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Abstract

This paper deals with the study of a class of nonlinear evo-
lution systems with parameter t which may interpreted as the
time or the absolute temperature. Such type of problems arise
in the study of quasistatic problem in viscoplasticity. The ex-
istence and uniqueness of the solution is obtained using stan-
dard arguments for elliptic equations followed by a fixed point
technique. The continuous dependence of the solution with re-
spect to the data is also given. Finally, a mechanical example
is presented in order to illustrate this result.
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equality, viscoplastic material.

1 Introduction

Let H be a real Hilbert space and let X,Y be two orthogonal subspaces of H
such that H =X ®Y.Let T >0,A:[0,7] - Hand B:[0,T] x X XY — H
be a nonlinear operator.We are interested in the following evolution problem:
y(t)=A{t)z(t)+ B(t,x(t),y(t)) forallte|0,T] (1)

2 (0) = 20,y (0) = yo (2)
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in which unknowns are the functions z : [0,7] — X and y : [0,7] — Y.In
(1) and everywhere in this paper the dot above represents the derivative with
respect to the time variable.

In the case when A is a linear operator (does not depend on t),some results
of existence and uniqueness for problem (1)—(2) were obtained by [7],[16] using
different functional methods.

The purpose of this paper is to extend the technique presented by [16] in
the case A =A(t) and we prove the existence and uniqueness of the solution
for the problem (1)—(2) in the case when the operator A depends on ¢ ,(where ¢
is interpreted as time or the absolute temperature) , using standard arguments
for elliptic equations followed by a fixed point technique .

The aim of this paper is to give a new demonstration for the existence and
uniqueness result for the problem (1)—(2). This demonstration is based only
standard arguments for elliptic equations followed by a fixed point technique

The paper is organized as follows: in the second section we prove an ex-
istence and uniqueness result using standard arguments for elliptic equations
followed by a fixed point technique (T"heorem 2.1) ; in section 3 the continuous
dependence of the solution with respect to the data is given (Theorem 3.1)
and a finite time stability result is obtained (Remark 3.1) ; in section 4 we use
the previous results in order to study a mechanical problem.Finally,in section
5 we propose an open problem for generalisation of (T heorem 2.1).

2 An existence and uniqueness result
In this paper ,we utilise the following notations

|.|;7: the norm on H | (.,.); : the inner product of H.
CY(0,T, H) the space of continuous functions on [0, 7] with values in H.
C1(0, T, H) the space of derivable functions with continuous derivative on
[0, T] with values in H .

Let us recall that C7 (0,7, H),(j = 0,1) are real Banach spaces endowed
with the norm

|x|0,T,H = tgﬁ% 1z ()|
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‘33’1,T,H = ’x‘O,T,H + |j3|0,T,H

In the study of the problem (1)—(2) , we consider the following assumptions:

A is supposed a positive defined symmetric operator i.e:

Ja > 0 such that (A(t)z,z), >alz3 Yo € H (3)
(AW, y) g = (v, Ax)y Yo,y € H (4)

K > 0;|A(t1) — A(ty)] < K |t — to| (5)

A (t) is continuous function (6)

IN>0; [A()] <A (7)

We also suppose that B satisfies:3L > 0,such that :

’B(tvxlagh) - B(ta x27y2)’ < L(‘xl - 'x2|H
+lyr — y2ly) VL€ [0,T] ;21,20 € Xy1,y2 €Y

(8)

t — B(t,z,y) : [0,T] — H is a continuous function for all z € X andy € Y

(9)

and for the initial data we consider the following assumptions:

.Z‘oeX,yoeY (10)

The main result of this section is the following :

Theorem 2.1 Let (3)-(10) hold. Then the problem (1)-(2) has a unique so-
lution x € C*(0,T,X),y € C*(0,T,Y).

