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Abstract

In this paper, a new fractional spline function of polynomial
form with the idea of the lacunary interpolation is considered
to find approximate solution for fractional differential equations
(FDEs). The proposed method is applicable for « € (0, 1], where «
denotes the order of the fractional derivative in the Caputo sense.
Convergence analysis of the method is considered. Some illustra-
tive examples are presented and the obtained results reveal that
the proposed technique is very effective, convenient and quite
accurate to such considered problems. The study is conducted
through illustrative examples and error analysis.
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1 Introduction

Fractional calculus (referring to the integration and differentiation of non-
integer order) has been developed more than three centuries ago [1,2] and has been
applied to an increasing number of fields such as physics [3,9,19] , chemistry and /or
biochemistry [4], control [5-8], medicine [9], etc. In the last few decades, several
numerical and analytical methods have been proposed in the literature to solve
fractional differential equations. The most commonly used ones are fractional
difference method [10], Adomian decomposition method [11], variational iteration
method [12,13], and and Adams-Bashforth-Moulton method [14-16]. Moreover,
the analytic results on the existence and uniqueness of solutions to the fractional
differential equations have been investigated by many authors [17,18].

In the present work we introduce a new fractional spline of a polynomial
form relying on the idea of lacunary interpolation problem which is applicable
for each a € (0,1]. For details on lacunary interpolation refer to [22-24]. The
fractional differential equations are solved by using our new fractional spline.
Some numerical examples are given to to illustrate the accuracy of the method.

2 Preliminaries

In this section, some definitions and Taylor’s Theorem, used in our work, will
be presented. There are many definitions for fractional derivatives, the most
commonly used ones are the Riemann-Liouville and the Caputo derivatives, espe-
cially the Caputo derivative are involved in our work. Suppose that a > 0, x > a,
a,a,r € R, then

Definition 1. [21] The Riemann-Liouville fractional integral of order o > 0 is

defined by
Io‘f(x):ﬁ/(x—ﬁ)a_lf(g)dﬁ, n—l<a<neN

where I' is the gamma function.

Definition 2. [21] The Riemann-Liouville fractional derivative of order a > 0 is
defined by

Lo

PO Ty

/m<f€—£)”°‘1 f(d§, n—1<a<neN
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Definition 3. [21] The Caputo fractional derivative of order o > 0 is defined by

n

1 r d
D2f(w) = e [ = GG S5 n—1<a<neN

Definition 4. [20] Let a € RT,  C R an interval such that a € Q, a < z, Vx € Q.
Then the following set of functions are defined:

Lo ={f € C(Q) : I*f(z) exist and is finite in Q}
Do ={f €C(Q): DI f(x)exist and is finite in Q}
In view of these definitions we can conclude the following therm :

Theorem 1. [20] Let a € (0,1], p € N and f(x) a continuous function in [a, 0]
satisfying the following conditions:

(1) D f € C([a,b]) and D" f € Zo(la, b)), Vm = 1,2,...,p.
(2) D¥™ () is continuous on [a, b].

Then for each z € [a, b],

with 1 (¢ — q)rHie

Remark 1. For simplicity we will use the operator D instead of D, from now on.

3 Description of the Method

Given the mesh points, A : 0 = 2o < 21 < -+ < x, = 1 with x4y — 2 =
h,k=0,1,--- ,n—1, and real numbers { f, D* fi,, D** f;.}._, associated with the
knots. We are going to construct spline interpolant Sa for which D™*Sx (z;) =
D™ f, i =0,1,...,n, and m = 0,1,4. This construction is given in the following
two cases:
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Case 1

In this case we suppose that the conditions of theorem 1 are satisfied with p = 4,
and then we can define the spline interpolant as follows:

_ _ (x —x)* ., (z — a1)™
Sa = Sk(x) =yp + Mo+ 1) D%y, + ay, [2a+ 1)
_ 3a . 4o
S g Gt D il T 1)

I'Ba+1) T'(4a+1)

where x, < x < xpyp and k=0,1,...,.n — 1.

