Int. J. Open Problems Compt. Math., Vol. 8, No. 1, March 2015 ISSN 1998-6262; Copyright © ICSRS Publication, 2015 www.i-csrs.org

New A-Generalized Sequence Spaces Defined by Ideal Convergence and a Sequence of Modulus Functions on Multiple Normed Spaces

Tanweer Jalal

Department of Mathematics, National Institute of Technology, Hazratbal, Srinagar-190006 tjalal@rediffmail.com

Received 1 June 2014; Accepted 29 November 2014

Abstract

The object of this paper is to introduce a new class of ideal convergent (briefly I-convergent) sequence spaces using an infinite matrix, sequence of modulus functions and difference operator defined on n-normed spaces. We study these spaces for some linear topological structures and algebraic properties.

Keywords: *I*-convergence, *n*-norm, modulus function, difference sequence space

1 Introduction

The concept of 2-normed spaces was initially introduced by Gahler [19], in the mid of 1960's, while that of n-normed spaces can be found in Misiak [1]. Since then, many others have studied this concept and obtained various results, (see Gunawan [7], Gunawan and Mashadi [8, 9]). The notion of ideal-

convergence in 2-normed spaces was introduced and studied in [14, 2] and [4]. Later on it was extended to n-normed spaces by Gurdal and Sahiner [15], Hazarika [3] and Savas [5].

Let *n* be a non-negative integer and *X* be a real vector space of dimension $d \ge n$ (*d* may be infinite). A real-valued function $\|\dots, \|$ on X^n satisfying the following conditions:

- (1) $\|(x_1, x_2, ..., x_n)\| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent.
- (2) $\|(x_1, x_2, ..., x_n)\|$ is invariant under permutation,
- (3) $\| \alpha x_1 x_2, \dots, x_n \| = \| \alpha \| \| x_1, x_2, \dots, x_n \|$, for any $\alpha \in \mathbb{R}$,
- $(4) \| (x_1 + \bar{x}, x_2, ..., x_n) \| \leq \| (x_1, x_2, ..., x_n) \| + \| (\bar{x}, x_2, ..., x_n) \|$

is called an n-norm on X and the pair $(X, \|., ..., .\|)$ is called an n-normed space.

A trivial example of an n-normed space is $X = R^n$, equipped with the Euclidean n-norm $\|(x_1, x_2, ..., x_n)\|_E$ = volume of the n-dimensional parallelepiped spanned by the vectors $x_1, x_2, ..., x_n$ which may be given explicitly by the formula $\|(x_1, x_2, ..., x_n)\|_E = |\det(x_{ij})| = a bs (\det(\langle x_i, x_j \rangle))$

Where $x_i = (x_{i_1}, x_{i_2}, ..., x_{i_n}) \in \mathbb{R}^n$ for each i = 1, 2, 3, ..., n.

The standard *n*-norm on X a real inner product space of dimension $d \ge n$ is as follows:

$$\left\|\left(x_{1}, x_{2}, ..., x_{n}\right)\right\|_{S} = \left[\det\left(\langle x_{i}, x_{j}\rangle\right)\right]_{2}^{\frac{1}{2}},$$

where \langle , \rangle denotes the inner product on X.

The notion of modulus function was introduced by Nakano [11]. We recall that a modulus $f : [0, \infty) \rightarrow [0, \infty)$, which is such that

(i) f(x) = 0, if and only if x = 0;

- (ii) $f(x+y) \le f(x) + f(y)$, for all $x \ge 0, y \ge 0$;
- (iii) f is increasing;

(iv) f is continuous from right at zero.

It follows from (ii) and (iv) that f must be continuous everywhere on $[0,\infty)$. For a sequence of modulus function $F = (f_k)$, we give the following conditions: (v) $\sup f_k(x) < \infty$ for all x > 0,

(vi) $\lim_{x \to 0} f_k(x) = 0$ uniformly in $k \ge 1$.

We remark that in case $f = (f_k)$ for all k, where f is a modulus, the conditions (v) and (vi) are automatically fulfilled. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{1}{x+1}$, then f(x) is bounded. If

 $f(x) = x^{p}, 0 , then the modulus <math>f(x)$ is unbounded.