Remark 2.2 In the case when A dose not depend ont , Theorem 2.1 is proved
by [16],[7] using different functional methods.Here we extend the technique
presented by [16], in the case A = A(t) .
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In order to prove Theorem 2.1 , we need some preliminaries results .
We start with the following Lemma whose proof can be easily obtained .

Lemma 2.3 Let (3)—-(7) hold and let a : [0,T] x X x X — R be given by :

a(t,u,v) = (A({t)u,v)y ;Yu,v € H

Then a (t,u,v) is a bilinear,continuous ,symmetric and coercive form on H

Proof (of Lemma 2.3).
we can easily proved that a is a bilinear and symmetric form on H .

Using (7) , we have :

|a (t,u,0)| = (A (&) u, )y | < JA@)] |ul[v] < Aul Jo|;Vu,v e H
which implies a is a continuous form on H
Using (3) , we have :
la (t,u,u)| = (A () u,u)y, | > alul’;Yu e H
which implies a is a coercive form on H

Hence a (t,u,v) is a bilinear,continuous ,symmetric and coercive form on
H. =

Proof (of Theorem 2.1). Letn € C°(0,7,H) and z, € C* (0,7, H).Be the
function defined by :

2p(t) = /tn(s)ds + 2oVt € [0, 7] (11)
20 = yo — A(0) wg (12)

Using standard arguments for elliptic equations we obtain the existence
and uniqueness of two functions z,, € C* (0,7, X) ,y, € C* (0,T,Y) such that

yp () =At)xy+ 2, (t) V1t e[0,T] (13)

Moreover,the function z,is characterized by the equality
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a(x, (t),2") + (2, (t),2") =0,;Vt € [0,T];Va' € X (14)

where a is a bilinear,continuous ,symmetric and coercive form on H defined
by:
a(t,u,v) = (A{t)u,v)y ;Yu,v € H (15)

Let us remark that by (11)—(13) and the orthogonality of the spaces X and
Y  we get :
2y (0) = 0,5 (0) = yo (16)

Moreover by (13):
Ym <t> =A (t) Ty + 2y (t)
Yno (t) =A (t) Ty + Zny (t)

By the orthogonality of the spaces X and Y ,we get :

<y771 (t) — Yno (t> » Loy (t) — Ty (t)> =0

<A (t) Ly (t> — A (t) Ly (t) » Ly (t) — Ty (t)> == <ZT71 — 2y Ty (t) — Ty (t»

and by (3),(4) it results

|, (8) — @, (t)|c(o,T,x) + [y () = Y, (t)|o(o,T,y) < Clay, () — 20 (t)|c(o,T,H)
(17)
Where C' > 0 depends only on the operator A .

Using (8),(9) , we obtain that B (t,z, (t),y, (t)) is a continuous function
on [0, 7] with values in H hence we can define the operator A : C° (0,7, H) —
CY(0,T, H) in the following way :

Ay (t) = B(tay (1), yy (1) = A(t)z, (t) ¥y € C°(0,T,H),t €[0,T] (18)

Whe shall prove that A has a unique fixed point , Indeed , let n,1m, €
C°(0,T,H) , using (8),(17) and (11) , we have :

|A771 (t) - AU2 (t)| SL(ll’m (t) — Ty (t) | + |y771 (t) — Yno (t> |
1A @)l (8) = 200 (1) ])
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Using now (5) , it results

B (6) = Mgy (O] < L ([ (6) — 20 ()] + [ (£) — gy (V)4 gy (2) — 2y ()]
Using now (17),(11) , we get :
A (8) = Ay ()] < k / 71 () — 12 (3)] ds (19)

Where k& > 0 depends only on the operator A .

By recurrence , denoting by AP the powers of the operator A , (19) implies

t s q
2, 0= a5,0[<w [ [T [ ) —m@ldrds e 1) p e
0 JO 0

p integrats

It results
(KT)"
|Af;1 (t) — AZZ (t)|c(07T7H) < o I — 772|C(0,T,H)
and since lim,,_, (ka!)P = 0,(19) implies that for p large enough the operator

AP is a contraction in C° (0, T, H).Then there exists a unique n* € C° (0,7, H)
such that APn* = n*.Moreover n* is the unique fixed point of A .

