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Abstract
This paper deals with the study of a class of nonlinear evo-

lution systems with parameter t which may interpreted as the
time or the absolute temperature. Such type of problems arise
in the study of quasistatic problem in viscoplasticity. The ex-
istence and uniqueness of the solution is obtained using stan-
dard arguments for elliptic equations followed by a fixed point
technique. The continuous dependence of the solution with re-
spect to the data is also given. Finally, a mechanical example
is presented in order to illustrate this result.

Keywords: fixed point technique, nonlinear evolution system, variational
equality, viscoplastic material.

1 Introduction

Let H be a real Hilbert space and let X, Y be two orthogonal subspaces of H
such that H = X ⊕ Y .Let T > 0, A : [0, T ]→ H and B : [0, T ]×X × Y → H
be a nonlinear operator.We are interested in the following evolution problem:

ẏ (t) = A (t) ẋ (t) +B (t, x (t) , y (t)) for all t ∈ [0, T ] (1)

x (0) = x0, y (0) = y0 (2)
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in which unknowns are the functions x : [0, T ] → X and y : [0, T ] → Y .In
(1) and everywhere in this paper the dot above represents the derivative with
respect to the time variable.

In the case when A is a linear operator (does not depend on t),some results
of existence and uniqueness for problem (1)–(2) were obtained by [7],[16] using
different functional methods.

The purpose of this paper is to extend the technique presented by [16] in
the case A =A (t) and we prove the existence and uniqueness of the solution
for the problem (1)–(2) in the case when the operator A depends on t ,(where t
is interpreted as time or the absolute temperature) , using standard arguments
for elliptic equations followed by a fixed point technique .

The aim of this paper is to give a new demonstration for the existence and
uniqueness result for the problem (1)–(2). This demonstration is based only
standard arguments for elliptic equations followed by a fixed point technique

The paper is organized as follows: in the second section we prove an ex-
istence and uniqueness result using standard arguments for elliptic equations
followed by a fixed point technique (Theorem 2.1) ; in section 3 the continuous
dependence of the solution with respect to the data is given (Theorem 3.1)
and a finite time stability result is obtained (Remark 3.1) ; in section 4 we use
the previous results in order to study a mechanical problem.Finally,in section
5 we propose an open problem for generalisation of (Theorem 2.1).

2 An existence and uniqueness result

In this paper ,we utilise the following notations

|.|H : the norm on H , 〈., .〉H : the inner product of H.
C0 (0, T,H) the space of continuous functions on [0, T ] with values in H.
C1 (0, T,H) the space of derivable functions with continuous derivative on
[0, T ] with values in H .

Let us recall that Cj (0, T,H) , (j = 0, 1) are real Banach spaces endowed
with the norm

|x|0,T,H = max
t∈[0,T ]

|x (t)|H
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|x|1,T,H = |x|0,T,H + |ẋ|0,T,H

In the study of the problem (1)–(2) , we consider the following assumptions:

A is supposed a positive defined symmetric operator i.e:

∃α > 0 such that 〈A (t)x, x〉H ≥ α |x|2H ,∀x ∈ H (3)

〈A(t)x, y〉H = 〈y, Ax〉H ,∀x, y ∈ H (4)

∃K > 0; |A (t1)− A (t2)| ≤ K |t1 − t2| (5)

A (t) is continuous function (6)

∃λ > 0 ; |A (t)| ≤ λ (7)

We also suppose that B satisfies:∃L > 0,such that :

|B (t, x1, y1)−B (t, x2, y2)| ≤ L (|x1 − x2|H
+ |y1 − y2|H) ;∀t ∈ [0, T ] ;x1, x2 ∈ X; y1, y2 ∈ Y

(8)

t→ B (t, x, y) : [0, T ]→ H is a continuous function for all x ∈ X and y ∈ Y
(9)

and for the initial data we consider the following assumptions:

x0 ∈ X , y0 ∈ Y (10)

The main result of this section is the following :

Theorem 2.1 Let (3)–(10) hold. Then the problem (1)–(2) has a unique so-
lution x ∈ C1 (0, T,X) , y ∈ C1 (0, T, Y ) .