The concept of *I*-convergence was introduced by Kastyrko et al. [18] as a generalization of statistical convergence. A family $I \subset 2^Y$ of subsets of nonempty set *Y* is said to be an ideal in *Y* if

(i) $\Phi \notin I$

(ii) for each A, $B \in I$, we have $A \cup B \in I$

(iii) $A \in I$ and each $B \subset A$, we have $B \in I$. While an admissible ideal I of Y further satisfies $\{x\} \in I$ for each $x \in Y$.

Given $I \subset 2^N$ be a non-trivial ideal in N. A sequence $(x_n)_{n \in N}$ in X is said to be I- convergent to $x \in X$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in N : ||x_n - x|| \ge \varepsilon\}$ belongs to I (see [17]). Savas [6] and Jalal [20] used an Orlicz function to construct I-convergent sequence spaces.

The notion of difference sequence spaces was introduced by Kizmaz [10]. It was further generalized by Et and Colak [12] . Later Et. and Esi [13] defined the sequence spaces

$$X(\Delta_m^s) = \left\{ x = \left(x_k \right) \in w : \left(\Delta_m^s x_k \right) \in X \right\}$$

where $m = (m_k)$ is any fixed sequence of nonzero complex numbers and $s \in N$, then $\Delta_m^0 x_k = m_k x_k$, $\Delta_m x = m_k x_k - m_{k+1} x_{k+1}$ are non-negative, $\Delta_m^s x = (\Delta_m^s x_k) = (\Delta_m^{s-1} x_k - \Delta_m^{s-1} x_{k+1})$ and so that

$$\Delta_m^s x_k = \sum_{i=0}^s \left(-1\right)^i \binom{s}{i} m_{k+i} x_{k+i}$$

Taking m = s = 1, we get the spaces of $\ell_{\infty}(\Delta), c(\Delta), c_0(\Delta)$, introduced and studied by Kizmaz [10].

2 Definitions and Inclusion Theorems

In this section, we define new Ideal convergent sequence spaces on n-normed spaces by using a sequence of modulus functions. We also give inclusion relations between these spaces.

Let *I* be an admissible ideal of *N*, and let $p = (p_k)$ be a bounded sequence of positive real numbers for all $k \in N$. Let $A = (a_{nk})$ be an infinite matrix, $F = (f_k)$ be a sequence of modulus functions and (X, ||., ..., ||) be an *n*-normed space. Further w(n-X) denotes the spaces of *X*-valued sequence spaces. For every $z_1, z_2, ..., z_{n-1} \in X$, and for every $\varepsilon > 0$ we define the following sequence spaces:

$$w^{I}\left[A,\Delta_{m}^{s},F,p,\parallel,...,\mu\right] = \left\{x = (x_{k}) \in w(n-X): \text{for every } \varepsilon > 0, \left\{n \in N: \sum_{k=1}^{\infty} a_{nk}\left[f_{k}\left(\parallel\Delta_{m}^{s}x_{k}-L,z_{1},z_{2},...,z_{n-1}\parallel\right)\right]^{p_{k}} \ge \varepsilon\right\} \in I, L \in X$$

$$\begin{split} & w_{0}^{I} \left[A, \Delta_{m}^{s}, F, p, \| ., ..., \| \right] = \\ & \left\{ x = (x_{k}) \in w (n - X) : \text{ for every } \varepsilon > 0, \left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\} \in I \right\}, \\ & w_{\infty}^{I} \left[A, \Delta_{m}^{s}, F, p, \| ., ..., ... \| \right] = \\ & \left\{ x = (x_{k}) \in w(n - X) : \exists K > 0 \ s.t. \left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \ge K \right\} \in I \right\}. \end{split}$$

The following well known inequality will be used throughout the article. Let $p = (p_k)$ be any sequence of positive real numbers with $0 \le p_k \le \sup_{h < t} p_k = H$, $D = \max\{1, 2^{H-1}\}$, then

$$\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left(\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right)$$

for all $k \in N$ and $a_{k}, b_{k} \in C$. Also $\left|a\right|^{p_{k}} \leq \max\left\{1,\left|a\right|^{H}\right\}$ for all $a \in C$.
(see [16])