Using now (11),(13),(16) and (18) we get that x,. € C* (0,T,X) , y,. €
C1'(0,T,Y) is solution of (1)—(2).

The uniqueness part of Theorem 2.1 may be obtained from the uniqueness
of the fixed point of A . m

3 The continuous dependence with respect to
the data

In this section two solutions of the problem (1)—(2) for two different data are
considered .

An estimation of the difference of these solution is obtained that give the
continuous dependence of the solution upon the input data . In this way the
finite time stability of the solution is obtained .

We have the following result :
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Theorem 3.1 Let (3)-(10) hold and let z; € C* (0, T, X) ,y; € C* (0,T,Y)
be the solution of (1)-(2) for the data wo;,yo; satisfing (10);(i = 1,2).Then
there exists C' > 0 such that

|21 — ol crorx) T V1 — Vlorory) < C (|zo1 — To2ly + [Yor — yozly)  (20)

Proof. Let ¢t € [0, 7] .As it results from the proof of Theorem 2.1 we have :
if v; € C*(0,T,X),y; € C*(0,T,Y) be the solution of the problem (1)—(2)
for the data n; ; (i = 1,2) , then :

yi () = AQ@) i (t) + 2 () ;i=1,2 (21)
Where z; are defined by :

t
zi(t) = / ni(8)ds + zp; Yt € [0, T];i=1,2 (22)
0

Using now (17) , we have :

|71 (t) — 22 <t>|C(0,T,X) + [y1 (8) — y2 (t)|0(o,T,Y) <Oz () — 2 (t)|c(o,T,H)

We deduce :

|1 (t) — 22 (t>’Cl(O,T,X) +y (8) — v (t)’cuo,T,Y) < kC |z, (0) = 2, (0)]
Using now (22),(23) , it results

|1 () = 22 (D)l 10,70 H w1 () = 2 (Dl ro.1v) < C (|71 = Zo2lx + [Yo1 — Yozly)
(24)

]

Remark 3.1 From (24), we deduce the finite time stability of every solution

of (1)-(2)

4 Example arising from rate-type viscoplastic-
ity

The aim of this section is to investigate a nonlinear quasistatic problem for
viscoplastic materials , using the abstract result given in section 2 . In this
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case the unknowns z and y of the evolution problem (1)-(2) are the small
deformation tensor and the stress tensor and (1) involves the constitutive law
of the material .

In the case when ¢ is interpreted as the absolute temperature the following
problem represents uncoupled thermo-viscoplastic process.

Let us consider a viscoplastic body whose material particles fulfil a bounded
domain Q C RY (N = 1,2,3) with a smooth boundary 9Q = I' and Ty is an
open subset of I' such that meas I'y > 0 . We denote by I'y = 1" — Ty , v the
outward unit normal vector on I and by Sy the set of second order symmetric
tensor on RY . Let 7' be a real positive constant

We assume that the body forces f act in £ x [0, T, that the displacement
g act on I'; x [0,77] and that surface traction h act on I'y x [0, T7.

With these assumptions we have :

G=EM)e(@)+G (o)) in Qx[0,T] (25)
Divo+ f =0 in Qx[0,7] (26)
w=g on Iyx[0,7] (27)

ov=h on Tyx|0,T] (28)

w(0) =up,0(0) =0p in Q (29)

in which the unknowns are the displacement function u : Q x [0, 7] — RY
, the stress function o : Q x [0, 7] — Sy

Here € (u) denotes the small strain tensor . In (25) , £ and G are given
constitutive functions and wug, o9 are the initial data .

The problem (25)—(29) models a quasistatic problem for rate type viscoplas-
ticity

In order to study the problem (25)—(29) , we firstly present some prelimi-
naries results.

