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Abstract 

     In this paper, the fractional homotopy perturbation transform 
method (FHPTM) is employed to obtain approximate analytical 
solutions of the time-fractional KdV, K(2,2) and Burgers equations. 
The FHPTM can easily be applied to many problems and is capable 
of reducing the size of computational work. The fractional derivative 
is described in the Caputo sense. The results show that the FHPTM 
is an appropriate method for solving nonlinear fractional derivative 
equation. 
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1      Introduction 

The investigation of the exact solutions to nonlinear equations play an important 

role in the study of nonlinear physical phenomena. To date, various nonlinear 

equations were presented, which described, for example, the motion of the 

isolated waves, and in many fields such as hydrodynamic, plasma physics, 

nonlinear optic,... etc. In most cases it is difficult to solve nonlinear problems, 

especially [7]. To overcome such problems, the homotopy perturbation method 

(HPM) was established in 1998 by He ([1]-[5]) and applied to various linear and 

nonlinear problems including Al-Saif and Abood [7], Biazar and Ghazvini [8], El-

Sayed et al. [9],... etc. The method has the advantage of dealing directly with the 
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problem. That is, the equations are solved without transforming them also avoids 

linearization, discretization or any unrealistic assumption and provides an efficient 

numerical solution [12]. In dealing with nonlinear equations the nonlinearity 

terms is replaced by a series. Then it is an easy algorithm for computing the 

solution. As a result, it yields a very rapidly convergent series solution, and 

usually a few iterations lead to very accurate approximation of the exact solution. 

Then it is an easy algorithm for computing the solution [12]. 

    The aim of this paper is to directly apply fractional homotopy perturbation 

transform method (FHPTM) [24] to consider the rational approximation solution 

of the time-fractional KdV, K(2,2) and Burgers equations of this form: 

           
,1<0,0)(3 2

*  
xxxxt uuuD                                             (1) 

           
,1<0,0)()( 22

*  
xxxxt uuuD                                          (2) 

           

,1<0,0)(
2

1 2

*  
xxxt uuuD                                              (3)      

                                                                                                                                                  

When 1 , the fractional equations reduces to the KdV, K(2,2) and Burgers 

equations of the form: 

            
,0)(3 2  xxxxt uuu                                                                     (4) 

           
,0)()( 22  xxxxt uuu                                                                 (5) 

           

,0)(
2

1 2  xxxt uuu                                                                       (6) 

    Eq. (4) is the pioneering equation that gives rise to solitary wave solutions. 

Solitons: waves with infinite support are generated as a result of the balance 

between the nonlinear convection x

nu )(  and the linear dispersion xxxu  in these 

equations. Solitons are localized waves that propagate without change of their 

shape and velocity properties and stable against mutual collisions [25]. 

    The ),( nnK  equation [25] 

                            
,0)()(  xxx

n

x

n

t uuu                                                   (7) 

is the pioneering equation for compactons. In solitary waves theory, compactons 

are defined as solitons with finite wavelengths or solitons free of exponential tails. 

Compactons are generated as a result of the delicate interaction between nonlinear 

convection x

nu )( with the genuine nonlinear dispersion xxx

nu )(  in (7). 
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    The Burgers equation appears in fluid mechanics. This equation incorporates 

both convection and diffusion in fluid dynamics, and is used to describe the 

structure of shock waves [25]. 

2      Basic definitions 

There are several definitions of a fractional derivative of order 0  (see [19]-

[23]). The most commonly used definitions are the Riemann--Liouville and 

Caputo. We give some basic definitions and properties of the fractional calculus 

theory which are used further in this paper . 

 

Definition 2.1 A real function 0>),( ttf , is said to be in the space C ,  ℝ 

if there exists a real number >p , such that )()( 1 tfttf p , where 

 ),0()(1 Ctf , and it is said to be in the space 
mC , m ℕ if Cf m )(

. 

Definition 2.2 The left sided Riemann--Liouville fractional integral of 

order 0  of a function Cf  , 1 , is defined as: 












 



,0),(

0>0,>,)()(
)(

1

)(
0

1










tf

tdft
tfI

t

                                        (8) 

where (.)  is the well-known Gamma function. 

Definition 2.3 The fractional derivative of 
mCf 1 in the Caputo's sense is 

defined as: 























,),(

,<<1,)()(
)(

1

)( 0

)(1

*

mtf
dt

d

mmdft
m

tfD

m

m

t

mm









                 (9) 

 where  m ℕ∗. 

Remark 2.1 According to the formula (9), we can obtain: 

;0* CD
 where C  is a constant 

and 
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

















.1,,0

1,->,
)1(

)1(

*






 



m

t
tD

                                                          (10)

 

Remark 2.2 In this paper, we consider the time-fractional derivative in the 

Caputo's sense. When  ℝ⁺, the time-fractional derivative is defined as: 






t

txu
txuD t






),(
),(*     

          





























.,
),(

,<<10,)(
),(

)(
)(

1

0

1

m
t

txu

mmd
xu

t
m

m

m

t

m

m
m













    (11) 

Definition 2.4 The Laplace transform of continuous (or an almost piecewise 

continuous) function )(tf
 
in ),0[   is defined as: 

     

  .)();()(
0

dttfestfLsF st






                                                                (12)

 

  where .<1 mm    

Definition 2.5 The Laplace transform,  stfDL );(*


 of the Caputo's fractional 

derivative is defined as: 

    

  ),0()();( )(
1

0

1

*

k
m

k

k fssFsstfDL 




 
                                               

(13)

 

       where  ,<1 mm    m ℕ∗. 