Theorem 2.1. The sequence spaces $w^{I}[A, \Delta_{m}^{s}, F, p, \|, \|]$, $w_{0}^{I}[A, \Delta_{m}^{s}, F, p, \| ..., \|]$ and $w_{\infty}^{I}[A, \Delta_{m}^{s}, F, p, \| ..., \|]$ are linear. **Proof.** We shall prove the theorem for the space $w_{0}^{I}[A, \Delta_{m}^{s}, F, p, \| ..., \|]$ only and the others can be proved in a similar manner. Let $x = (x_{k})$ and $y = (y_{k})$ be two elements in $w_{0}^{I}[A, \Delta_{m}^{s}, F, p, \| ..., \|]$ and α, β be scalars in \Re , so that

$$\left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_k \left(\left\| \Delta_m^s x_k, z_1, z_2, \dots, z_{n-1} \right\| \right) \right]^{p_k} \ge \varepsilon \right\} \in I.$$

and

$$n \in N: \sum_{k=1}^{\infty} a_{nk} \left[f_k \left(\left\| \Delta_m^s y_k, z_1, z_2, \dots, z_{n-1} \right\| \right) \right]^{p_k} \ge \varepsilon \right\} \in I.$$

Since $\|., ..., .\|$ is an *n*-norm, f_k is a sequence of modulus functions for all *k* and Δ_m^s is linear the following inequality holds:

$$\sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} \left(\alpha x_{k} + \beta y_{k} \right), z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \\ \leq D T_{\alpha}^{\sup p_{k}} \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \\ + D T_{\beta}^{\sup p_{k}} \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \right]$$

where T_{α} and T_{β} are positive integers such that that $|\alpha| \leq T_{\alpha}$ and $|\beta| \leq T_{\beta}$. From the above inequality we get

$$\left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} \left(\alpha x_{k} + \beta y_{k} \right), z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\}$$

$$\subseteq \left\{ n \in N : D \ T_{\alpha}^{\sup p_{k}} \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\}$$

$$\bigcup \left\{ n \in N : D \ T_{\beta}^{\sup p_{k}} \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} y_{k}, z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \ge \varepsilon \right\}.$$
(1)

Since both the sets on the right hand of the relation (1) belong to I so the set on the left hand side of the inclusion relation belongs to I. This completes the proof of the theorem.

Theorem 2.2. Let $F = (f_k)$ and $G = (g_k)$ be sequences of moduli and $h = \inf p_k > 0$. Then (i) $w^I [A, \Delta_m^s, F, p, \| ., ..., \|] \cap w^I [A, \Delta_m^s, F, p, \| ., ..., \|] \subseteq w^I [A, \Delta_m^s, F + G, p, \| ., ..., \|]$ (ii) $w_0^I [A, \Delta_m^s, F, p, \| ., ..., \|] \cap w_0^I [A, \Delta_m^s, F, p, \| ., ..., \|] \subseteq w_0^I [A, \Delta_m^s, F + G, p, \| ., ..., \|]$. **Proof.(i)** Let $x = (x_k) \in w^T [A, \Delta_m^s, F, p, \|.,..,\|] \cap w^T [A, \Delta_m^s, G, p, \|.,..,\|]$. Then by the following inequality the result follows

$$\sum_{k=1}^{\infty} a_{nk} \left[\left(f_{k} + g_{k} \right) \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \\ \leq D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \\ + D \sum_{k=1}^{\infty} a_{nk} \left[g_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}}.$$

Hence

$$\left\{ \begin{array}{l} n \in N : \sum_{k=1}^{\infty} a_{nk} \left[\left(f_{k} + g_{k} \right) \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \geq \varepsilon \right\} \\ \subseteq \left\{ \begin{array}{l} n \in N : D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \geq \frac{\varepsilon}{2} \right\} \\ \cup \left\{ \begin{array}{l} n \in N : D \sum_{k=1}^{\infty} a_{nk} \left[g_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right\| \right) \right]^{p_{k}} \geq \frac{\varepsilon}{2} \right\}. \end{array} \right.$$

Since both the sets on the right hand belong to I so the set on the left hand side of the inclusion relation belongs to I. This completes the proof of the Theorem (i). (ii) can be proved similarly.

Theorem 2.3. The inclusions $X \begin{bmatrix} A, \Delta_m^{s-1}, F, p, \| .,..., \| \end{bmatrix} \subseteq X \begin{bmatrix} A, \Delta_m^s, F, p, \| .,..., \| \end{bmatrix}$ are strict for $s \ge 1$. In general $X \begin{bmatrix} A, \Delta_m^j, F, p, \| .,..., \| \end{bmatrix} \subseteq X \begin{bmatrix} A, \Delta_m^s, F, p, \| .,..., \| \end{bmatrix}$ for j = 0, 1, 2, ..., s - 1 and the inclusions are strict, where $X = w_0^l$, w^l and w_∞^l .