We utilise the following notations :

H=[2@]"  H=[LX(Q)]

NxN
S
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Hi={ueH/e(u)eH}
Hi={oce€eH / Divec € H}

The spaces H,H, Hiand H,are Hilbert spaces endowed with the following
inner products given by :

(u,v)y = /uividx; Yu,v € H
)
(0,7)y = /UijTijdiE VYo, 1 €H
Q

(u,v) 5 = (u, )y + (e(u),e(v))q, , Yu,v € Hy
(0,7) 3, = (0,7) 3+ (Dive, Divt)y , Vo, 7 € H,

Let Hyr = [H (I')]" and v : H; — Hr be there trace map . we donote by :

V={ue€ H /yw=00onT4}
v ={r € Hy/Div(o) =0,0v =0o0n Iy}

The operator € : Hy — H defined by :

1

e(u) = % (Vu+ VTu) = (g5(u) = (

1 (0w 0
-2

8$Cj 83:1

is linear and continuous operator .

e(V) is the orthogonal complement of ¢ in A , hence

(0,6(v)); = 0,Yv € V,Vo €7

In the study of problem (25)—(29) , we consider the following assumptions

¢ satisfies :
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Ja > 0 such that (€ (t)x,z), > alzly,Vo € H (30)
Oz, y)y = (v Ex)y Va,y € H (31)

K > 0;[€ (t1) — & (2)| < K[ty — 1o (32)

¢ (t) is continuous function (33)

IN>0; [E()] <A (34)

We also suppose that G satisfies :

3 L > 0 such that : |G (z,01,61) — G (2,09,62)| < L (o1 — 02| + |61 — €3])

(35)

x — G (z,0,¢) is continuous function for all o,¢ € Sy (36)
FeC (0,T,H),ge C(0,T,Hy) ,h € O (O,T, H;) (37)
ug € Hy,o09 € Hy (38)

The main result of this section is the following :

Theorem 4.1 Let (30)-(38) hold, Then there exists a unique solution u €
C*(0,T,Hy) , 0 € C'(0,T,H1) of the problem (25)-(29)

Proof. In order to prove Theorem 4.1 we need some preliminaries .

Let w e C*(0,T,H,),5 € C*(0,T,H;) be two functions such that :

o =¢&(t)e(a) (39)
=g (40)
ov=nh (41)

(The existence of this couple follows from the properties of the trace maps)
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Considering the functions defined by :

ﬂ:uO—fL(O ,5'0:

It is easy to see that the pair (u, o)

€ C'(0,T,H, x H,) is a solution of
(25)-(29) if and only if (u,5) € C* (0, T,V x

) is a solution of the problem :

o(t)=€EMe(@t)+G(a(t)+a(t),c(at) +e@®)) —at)  (44)

u(0) = g, (0) = a9 (45)

So , with the previous notations , it results that the problem (25)-(29) may
be written under the form (1)—(2) with the following notations :

x:8(6)7y:67x0:€(60)7y0:JO
A=¢G=B-A

So, the result of Theorem 2.1 is applicable here . Hence , under assump-
tions on the functions &, G, f,g,h,uy and o9 we obtain the existence and
uniqueness of the solution for the problem (44)—(45) having the regularity
ue C(0,T,V),c € C*(0,T,9). Moreover from Theorem 2.1 it results that
(u, o) is also the unique solution of the problem (25)—(29)having the regularity
uwe CH0,T,H,),0 € C*(0,T,H,) m

5 Open Problem

Question 1 : Can we generalise this result of existence and uniqueness in the
case when :

y(t)=A\L)z(t)+ BAt),z(t),y(t)) forall t € [0,T]
2 (0) = 20,9 (0) = o

in which the unknowns are the functions z : [0,7] - X , y : [0,7] = YV
and A: [0,7] - E 7

Question 2 : Under which hypothesis on A the generalisation is true 7
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