Remark 2.2 In the case when A dose not depend on t , Theorem 2.1 is proved
by [16],[7] using different functional methods.Here we extend the technique
presented by [16], in the case A = A(t) .
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In order to prove Theorem 2.1 , we need some preliminaries results .
We start with the following Lemma whose proof can be easily obtained .

Lemma 2.3 Let (3)–(7) hold and let a : [0, T ]×X ×X → R be given by :

a (t, u, v) = 〈A (t)u, v〉H ;∀u, v ∈ H
Then a (t, u, v) is a bilinear,continuous ,symmetric and coercive form on H

.

Proof (of Lemma 2.3).

we can easily proved that a is a bilinear and symmetric form on H .

Using (7) , we have :

|a (t, u, v)| = |〈A (t)u, v〉H | ≤ |A (t)| |u| |v| ≤ λ |u| |v| ;∀u, v ∈ H

which implies a is a continuous form on H

Using (3) , we have :

|a (t, u, u)| = |〈A (t)u, u〉H | ≥ α |u|2 ;∀u ∈ H
which implies a is a coercive form on H

Hence a (t, u, v) is a bilinear,continuous ,symmetric and coercive form on
H .

Proof (of Theorem 2.1). Let η ∈ C0 (0, T,H) and zη ∈ C1 (0, T,H).Be the
function defined by :

zη(t) =

∫ t

0

η(s)ds+ z0 ;∀t ∈ [0, T ] (11)

z0 = y0 − A (0)x0 (12)

Using standard arguments for elliptic equations we obtain the existence
and uniqueness of two functions xη ∈ C1 (0, T,X) ,yη ∈ C1 (0, T, Y ) such that
:

yη (t) = A (t)xη + zη (t) ;∀ t ∈ [0, T ] (13)

Moreover,the function xηis characterized by the equality
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a (xη (t) , x′) + (zη (t) , x′) = 0, ;∀t ∈ [0, T ] ;∀x′ ∈ X (14)

where a is a bilinear,continuous ,symmetric and coercive form on H defined
by:

a (t, u, v) = 〈A (t)u, v〉H ;∀u, v ∈ H (15)

Let us remark that by (11)–(13) and the orthogonality of the spaces X and
Y ,we get :

xη (0) = x0, yη (0) = y0 (16)

Moreover by (13):
yη1 (t) = A (t)xη1 + zη1 (t)

yη2 (t) = A (t)xη2 + zη2 (t)

By the orthogonality of the spaces X and Y ,we get :

〈yη1 (t)− yη2 (t) , xη1 (t)− xη2 (t)〉 = 0

〈A (t)xη1 (t)− A (t)xη2 (t) , xη1 (t)− xη2 (t)〉 = −〈zη1 − zη2 , xη1 (t)− xη2 (t)〉

and by (3),(4) it results

|xη1 (t)− xη2 (t)|C(0,T,X) + |yη1 (t)− yη2 (t)|C(0,T,Y ) ≤ C |zη1 (t)− zη2 (t)|C(0,T,H)

(17)
Where C > 0 depends only on the operator A .

Using (8),(9) , we obtain that B (t, xη (t) , yη (t)) is a continuous function
on [0, T ] with values in H hence we can define the operator Λ : C0 (0, T,H)→
C0 (0, T,H) in the following way :

Λη (t) = B (t, xη (t) , yη (t))− Ȧ (t)xη (t) ;∀η ∈ C0 (0, T,H) , t ∈ [0, T ] (18)