4 Existence and Uniqueness

If we require that Sa(x) and D*Sa(z) is continuous on [0, 1], then it is easy
to prove that formula (1) exists and is unique. That is, clear from the continuity
conditions of Sa(z) and D*Sa(x) from which we get :

+ " pey, 4 L N T (2)
= - a
Ut = U T Pt 0 ) PTG D Taa T %
and B hQ h3a
D — D~ b — D 3
st =P ) Taa ) a9

The coefficients a; and b, are determined in terms of the given data using the
continuity conditions of Sa(x) and D*Sa(z). Thus we have

1 he
F(2o¢+1)Ak - r(3a+1)B’~C
a = o @)
1 A
r(2a+1)Bk - r(a+1)Ak

by, =

k1h2a
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where
. 1 1
"TTR2a+1D)I(2a+1) T(a+1DDBa+1)
ha h4a
A, = Y — ——— D%, — ——— Do 6
U TR T T 1) T Pdar ) (6)
h3a
and By = D% — D%yi, — s (7)

——D
I'Ba+1)

5 Error Bounds

Suppose that the conditions of theorem 1 are satisfied with p = 4 and D™*Sx (z;) =
D™y, o € (0,1], m = 0,1,4; i=0(1)n-1. We shall prove the following :

Theorem 2. Let Sg(z) be the fractional spline interpolant of the polynomial form
(1) solving the lacunary case (0, «,4cr) . Then for all z € [0, 1] the inequality

|D™SA(z) — D™ y(2)] < cmah* ™ win(h)

holds for all m = 0,1,...,4, and a € (0,1]. Where wy,(h) is the modulus of
continuity of D*y(z), and

o ks N ks N 1 . ko N ks N 1
T k2a+1)  kI(Ba+1) TAa+1) ° kKl(a+1) klC2a+1) TBa+1)
ko ks 1 ks 1
Con = C3a = Cho = 1.

& WD+ D) TRat+D) Tk Tatl)

To proof this theorem we shall need the following lemma,

Lemma 1. The following estimates are valid for all k = 0(1)n — 1.
2a k2 2a
|ak_D yk} < k’_h W4o¢(h)> (8)
1
3a k3 o
b — D**y.| < k—h Wia(h), (9)
1

for k=0,1,...,n — 1, where

1 1
+ >7 and

"= (F(Qa +1P@a+1) * T(Ba+ 1)l (Ba+1)
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1 ].
= (F(2a FDMGa+1) | Do+ DM(a + 1>> |

Proof. From (6) we can find

1 1 he he
o D2a — o . D%y — D4a
|ax Yk | PR [F(Qa ) (yk+1 U T a0 T Ta D) yk)
ha h3a
- D> — D~ . D4a o D2a
—F(Sa 1) ( Yk+1 Yk —F(?)a 1) ?/k)] Yk
1 1 h® h2
— . . —Da o —D2a
oL h2a [P(Qa 1) <yk+1 T Ta+1)” T T2atry s N
h4a ha
o —D4a o Doc . Da
ha h3a
. D2a _ D4a 1
Ta+D) " TBa+1) y’“)] | (10)
taking:
e 2« ) 3a 5 4o A
= — D" ——D*® — D¢ — D¢
et = U Ty P e Y Y T s Y T T e D V)
and
hoz h2a h3a
Da — Da D2a D3a D4a
Ykt1 Yr + TarD” Y + Teas D’ % + TGat 1) y(nr),

where xp < &, Mk < Tg11. Then (10) becomes

h4a

o D2a <
o 2 T(2a + 1) (da +

1
- k1h2a

1) }Dmy(fk) - D4ayk|
h4oz D4a D4a

T T Ba T DT Ga ) | D*y(ne) — D™y

< h_m [ 1 n 1 ] )

kK F(QO& + 1)F(40z -+ 1) F(BO& + 1>F(3Oé T 1) Wi
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Similarly, after using (7), we can easily the second part of the lemma. Thus we

have proved the lemma.

[]

Proof of theorem 2. In view of the above lemma we can see that, for x;, <z <

Tryr and k=0,1,...,n — 1,
(x — zp)®
I'a+1)

(x — x)
I'(da +1)

(x — xp)

[Sk() —y()| = |ye +

3a

e
D%y, + ay,

_ xk)ro (.CL' _ l'k)3a

I'2c+1)

(z —a0)" o 2, (T~
['a+1)

(x — xp)*

e — Yk —

"T(3a + 1)
xk)Zoc

Dy, — Doy )
Yk S P2a+1)

"T(Ba+1)
h2a

<

~I'2a+1)

h2a k2

- F 20 —|— 1 kl

/\

using (8),(9),

C T(da+1)

h
jor = D yk‘+F(3a+1)

h?* Wy () +

D4ay(§k)‘

3a 5 h4a

b — D%y | + —— (B

[0 y’“}+r(4a+1)w4 ()
h3a kg h4a

B b))+ ——

Tat D) " @ Fa

1

w4a(h)

