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Abstract

In this study, we will apply homotopy perturbation trans-
form method (HPTM) to solve Lane-Emden and Emden-Fowler
equations and we will also make a comparison between the re-
sult obtained by this method and the exact solutions of the
same equations presented in other research. The results showed
that HPTM has a high efficiency and effectiveness in solving
these equations and can be applied to other nonlinear partial
differential equations to obtain approximate or exat solutions
if they exist.
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1 Introduction

Since the linear and nonlinear differential equations have emerged have been
made and are still making big efforts by researchers to find methods to solve
this class of equations. These efforts resulted in the consolidation of this re-
search field in many methods, we find among them the homotopy perturbation
method (HPM). This method was established in 1998 by He ([1]-[5]) and ap-
plied to various linear and nonlinear problems (see ([6]-[16]). The method has
the advantage of dealing directly with the problem. That is, the equations
are solved without transforming them also avoids linearization, discretization
or any unrealistic assumption and provides an efficient numerical solution. In
dealing with nonlinear equations the nonlinearity terms is replaced by a se-
ries. Then it is an easy algorithm for computing the solution. As a result, it
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yields a very rapidly convergent series solution, and usually a few iterations
lead to very accurate approximation of the exact solution [10]. In recent years,
many researchers have paid attention to study the solutions of linear and non-
linear equations by using various methods combined with Laplace transform
[18]. Among these are the variational iteration method coupled with Laplace
transform method [17] and the homotopy perturbation method with Laplace
transform (see [18]-[25]). It should be noted here that the homotopy per-
turbation transform method (HPTM) is a combination of Laplace transform
method, homotopy perturbation method (HPM) and He’s polynomials. The
objective of this paper is to directly apply the homotopy perturbation trans-
form method (HPTM) proposed by Khan and Wu [18] to consider the rational
approximation solution of the Lane–Emden and Emden–Fowler equations.

2 Homotopy perturbation transform method

Khan and Wu [18] gives the idea of the basis of this method, where they
considered a general nonlinear non-homogeneous partial differential equation
with initial conditions of the form

Du(x, t) + Ru(x, t) + Nu(x, t) = g(x, t), (1)

with the initial conditions

u(x, 0) = h(x), ut(x, 0) = f(x), (2)

where D is the second order linear differential operator D = ∂2

∂t2
, N rep-

resent the general nonlinear differential operator, R is the linear differential
operator of less order D and g(x, t) is the source term. Taking the Laplace
transform (denoted throughout this paper by L) on both sides of (1)

L[Du(x, t)] + L[Ru(x, t)] + L[Nu(x, t)] = L[g(x, t)]. (3)

Using the differentiation property of the Laplace transform, we have

L[u(x, t)] =
1

s
h(x)+

1

s2
f(x)+

1

s2
L[g(x, t)]− 1

s2
L[Ru(x, t)]− 1

s2
L[Nu(x, t)]. (4)

Operating with the Laplace inverse on both sides of (4) gives

u(x, t) = G(x, t)− L−1
[

1

s2
L[Ru(x, t) + Nu(x, t)]

]
, (5)

where G(x, t) represents the term arising from the source term and the pre-
scribed initial conditions. Now, we apply the homotopy perturbation method
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u(x, t) =
∞∑
n=0

pnun(x, t), (6)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u), (7)

for some He’s polynomials Hn that are given by

Hn(u0, ..., un) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piui

)]
p=0

, n = 0, 1, 2, ... (8)

Substituting (6) and (7) in (5), we get

∞∑
n=0

pnun = G(x, t)− p

(
L−1

[
1

s2
L

[
R
∞∑
n=0

pnun +
∞∑
n=0

pnHn(u)

]])
, (9)

which is the coupling of the Laplace transform and the homotopy perturba-
tion method using He’s polynomials. Comparing the coefficient of like powers
of p, the following approximations are obtained

p0 : u0(x, t) = G(x, t),

p1 : u1(x, t) = −L−1
[
1
s2
L [Ru0(x, t) + H0(u)]

]
,

p2 : u2(x, t) = −L−1
[
1
s2
L [Ru1(x, t) + H1(u)]

]
,

p3 : u3(x, t) = −L−1
[
1
s2
L [Ru2(x, t) + H2(u)]

]
,

...

(10)

3 Applications

In this section, we apply the homotopy perturbation transform method (HPTM)
for solving Lane–Emden and Emden–Fowler equations of index m, where m in
[0, 5].

3.1 Lane–Emden equation of index m

The Lane–Emden equation of index m is given by

u′′(x) +
2

x
u′(x) + um = 0, u(0) = 1, u′(0) = 0. (11)

It should be noted here that the exact solutions exist only for m = 0;1 and 5.
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To overcome the difficulty encountered by the singularity at x = 0, we use
the transformation

v(x) = xu(x), (12)

so that
v′ = xu′ + u,

v′′ = xu′′ + 2u′.
(13)

Substituting (12) and (13) into (11) gives

v′′ + x1−mvm = 0, m = 0, 1, 2, ..., (14)

with the initial conditions

v(x) = 0, v′(x) = 1. (15)

Using the initial conditions (15) and the formula (9), we get

∞∑
n=0

pnvn(x) = x− p

(
L−1

[
1

s2
L

[
x1−m

∞∑
n=0

pnHn(v)

]])
, (16)

where the first few components of He’s polynomials [27], are given by

H0(v) = vm0 ,
H1(v) = mu1v

m−1
0 ,

H2(v) = mu2v
m−1
0 + (m−1)m

2
v21v

m−2
0 ,

H3(v) = mum−1
0 v3 + m(m− 1)vm−20 v1v2 + m(m−1)(m−2)

6
vm−30 v31.