Whe shall prove that Λ has a unique fixed point , Indeed , let η1, η2 ∈
C0 (0, T,H) , using (8),(17) and (11) , we have :

|Λη1 (t)− Λη2 (t)| ≤L
(
|xη1 (t)− xη2 (t) |+ |yη1 (t)− yη2 (t) |

+ |Ȧ (t) ||xη1 (t)− xη2 (t) |
)
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Using now (5) , it results

|Λη1 (t)− Λη2 (t)| ≤ L (|xη1 (t)− xη2 (t)|+ |yη1 (t)− yη2 (t)|)+K |xη1 (t)− xη2 (t)|

Using now (17),(11) , we get :

|Λη1 (t)− Λη2 (t)| ≤ k

∫ t

0

|η1 (s)− η2 (s)| ds (19)

Where k > 0 depends only on the operator A .

By recurrence , denoting by Λp the powers of the operator Λ , (19) implies
:

∣∣Λp
η1

(t)− Λp
η2

(t)
∣∣ ≤ kp

∫ t

0

∫ s

0

· · ·
∫ q

0︸ ︷︷ ︸
p integrats

|η1 (r)− η2 (r)| dr · · · ds ; ∀t ∈ [0, T ] , p ∈ N

It results

∣∣Λp
η1

(t)− Λp
η2

(t)
∣∣
C(0,T,H)

≤ (kT )p

p!
|η1 − η2|C(0,T,H)

and since limp→∞
(kT )p

p!
= 0,(19) implies that for p large enough the operator

Λp is a contraction in C0 (0, T,H).Then there exists a unique η∗ ∈ C0 (0, T,H)
such that Λpη∗ = η∗.Moreover η∗ is the unique fixed point of Λ .

Using now (11),(13),(16) and (18) we get that xη∗ ∈ C1 (0, T,X) , yη∗ ∈
C1 (0, T, Y ) is solution of (1)–(2).

The uniqueness part of Theorem 2.1 may be obtained from the uniqueness
of the fixed point of Λ .

3 The continuous dependence with respect to

the data

In this section two solutions of the problem (1)–(2) for two different data are
considered .

An estimation of the difference of these solution is obtained that give the
continuous dependence of the solution upon the input data . In this way the
finite time stability of the solution is obtained .

We have the following result :
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Theorem 3.1 Let (3)–(10) hold and let xi ∈ C1 (0, T,X) , yi ∈ C1 (0, T, Y )
be the solution of (1)–(2) for the data x0i, y0i satisfing (10);(i = 1, 2).Then
there exists C̃ > 0 such that

|x1 − x2|C1(0,T,X) + |y1 − y2|C1(0,T,Y ) ≤ C̃ (|x01 − x02|X + |y01 − y02|Y ) (20)

Proof. Let t ∈ [0, T ] .As it results from the proof of Theorem 2.1 we have :
if xi ∈ C1 (0, T,X) , yi ∈ C1 (0, T, Y ) be the solution of the problem (1)–(2)

for the data ηi ; (i = 1, 2) , then :

yi (t) = A (t)xi (t) + zi (t) ; i = 1, 2 (21)

Where zi are defined by :

zi(t) =

∫ t

0

ηi(s)ds+ z0i ;∀t ∈ [0, T ] ; i = 1, 2 (22)

z0i = y0i − A (0)x0i; i = 1, 2 (23)

Using now (17) , we have :

|x1 (t)− x2 (t)|C(0,T,X) + |y1 (t)− y2 (t)|C(0,T,Y ) ≤ C |z1 (t)− z2 (t)|C(0,T,H)

We deduce :

|x1 (t)− x2 (t)|C1(0,T,X) + |y1 (t)− y2 (t)|C1(0,T,Y ) ≤ kC |z1 (0)− z2 (0)|

Using now (22),(23) , it results

|x1 (t)− x2 (t)|C1(0,T,X)+|y1 (t)− y2 (t)|C1(0,T,Y ) ≤ C̃ (|x01 − x02|X + |y01 − y02|Y )
(24)

Remark 3.1 From (24), we deduce the finite time stability of every solution
of (1)–(2)

4 Example arising from rate-type viscoplastic-

ity

The aim of this section is to investigate a nonlinear quasistatic problem for
viscoplastic materials , using the abstract result given in section 2 . In this
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case the unknowns x and y of the evolution problem (1)–(2) are the small
deformation tensor and the stress tensor and (1) involves the constitutive law
of the material .