B 2a +1 klr(:m +1)

2ayk’ +

+ o 1>> R g (h), (11)

(QL’ — $k)3a 4o
I'(Ba+1)

(x — 21,)%
['(2a+1)

k

2a 3a

(z —2p)* 3, (z — y)

T TCa+1) T TBa+l) D¥y(&)
2 h3a

h
_ |y, — pPe v wu(h
T(2a +1) O yel + r(3a+1)w4"‘( )

Similarly,

}DQO‘Sk(:U) — DQO‘y(x)| < |ak — DQO‘yk‘ +

T ETRa+ D)

h
[a+1)

1 3a
" TBat 1)) W wia(h),
(12)

h?a

mwm(h)

|bx — D>y | +

! (13)

< (& + s
o k)l k:lf(oz + 1)

T TRatD

) (),
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ha

DSaS D3a b D3a ™ h
| k() — | |k yk|+I’(a+1)w4( )
ks 1
<|(—=4+=——"-—-]h" h 14
< (2 paayy) 1wl (1)
and finally,

DS () ~ D*y()] < wia(h). (15)
This completes the proof. O

Case 2

In this case we suppose that the conditions of theorem 1 are fulfilled with p = 5,
and then we can define the spline interpolant as follows :

Sa = Sk(x) =yx + %Day + ak%
o (I:U(B_Ozxjf; ?(;axj>i; D%+ ck%’ (16)
where x, < x < zpyp and £ =0,1,...,n — 1. Let
o =T(a+ 1) [D*ypyy — D*yy] .
It can be easily shown that
|cx — D] < wsal(h), (17)

where ws, () is the modulus of continuity of D%¥y(z).
Now, if Sa(z) € C[0,1] and S (x) € C]0, 1] then the existence and uniqueness of
Sa(z) is easy to be proved, since here a; and by are uniquely determined by

. r(2a+1 A’f 3a+1)Bk 18
= klhm (18)
r(2a+1 Bk F(a+1 Ak

by, = (19)

ktha
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where
. 1 1
"TTRa+1D)I(2a+1) T(a+1DIBa+1)
A " pe L h (20)
= —_ _— _—_— — ——C
E= Yr+1 — Yk F(a~|—1) Yk F(4a—|—1) Yk F(5a—|—1) k>
hSa h4a
4o e (21)

d By = Dy — Dy — — Dy, .
and B Yk+1 T TBar)” T Tlar )™

Then we have the following lemma :

Lemma 2. The following estimates can be obtained for £k =0,1,...,n — 1.
2« k4 2«
|ak: - D yk} < k’_h W4o¢(h)7 (22)
1
k
|bk - D3O‘yk} < k—B h® wya(h), (23)
1
where
k ! + ! d
= n
‘T \P2a+DfGa+1)  T(Ba+Df@dat+n)”

1 1
k%:(r@a+nrua+1y+ma+1ﬁwa+n>'

Proof. Use (17), (18), (20), and (21) to obtain the first inequality and use (17),
(19), (20), and (21) to obtain the second inequality and follow the steps of the

lemma 1. Thus we can prove the lemma. O]

And then we can conclude the following theorem :

Theorem 3. Let Si(z) be the fractional spline interpolant of the polynomial form
(1) solving the lacunary case (0, a, 4a) for which the conditions of theorem 1 are

satisfied with p = 5. Then for all x € [0, 1] the inequality
|ID™S A (z) — D™y ()] < ¢rmah® ™ wso(h)

holds for all m = 0,1,...,5, and a € (0,1]. Where ws,(h) is the modulus of
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continuity of D%¥y(z), and

Co

Con

Proof. Proceed as in theorem 2.

6 Numerical Illustrations

]

We now consider some numerical examples illustrating the solution using our
fractional spline method. All calculations are implemented with MATLAB 12.

Fxample 1. Consider the linear fractional differential equation

ks ks 1 ks s 1
T T2a+ D) MTBa+ D) TGa+D) T Bl(a+l)  ml@atl)  TUa+1)
s 1 s 1
Tt D) T TBar ) Tk TTRar ) T Ty 7k

1
D?y(z) + 2 Dy(z) + y(x) = 2z + m:f"o‘ + §x3, O<a<l, (24
subject to
y(0) =y'(0) =0.
It is easily verified that the exact solution of this problem is
1
y(z) = gﬂfg-

The maximal absolute errors obtained, for a = 0.5, and for 0 < z < 1, are
shown in Table 1 and Table 2, to illustrate the accuracy of the spline method of
polynomial form. We have shown the maximal error’s values in each case. Note
that |e"(z)| = |D™*Sg(z) — D™y(x)|, for « = 0.5, m = 0,1,...,4 for case 1,
and m =0,1,...,5 for case 2.