...

(17)

Comparing the coefficients of like powers of p in the formula (16), we have

p0 : v0(x) = x,

p1 : v1(x) = −L−1
[
1
s2
L [x1−mH0(v)]

]
,

p2 : v2(x) = −L−1
[
1
s2
L [x1−mH1(v)]

]
,

p3 : v3(x) = −L−1
[
1
s2
L [x1−mH2(v)]

]
,

p4 : v4(x) = −L−1
[
1
s2
L [x1−mH3(v)]

]
,

...

(18)

Using He’s polynomials (17) and the iteration formulas (18), we obtain
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v0(x) = x,

v1(x) = −x3

3!
,

v2(x) = mx5

5!
,

v3(x) = −m(8m−5)
3·7! x7,

v4(x) = m(122m2−183m+70)
9·9! x9,

...

(19)

Recall, from (12) that u(x) = v(x)
x

. The first four terms of the decomposi-
tion series solution for (11) is given as

u(x) = 1− x2

3!
+m

x4

5!
−m(8m− 5)

3 · 7!
x6 +

m(122m2 − 183m + 70)

9 · 9!
x8 + · · · (20)

As stated before, the exact solutions exist only for three cases, namely:

Case 1: For m = 0, the exact solution is given by

u(x) = 1− x2

3!
, (21)

Case 2: For m = 1, the solution u(x) in series form is given by

u(x) = 1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
+ · · · , (22)

therefore the exact solution is given in the form

u(x) =
sinx

x
. (23)

Case 3: For m = 5, the solution u(x) in series form is given by

u(x) = 1− x2

6
+

x4

24
− 5x6

432
+ · · · , (24)

and thus, we get the exact solution of the equation (11)

u(x) =

(
1 +

x2

3

)− 1
2

, (25)

which is the exact solutions to the Lane–Emden equation as presented in
[26].
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3.2 Emden–Fowler equation of index m

The Emden–Fowler equation of index m is given by

u′′(x) +
2

x
u′(x) + axnum = 0, u(0) = 1, u′(0) = 0, (26)

It should be noted here also that the exact solutions exist only for m = 0;1
and 5.

The only value that cause us problems in solving this equation is x = 0, then
we exclude this value and we solve the equation. To overcome this difficulty,
we use the transformations (12) and and (13) into (26) gives

v′′ + ax1+n−mvm = 0, m = 0, 1, 2, ..., (27)

with the initial conditions

v(x) = 0, v′(x) = 1. (28)

In a similar way as above, the utilisation of formula (9) and the initial
conditions (28) gives

∞∑
n=0

pnvn(x) = x− p

(
L−1

[
1

s2
L

[
ax1+n−m

∞∑
n=0

pnHn(v)

]])
. (29)

Comparing the coefficient of like powers of p, we have

p0 : v0(x) = x,

p1 : v1(x) = −L−1
[
1
s2
L [ax1+n−mH0(v)]

]
,

p2 : v2(x) = −L−1
[
1
s2
L [ax1+n−mH1(v)]

]
,

p3 : v3(x) = −L−1
[
1
s2
L [ax1+n−mH2(v)]

]
,

...

(30)

Using He’s polynomials (17) and the iteration formulas (30), we obtain

v0(x) = x,
v1(x) = − a

(n+2)(n+3)
xn+3,

v2(x) = a2m
2(2n+5)(n+3)(n+2)2

x2n+5,

v3(x) = − a3m(8m+3mn−2n−5)
6(2n+5)(3n+7)(n+3)2(n+2)3

x3n+7,
...

(31)

Recall, from (12) that u(x) = v(x)
x

. The first four terms of the decomposi-
tion series solution for (26) is given as
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u(x) = 1− a

(n + 2)(n + 3)
xn+2 +

a2m

2(2n + 5)(n + 3)(n + 2)2
x2n+4 (32)

− a3m(8m + 3mn− 2n− 5)

6(2n + 5)(3n + 7)(n + 3)2(n + 2)3
x3n+6 + · · ·

From the series solution (33), we conclude that n 6= −3,−2,−5
2
,−7

3
,−9

4
, · · ·

Similarly as above, the exact solutions exist only for three cases, namely:
Case 1: For m = 0 and n = 0, the exact solution is given by

u(x) = 1− a

6
x2. (33)

Case 2: For n = 0 and m = 1, the solution u(x) in series form is given by

u(x) = 1− (
√
ax)2

3!
+

(
√
ax)4

5!
− (
√
ax)6

7!
+ · · · , (34)

therefore the exact solution is given in the form

u(x) =
sin
√
ax√

ax
. (35)

Case 3: For n = 0 and m = 5, the solution u(x) in series form is given by

u(x) = 1− a
x2

6
+ a2

x4

24
− a3

5x6

432
+ · · · , (36)

and thus, we get the exact solution of the equation (26) as follows

u(x) =

(
1 + a

x2

3

)− 1
2

, (37)

which is the exact solutions to the Emden–Fowler equation as presented in
[26].

4 Conclusion

After the direct application of homotopy perturbation transform method and
from the results obtained, we can say that this method is easy to implement
and effective, as it allows us to know the exact solution after calculate the first
three terms only. As a result, the conclusion that comes through this work is
that HPTM can be applied to other nonlinear partial differential equation, due
to the efficiency and flexibility in the application to get the possible results.
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5 Open Problem

We can resolve the same problem by using the Sumudu transform method
coupled with HPM and also for Lane-Emden and Emden-Fowler equations of
fractional order.
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