Proof. We give the proof for $w_0^I \left[A, \Delta_m^{s-1}, F, p, \| ..., \| \right]$ only, others can be proved by a similar argument. Let $x = (x_k)$ be any element in the space $w_0^I \left[A, \Delta_m^{s-1}, F, p, \| ..., \| \right]$. Let $\varepsilon > 0$ be given, then

$$\left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_k \left(\left\| \Delta_m^s x_k, z_1, z_2, \dots, z_{n-1} \right\| \right) \right]^{p_k} \ge \varepsilon \right\} \in I.$$

Since f_k is a modulus function for all k, it follows that

$$\sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \right]$$

$$= \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s-1} x_{k} - \Delta_{m}^{s-1} x_{k+1}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \right]$$

$$\leq D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s-1} x_{k}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} + D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s-1} x_{k+1}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \right] \right]^{p_{k}} + D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s-1} x_{k+1}, z_{1}, z_{2}, ..., z_{n-1} \right\| \right) \right]^{p_{k}} \right]^{p_{k}}$$
Hence the proof.

The inclusion is strict follows from the following example.

.

Example 2.4. Let F(x) = x, for all $x \in [0,\infty)$, $p_k = 1$, for all $k \in N$ and sequence A = (C,1) that is the Cesaro matrix. Consider a sequence $x = (x_k) = (k^s)$. Then $x = (x_k)$ belongs to $w_0^I [\Delta_m^s, F, p, \| ..., \|]$ but does not belong to $w_0^I [\Delta_m^{s-1}, F, p, \| ..., \|]$, because $\Delta_m^s x_k = 0$ and $\Delta_m^{s-1} x_k = (-1)^{s-1} (s-1)!$.

Definition 2.5. Let X be a sequence space. Then X is called solid if $(\alpha_k x_k) \in X$ whenever $(x_k) \in X$ for all (α_k) for all sequences of scalars $|\alpha_k| \le 1$ for all $k \in N$

Theorem 2.6. The sequence spaces
$$w_0^I \left[A, \Delta_m^s, F, p, \| .,..., \| \right]$$
 and
 $w_\infty^I \left[A, \Delta_m^s, F, p, \| .,..., \| \right]$ are solid.
Proof. We give the proof for $w_0^I \left[A, \Delta_m^s, F, p, \| .,..., \| \right]$ only. Let $x = (x_k) \in w_0^I \left[A, \Delta_m^s, F, p, \| .,..., \| \right]$ and $\alpha = (\alpha_k)$ be a sequence of scalars such that
 $|\alpha_k| \leq 1$ for all $k \in N$. Then for given $\varepsilon > 0$ we have
 $\left\{ n \in N : \sum_{k=1}^{\infty} a_{nk} \left[f_k \left(\| \Delta_m^s (\alpha_k x_k), z_1, z_2, ..., z_{n-1} \| \right) \right]^{p_k} \geq \varepsilon \right\}$
 $\subseteq \left\{ n \in N : E \sum_{k=1}^{\infty} a_{nk} \left[f_k \left(\| \Delta_m^s x_k, z_1, z_2, ..., z_{n-1} \| \right) \right]^{p_k} \geq \varepsilon \right\} \in I$,
where $E = \max \left\{ 1, |\alpha_k|^H \right\}$. Hence $(\alpha_k x_k) \in w_0^I \left[A, \Delta_m^s, F, p, \| .,..., \| \right]$. Thus the space

$$w_0^I \left[A, \Delta_m^s, F, p, \|.,..,.\| \right]$$
 is solid. This completes the proof.