3      Fractional homotopy perturbation transform method  

In order to elucidate the solution procedure of the fractional Laplace homotopy 

perturbation method [24], we consider the following nonlinear fractional 

differential equation: 

),,(),(),(),(* txqtxNutxRutxuD t 
                                            (14) 

 xtxhxu 0,>),()0,(,1<0  ℝ                              
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where 




t
D




 , ][xR  is the linear operator in x , ][xN  is the general 

nonlinear operator in x , and ),( txq  are continuous functions. Now, the 

methodology consists of applying the Laplace transform first on both sides of Eq. 

(14). Thus, we get: 

)].,([)],([)],([)],([ * txqLtxNuLtxRuLtxuDL t 
                    (15)                            

Now, using the differentiation property of the Laplace transform, we have: 

)].,(),([)],([)()],([ 1 txNutxRuLstxqLsxhstxuL   
     (16)     

Operating the inverse Laplace transform on both sides in Eq. (16), we get: 

)]),,(),([(),(),( 1 txNutxRuLsLtxGtxu   
                               (17) 

where ),( txG , represents the term arising from the source term and the 

prescribed initial conditions. Now, applying the classical perturbation technique, 

we can assume that the solution can be expressed as a power series in p , as 

given below: 

       

,),(),(
0

txuptxu n

n

n






                                                                            
(18)

  
 

where the homotopy parameter p , is considered as a small parameter 

(  1,0p ). The nonlinear term can be decomposed as: 

    

,)(),(
0

uHptxNu n

n

n






                                                                             
(19)

  
 

where nH  are He's polynomials of  ,,...,,, 210 nuuuu  which can be calculated by 

the following formula: 

    

,...2,1,0,)(
!

1
),...,(

0

0

0 



















 nupN
pn

uuH

p

i

i

i

n

n

nn

                           (20)                                                                 
 

Substituting (18) and (19) in Eq. (17) and using HPM by He ([1]-[5]), we get: 

)])),([((),(
00

1

0

uHpNupRLsLptxGup n

n

n

n

n

n

n

n

n 













 

     (21)                        

This is a coupling of the Laplace transform and homotopy perturbation methods 
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using He's polynomials. Now, equating the coefficient of corresponding power of 
p  on both sides, the following approximations are obtained as: 

  
),,(),(: 0

0 txGtxup   

                                                                                                                                          

)]),(),([(),(: 11

1 uHtxRuLsLtxup nnn

n



  

                           (22) 

where  n ℕ∗. 

    Proceeding in this same manner, the rest of the components ),( txun , can be 

completely obtained, and the series solution is thus entirely determined. 

    Finally, we approximate the analytical solution ),( txu , by truncated series: 

       
.),(),(

0
lim




N

n

n
N

txutxu
                                                                           (23)

 

The above series solutions generally converge very rapidly. A classical approach 

of convergence of this type of series is already presented by Abbaoui and 

Cherruault [6]. 

4     Application of the FHPTM  

    In this section, we apply fractional homotopy perturbation transform method 

for the Caputo fractional derivative to solve nonlinear time-fractional KdV, K(2,2) 

and Burgers equations. 

Example 4.1 Consider the time-fractional partial differential KdV equation 

  
,1<0,0)(3 2

*  
xxxxt uuuD                                                    (24) 

subject to the initial conditions 

                       
.6)0,( xxu 
                                                                               (25)

 

Applying the Laplace transform first on both sides of Eq. (24). Thus, we get: 

  
.0][])[(3][ 2

*  xxxxt uLuLuDL 
                                                     (26) 

Using the differentiation property of the Laplace transform in Eq. (26), we get: 

].)(3[)6()],([ 21

xxxx uuLsxstxuL   
                                            (27) 

Applying the inverse Laplace transform on both sides in Eq. (27), we get: 

 
]).)(3[(6),( 21

xxxx uuLsLxtxu   
                                                 (28) 

By applying the aforesaid homotopy perturbation method, we have: 
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])).))((3[((6
00

1

0

nxxx

n

n

xn

n

n

n

n

n upuHpLsLpxup 













 

         (29)                         

Equating the coefficient of the like power of p  on both sides in Eq. (29), we get: 

  
,6),(: 0

0 xtxup   

                                                                                                                                          

]),)()(3[(),(: 11

1

xxxnxnn

n uHLsLtxup 

  

                                 (30) 

where  n ℕ∗. 