Table 1: Maximal absolute errors in case 1 for Example 1.

h le(2)] [e*(2)] [e* ()] €% ()] e ()]
0.1 |5.4910 x 102 [ 1.1015 x 107" [ 2.7105 x 10" | 6.2211 x 10" | 2 x 10"
0.01 | 5.4910 x 107 | 3.4832 x 10~* [ 2.7105 x 10% [ 1.9673 x 1072 | 2 x 102
0.001 | 5.4910 x 10~ | 1.1015 x 1075 | 2.7105 x 107 | 6.2211 x 10~* | 2 x 10~°

Table 2: Maximal absolute errors in case 2 for Example 1.
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h e(@)] ()] [ (@)
0.1 | 42117 x 107 | 1.1394 x 107! | 3.8320 x 107!
0.01 | 4.2117 x 107° | 3.6031 x 10~* | 3.8320 x 1073
0.001 | 1.3318 x 1077 | 1.1394 x 107% | 3.8320 x 107
h |e”* ()] e ()] e ()]
0.1 | 1.5609 x 107t | 2.5464 x 107! | 7.1364 x 101
0.01 |4.9362 x 1072 | 2.5464 x 1072 | 2.2567 x 107!
0.001 | 1.5609 x 10~ | 2.5464 x 1073 | 7.1364 x 10~
FExample 2. Consider the fractional differential equation
1. 24 3
D 4 -3 3—a d—a 0 1 25
y(r) == 5% +F(4—a)$ +F(5—a)x y(x), <a<l1, (25

With the initial condition y(0) = 0.

The exact solution is

y()

1
4 3
=x 296.

Thus the maximal absolute errors obtained, for case 1, case 2 and for a = 0.5, are
shown in Table 3 and Table 4, respectively, with |e™*(x)| = |D™*Sy(x) — D™y(z)],
for a =0.5, m=0,1,....,4 for case 1, and m = 0,1, ..., 5 for case 2.

Table 3: Maximal absolute error in case 1 for Example 2.

h le(2)] e (2)] [e* ()] G le™ ()|
0.1 | 74.1286 x 102 | 0.1487 x 10~ | 0.3659 x 10" [ 83.9857 x 10" | 27 x 10"
0.01 | 74.1286 x 1077 | 47.0239 x 10~ | 36.5018 x 10" | 26.5586 x 102 | 27 x 102
0.001 | 74.1286 x 10~® | 14.8702 x 10° | 36.5918 x 105 | 83.9857 x 10~* | 27 x 107

Table 4: Maximal absolute error in case 2 for Example 2.

h

le(2)]

|e* ()]

e ()]

0.1

44.8919 x 1072

12.1447 x 1071

40.8441 x 1071

0.01

44.8919 x 107°

38.4049 x 1074

40.8441 x 1073

0.001

14.1960 x 10~7

12.1447 x 107°

40.8441 x 107

h

€™ ()]

le™ ()]

€™ ()]

0.1

16.6379 x 1071

27.1421 x 101

76.0656 x 1071

0.01

52.6138 x 1073

27.1421 x 1072

24.0540 x 1071

0.001

16.6379 x 10~

27.1421 x 1073

76.0656 x 1072
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7 Conclusion

In this paper, we introduced a new kind of the fractional spline of polynomial
form to be applicable for the case 0 < a < 1. The method is tested by considering
two test problems for two fractional ordinary differential equations. The two
examples are of fractional order o, 0 < o < 1, and maximal absolute errors are
obtained, to illustrate the accuracy of the method.

8 Open Problems

Actually the present paper deals with the generalized of the quartic spline of
fractional order, with a new idea for fractional interpolation model and applied for
fractional differential equations with real order, and therefore using this growth
indicator one may evaluate error estimations the above model rates of composite
entire fractional spline functions under some boundary conditions. In this con-
struction, the following natural questions may arise for the doer of this branch.

1. These theories can be modified by the treatment of the notions, as change
the fractional spline model for quintic with a new boundary value fractional
order.

2. Further, same model of fractional spline can be applied for differential equa-
tions, such as PDE’s and ODE'’s.
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