Theorem 2.7. Let $(X, \|., ..., ..., \|_{E})$ and $(X, \|., ..., ..., \|_{S})$ be standard and Euclid *n*-normed space spaces respectively, then $w^{I} [A, \Delta_{m}^{s}, F, p, \|., ..., ..., \|_{E}] \cap w^{I} [A, \Delta_{m}^{s}, F, p, \|., ..., ..., \|_{S}]$ $\subseteq w^{I} [A, \Delta_{m}^{s}, F, p, (\|., ..., ..., \|_{E} + \|., ..., ..., \|_{S})].$

Proof. The following inequality that gives us the desired inclusion

$$\sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left(\left\| \dots, \dots, \right\|_{E} + \left\| \dots, \dots, \right\|_{S} \right) + \left(\Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right) \right) \right]^{p_{k}} \\ \leq D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right\|_{E} \right) \right]^{p_{k}} \\ + D \sum_{k=1}^{\infty} a_{nk} \left[f_{k} \left(\left\| \Delta_{m}^{s} x_{k} - L, z_{1}, z_{2}, \dots, z_{n-1} \right\|_{S} \right) \right]^{p_{k}}.$$

3 Conclusion

We introduce a new class of I-convergent sequence spaces using an infinite matrix, sequence of modulus functions and difference operator defined on n-normed spaces and proved their several algebraic and topological properties.

4 **Open Problems**

In this paper we have introduced a new class of ideal convergent (briefly I-convergent) sequence spaces using an infinite matrix, sequence of modulus functions and difference operator defined on n-normed spaces. Some linear topological structures and algebraic properties for these spaces has also been discussed. In the sequel the next step will be to:

-introduce some new classes of ideal convergent sequence spaces using an infinite matrix, Orlicz functions and difference operator defined on n-normed spaces.

- further some linear topological structures and algebraic properties for these spaces can also been discussed also.

- [1] A. Misiak, *n*-inner product spaces, Math. Nachr., 1989, Vol.140, pp. 299-329.
- [2] A.Saihner, Gurdal, M, Soltan, S, Gunawan, H., Ideal convergent sequences in 2 - normed spaces, J. Math., 2007, Vol. 11, pp. 1477-1484.
- [3] B.Hazarika, On paranormed ideal convergent generalized difference summable sequence spaces defined over *n*-normed spaces, Math. Anal.,2011, Vol.17, Article ID 317423, 17 pages, 2011. doi:10.5402/2011/317423.
- [4] E. Savas, On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function, J. Ineq. Appl., 2010, pp. 1-9.
- [5] E.Savas, Some new double defined by Orlicz function in *n*-normed spaces, J. Inequal. Appl., 2011, pp.1-9.
- [6] E.Savas, Δ^m -strongly summable sequence spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Appl. Math. Comput., 2010, Vol. 217, pp. 271-276.
- [7] H. Gunawan, The spaces of *p*-summable sequences and its natural *n*-norm, Bull. Aust. Math. Soc., 2001, Vol. 64, pp. 137-147.
- [8] H. Gunawan, M. Mashadi, On *n*-normed spaces, Int.J. Math. Sci., 2001, Vol. 27, Issue 10, pp. 631-639.
- [9] H. Gunawan, M, Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 2001, Vol. 27, Issue 3, pp.147-169.
- [10] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 1981, Vol. 24, Issue 2, pp.169-176.
- [11] H. Nakano, Concave modulars, J.Math. Soc. Japan, 1953, Vol. 5, pp.29-49.
- [12] M. Et, A. Esi, On Kothe -Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc., 2000, Vol. 23, pp. 1-8.
- [13] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math., 1985, Vol. 21, Issue 4, pp. 147-169.
- [14] M. Gurdal, A. Sahiner, Ideal convergence in *n*-normed spaces and some new sequence spaces via *n*-norm, J. Funda. Sci., 2008, Vol. 4, pp. 233-244.
- [15] M. Gurdal, A. Sahiner, Ideal convergence in *n*-normed spaces and some new sequence spaces via *n*-norm, J. Funda. Sci., 2008, Vol. 4, pp. 233-244.
- [16] Maddox, I.J., Elements of Functional Analysis, Cambridge University Press, London, UK, 1970.
- [17] P.Kostyrko, M. Macaj, T. Salat, T, M. Sleziak, *I*-convergence and extremal *I*-limit points, Math. Slovaca, 2005, Vol. 55, pp.443-464.
- [18] P. Kostyrko, T. Salat, W. Wilczyski, On *I* -convergence, Real Analysis, exchange, 2000-2001, Vol. 26, Issue 2, pp. 669-686.
- [19] S. Gahler, Linear 2-normietre Rume. Math. Nachr., 1965, Vol. 28, pp.1-43.

[20] T. Jalal, Some new *I* – convergent sequence spaces defined by using sequence of modulus functions in *n*-normed spaces, Int. J. Math. Archives, 2014, Vol.5, Issue 9, pp. 202-209.