starlikeness in terms of the above differential operator as well as certain results for starlikeness.

2 Preliminaries

To prove our main results, we shall use the following lemma of Miller and Mocanu [5].

Lemma 2.1 Let q be a univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z) = zq'(z)\phi[q(z)], h(z) = \theta[q(z)] + Q(z)$ and suppose that either

(i) h is convex, or

(ii) Q is starlike.

In addition, assume that

(iii)
$$\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$$
 for all z in \mathbb{E} .

If p is analytic in \mathbb{E} , with p(0) = q(0), $p(\mathbb{E}) \subset \mathbb{D}$ and

$$\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)], z \in \mathbb{E},$$

then $p(z) \prec q(z)$ and q is the best dominant.

3 Main results

Theorem 3.1 Let α be a non zero complex number and let q(z) be a univalent convex function such that

$$\Re\left(1 + \frac{zq''(z)}{q'(z)} + 2pq(z) + \frac{1-\alpha}{\alpha}\right) > 0.$$
(9)

If $f \in \mathcal{A}_p$ satisfies

$$\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right) \prec (1-\alpha)pq(z) + \alpha p^2(q(z))^2 + \alpha pzq'(z), z \in \mathbb{E}, \quad (10)$$

then

$$\frac{zf'(z)}{pf(z)} \prec q(z), z \in \mathbb{E}.$$

Proof. Write $\frac{zf'(z)}{pf(z)} = u(z)$, in (10), we obtain:

$$(1 - \alpha)pu(z) + \alpha p^2(u(z))^2 + \alpha pzu'(z) \prec (1 - \alpha)pq(z) + \alpha p^2(q(z))^2 + \alpha pzq'(z)$$

Define $\theta(w) = (1 - \alpha)pw + \alpha p^2w^2$ and $\phi(w) = \alpha p$. Therefore,

$$Q(z) = \phi(q(z))zq'(z) = \alpha pzq'(z)$$

and

$$h(z) = \theta(q(z)) + Q(z) = (1 - \alpha)pq(z) + \alpha p^{2}(q(z))^{2} + \alpha pzq'(z)$$

On differentiating, we obtain $\frac{zQ'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)}$ and

$$\frac{zh'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)} + 2pq(z) + \frac{1-\alpha}{\alpha}$$

In view of the given conditions, we see that Q is starlike and $\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$. Therefore, the proof, now, follows from Lemma 2.1.

4 Applications with dominant

$$q(z) = \frac{1 + (1 - 2\beta)z}{1 - z}, \quad 0 \le \beta < 1, z \in \mathbb{E}.$$

Remark 4.1 Selecting $q(z) = \frac{1 + (1 - 2\beta)z}{1 - z}$, for $0 \le \beta < 1$ in Theorem 3.1. A little calculation yields:

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{1-z}$$

and

$$1 + \frac{zq''(z)}{q'(z)} + 2pq(z) + \frac{1-\alpha}{\alpha} = \frac{2z}{1-z} + 2p\left(\frac{1+(1-2\beta)z}{1-z}\right) + \frac{1}{\alpha}$$

Obviously, for $\alpha > 0$, q(z) is convex and satisfies the condition (9). Consequently, we get the following result.

Theorem 4.1 For a positive real number α , if $f \in \mathcal{A}_p$ satisfies

$$\frac{zf'(z)}{f(z)} \left(1 + \alpha \frac{zf''(z)}{f'(z)} \right) \prec (1 - \alpha)p \left\{ \frac{1 + (1 - 2\beta)z}{1 - z} \right\} + \alpha p^2 \left\{ \frac{1 + (1 - 2\beta)z}{1 - z} \right\}^2 + \frac{2\alpha pz(1 - \beta)}{(1 - z)^2}, 0 \le \beta < 1, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec p\left[\frac{1+(1-2\beta)z}{1-z}\right] \text{ i.e. } f \in \mathcal{S}_p^*(\gamma), \text{ where } \gamma = \beta p \text{ and } 0 \leq \gamma < p.$$

Theorem 4.2 If $f \in A_p$ satisfies

$$\Re\left\{\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)\right\} > (1-\alpha)p\beta+\alpha p^2\beta^2 - \frac{1}{2}\alpha p(1-\beta), z \in \mathbb{E}, \alpha > 0, 0 \le \beta < 1$$
(11)

then $f \in S_p^*(\gamma)$, where $\gamma = \beta p$ and $0 \le \gamma < p$.

By taking $\alpha = 1$ in Theorem 4.1, we conclude the following result.

Corollary 4.3 If $f \in A_p$ satisfies

$$\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec p^2 \left\{ \frac{1 + (1 - 2\beta)z}{1 - z} \right\}^2 + \frac{2pz(1 - \beta)}{(1 - z)^2}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec p\left[\frac{1+(1-2\beta)z}{1-z}\right] \ i.e. \ f \in \mathcal{S}_p^*(\gamma), \ where \ \gamma = \beta p \ and \ 0 \leq \gamma < p.$$

By taking p=1 in Theorem 4.1, we get the following result for univalent starlike functions.