The first few components of He's polynomials [26], for example, are given by: 

  
,2

00 uH   

 
,2 101 uuH 

 

,2 2

1202 uuuH 
                                                                                         (31)

 

,22 21303 uuuuH   

              

Using He's polynomials (31) and the iteration formulas (30) we obtain: 

,6),(0 xtxu   

,
)1(

1
)36(6),(1




txtxu




 
,

)12(

2
)36(6),( 22

2




txtxu


                                                               (32) 

,
)13()1(

)12()1(4
)36(6),( 3

2

2
3

3






txtxu






 

,
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8
)36(6),( 4

2

2
4

4










txtxu





















 

                                                                                                                        
The first four terms of the decomposition series solution for Eq. (24) is given by: 
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.
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8
)36(6

)13()1(

)12()1(4
)36(6

)12(

2
)36(6

)1(

1
)36(66),(

4

2

2
4

3

2

2
3

22





















tx

tx

txtxxtxu
































                                                                                                                             (33)                                                                                                                   

The first four terms of the decomposition series solution, for the special case 

1 , is given by: 

...].)36()36()36()36(1[6),( 443322  ttttxtxu
                 (34) 

That gives: 

 

,1<36,
361

6
),( t

t

x
txu




                                                                        (35) 

 which is an exact solution to the KdV equation as presented in [25]. 

Example 4.2  We next consider the time-fractional partial differential K(2,2) 

equation 

  .)0,(

,1<0,0)()( 22

*

xxu

uuuD xxxxt



 

                                                    (36) 

In a similar way as above we have: 

])).))(())(([((
00

1

0

xxxn

n

n

xn

n

n

n

n

n uHpuHpLsLpxup 













 

 (37)  

Equating the coefficient of the like power of p  on both sides in Eq. (37), we get: 

  
,),(: 0

0 xtxup   

                                                                                                                                          

]),)()[((),(: 11

1

xxxnxnn

n HHLsLtxup 

  

                               (38) 

where  n ℕ∗. 

Using He's polynomials (31) and the iteration formulas (38) we obtain: 

,),(0 xtxu   

,
)1(

1
2),(1




txtxu



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,
)12(

2
4),( 2

2




txtxu


                                                                         (39) 

,
)13()1(

)12()1(4
8),( 3

2

2

3






txtxu 













 

,
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8
16),( 4

2

2

4










txtxu





















 

                             
 

   The first four terms of the decomposition series solution for Eq. (36) is given as: 

...
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8
16

)13()1(

)12()1(4
8

)12(

2
4

)1(

1
2),(

4

2

2

3

2

2

2






























































tx

tx

txtxxtxu

                                                                                                                             (40)                                                                                                                   

  The first four terms of the decomposition series solution for the special 1 , 

is given by: 

...].168421[),( 432  ttttxtxu
                                                (41) 

That gives: 

,1<2,
21

),( t
t

x
txu




                                                                            (42) 

which is an exact solution to the K(2,2) equation as presented in [25]. 

Example 4.3  We finally consider the Burgers equation 

      

.)0,(

,1<0,0)(
2

1 2

*

xxu

uuuD xxxt



 

                                                   (43)     

In a similar way as above we have: 

)).))((
2

1
((

00

1

0








 














nxx

n

n

xn

n

n

n

n

n upuHpLsLpxup 

         (44)  
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  Equating the coefficient of the like power of p  on both sides in Eq. (44), we 

get: 

,),(: 0

0 xtxup   

                                                                                                                                          

),)()(
2

1
(),(: 11

1









 



xxnxnn

n uHLsLtxup 

                             (45) 

where  n ℕ∗. 

    Using He's polynomials (31) and the iteration formulas (45) we obtain: 

,),(0 xtxu   

,
)1(

1
),(1




txtxu




 
,

)12(

2
),( 2

2




txtxu


                                                                           (46) 

,
)13()1(

)12()1(4
),( 3

2
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




txtxu 













 

,
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8
),( 4
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4










txtxu


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
















 

                             
The first four terms of the decomposition series solution for Eq. (43) is given as: 

...
)14(

)13(

)12()1(

4

)13()1(

)12(2)1(8

)13()1(

)12()1(4

)12(

2

)1(

1
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2
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






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  The first four terms of the decomposition series solution for the special case 

1 , is given by: 

...].1[),( 432  ttttxtxu
                                                           (48) 
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that gives: 

,1<,
1

),( t
t

x
txu




                                                                                  (49) 

which is an exact solution to the Burgers equation as presented in [25]. 

5      Conclusion 

In this paper, we have studied the time-fractional KdV, K(2,2) and Burgers 

equations by using the fractional homotopy perturbation transform method 

(FHPTM). The result shown that the FHPTM is an efficient method for 

calculating approximate solutions for nonlinear partial differential equations of 

fractional order. The solution obtained using the proposed method has a very high 

accuracy comparing with the variational iteration method. The method produces 

the same solution as the variational iteration method with the proper choice of the 

initial condition. 

6      Open Problem 

    In this work, the fractional homotopy perturbation transform method (FHPTM) 

to be effective for solving the time-fractional KdV, K(2,2) and Burgers equations. 

One can apply fractional homotopy perturbation Sumudu transform method 

(FHPSTM),...,to the same problem. 

    Is it possible to solve this problem for 2<1  and for the space-fractional? 
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