Corollary 4.4 Suppose α is a positive real number and if $f \in \mathcal{A}$ satisfies the condition

$$\frac{zf'(z)}{f(z)} \left(1 + \alpha \frac{zf''(z)}{f'(z)} \right) \prec (1 - \alpha) \left\{ \frac{1 + (1 - 2\beta)z}{1 - z} \right\} + \alpha \left\{ \frac{1 + (1 - 2\beta)z}{1 - z} \right\}^{2} + \frac{2\alpha z(1 - \beta)}{(1 - z)^{2}}, z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\beta)z}{1 - z} \text{ i.e. } f \in \mathcal{S}^*(\beta), 0 \le \beta < 1.$$

The Corollary 4.4 presents the following result for $\beta = 0$ and $\alpha = 1$.

Corollary 4.5 If $f \in A$ satisfies

$$\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec \left\{ \frac{1+z}{1-z} \right\}^2 + \frac{2z}{(1-z)^2} = F(z), z \in \mathbb{E},$$

where F(z) is a conformal mapping of the unit disk \mathbb{E} and

$$F(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re(w) \le \frac{-1}{2} \right\}$$

then $f \in \mathcal{S}^*$.

Remark 4.2 If we take p=1 and $\beta=0$ in Theorem 4.2, then we obtain the result of Li and Owa [2] given in Theorem 1.3. For p=1, Theorem 4.2 reduces to result of Ravichandran [7] given in Theorem 1.5.

5 Applications with dominant

$$q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2, z \in \mathbb{E}.$$

Remark 5.1 When we select the dominant $q(z) = 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2$ in Theorem 3.1. A little calculation yields that

$$1 + \frac{zq''(z)}{q'(z)} = \frac{1+z}{2(1-z)} + \frac{\sqrt{z}}{(1-z)\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)}$$
$$1 + \frac{zq''(z)}{q'(z)} + 2pq(z) + \frac{1-\alpha}{\alpha} = \frac{\sqrt{z}}{1-z} \left[\frac{3z-1}{2\sqrt{z}} + \frac{1}{\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right)} \right]$$
$$+2p \left[1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2 \right] + \frac{1}{\alpha}$$

Thus for positive real number α we notice that q(z) is convex and condition (9) is satisfied by this dominant. Therefore, we, immediately arrive at the following result.

Theorem 5.1 Suppose α be a positive real number and if $f \in \mathcal{A}_p$ satisfies

$$\frac{zf'(z)}{f(z)} \left(1 + \alpha \frac{zf''(z)}{f'(z)} \right) \prec (1 - \alpha) p \left\{ 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2 \right) \right\}$$

$$+ \alpha p^2 \left\{ 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 \right\}^2$$

$$+ \alpha p z \frac{4}{\pi^2 \sqrt{z} (1 - z)} \log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right), z \in \mathbb{E},$$

then

$$\frac{zf'(z)}{f(z)} \prec p + \frac{2p}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 i.e. \ f \in \mathcal{S}_{\mathcal{P}}^p.$$

Keeping $\alpha = 1$ in Theorem 5.1, we have the following result.

Corollary 5.2 If $f \in A_p$ satisfies

$$\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec p^2 \left\{ 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 \right\}^2$$

$$+\frac{4pz}{\pi^2\sqrt{z}(1-z)}\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right), z\in\mathbb{E},$$

then

34

$$\frac{zf'(z)}{f(z)} \prec p + \frac{2p}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 i.e. \ f \in \mathcal{S}_{\mathcal{P}}^p.$$

Letting p=1 in Theorem 5.1, we get the following result for parabolic starlikeness of univalent functions.

Corollary 5.3 For a positive real number α if $f \in A$ satisfies

$$\begin{split} \frac{zf'(z)}{f(z)} \left(1 + \alpha \frac{zf''(z)}{f'(z)}\right) &\prec \ (1 - \alpha) \left\{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right)^2\right)\right\} \\ &+ \alpha \left\{1 + \frac{2}{\pi^2} \left(\log\left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right)\right)^2\right\}^2 \\ &+ \frac{4\alpha z}{\pi^2 \sqrt{z} (1 - z)} \log\left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right), z \in \mathbb{E}, \end{split}$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2 \text{ i.e. } f \in \mathcal{S}_{\mathcal{P}}.$$

6 Open Problem

The sufficient conditions for starlikeness and parabolic starlikeness of normalized analytic functions have been obtained in terms of the differential operator $\frac{zf'(z)}{f(z)}\left(1+\alpha\frac{zf''(z)}{f'(z)}\right)$ only in case where $\alpha>0$. The above conditions are still open for $\alpha<0$. One may also investigate the above said operator for uniformly starlikeness and convexity of normalized analytic functions.

References

- [1] C. Ramesha, S. Kumar and K. S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math., 23 (1995) 167–171.
- [2] J.-L. Li and S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (2002) 313–318.
- [3] K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32(4) (2001) 543–550.

- [4] M. Obradovič, S. B. Joshi and I. Jovanovic, On certain sufficient conditions for starlikeness and convexity, Indian J. Pure Appl. Math., 29(3) (1994) 271–275.
- [5] S. S. Miller and P. T. Mocanu, *Differential subordination: Theory and applications*, Marcel Dekker, New York and Basel, (2000).
- [6] V. Ravichandran, C. Selvaraj and R. Rajalakshmi, Sufficient conditions for starlike functions of order α , Indian J. Pure Appl. Math., 3(5) (2002) Art. 81, 1–6.
- [7] V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci., 12(1) (2004) 41–51.
- [8] Z. Lewandowski, S. S. Miller and E. Zlotkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56 (1976) 111–117.