In the case when t is interpreted as the absolute temperature the following
problem represents uncoupled thermo-viscoplastic process.

Let us consider a viscoplastic body whose material particles fulfil a bounded
domain Ω ⊂ RN (N = 1, 2, 3) with a smooth boundary ∂Ω = Γ and Γ1 is an
open subset of Γ such that meas Γ1 > 0 . We denote by Γ2 = Γ − Γ1 , ν the
outward unit normal vector on Γ and by SN the set of second order symmetric
tensor on RN . Let T be a real positive constant

We assume that the body forces f act in Ω× [0, T ], that the displacement
g act on Γ1 × [0, T ] and that surface traction h act on Γ2 × [0, T ].

With these assumptions we have :

σ̇ = ξ (t) ε (u̇) +G (σ, ε (u)) in Ω× [0, T ] (25)

Divσ + f = 0 in Ω× [0, T ] (26)

u = g on Γ1 × [0, T ] (27)

σν = h on Γ2 × [0, T ] (28)

u (0) = u0, σ (0) = σ0 in Ω (29)

in which the unknowns are the displacement function u : Ω× [0, T ]→ RN

, the stress function σ : Ω× [0, T ]→ SN
Here ε (u) denotes the small strain tensor . In (25) , ξ and G are given

constitutive functions and u0, σ0 are the initial data .

The problem (25)–(29) models a quasistatic problem for rate type viscoplas-
ticity

In order to study the problem (25)–(29) , we firstly present some prelimi-
naries results.

We utilise the following notations :

H =
[
L2(Ω)

]N
, H =

[
L2(Ω)

]N×N
S
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H1 = {u ∈ H / ε(u) ∈ H}

H1 = {σ ∈ H / Divσ ∈ H}

The spaces H,H, H1and H1are Hilbert spaces endowed with the following
inner products given by :

〈u, v〉H =

∫
Ω

uividx; ∀u, v ∈ H

〈σ, τ〉H =

∫
Ω

σijτijdx ; ∀σ, τ ∈ H

〈u, v〉H 1
= 〈u, v〉H + 〈ε(u), ε(v)〉H ,∀u, v ∈ H1

〈σ, τ〉 H1
= 〈σ, τ〉 H + 〈Divσ,Divτ〉H , ∀σ, τ ∈ H1

Let HΓ = [H1 (Γ)]
N

and γ : H1 → HΓ be there trace map . we donote by :

V = {u ∈ H1/γν = 0 on Γ1}

ϑ = {τ ∈ H1/Div(σ) = 0, σν = 0 on Γ2}

The operator ε : H1 → H defined by :

ε(u) =
1

2

(
∇u+∇Tu

)
= (εij(u)) =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is linear and continuous operator .

ε(V ) is the orthogonal complement of ϑ in H , hence

〈σ, ε(v)〉H = 0, ∀v ∈ V, ∀σ ∈ ϑ

In the study of problem (25)–(29) , we consider the following assumptions
:

ξ satisfies :
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∃α > 0 such that 〈ξ (t)x, x〉H ≥ α |x|2H ,∀x ∈ H (30)

〈ξ(t)x, y〉H = 〈y, ξx〉H ,∀x, y ∈ H (31)

∃K > 0; |ξ (t1)− ξ (t2)| ≤ K |t1 − t2| (32)

ξ (t) is continuous function (33)

∃λ > 0 ; |ξ (t)| ≤ λ (34)

We also suppose that G satisfies :

∃ L > 0 such that : |G (x, σ1, ε1)−G (x, σ2, ε2)| ≤ L (|σ1 − σ2|+ |ε1 − ε2|)
(35)

x→ G (x, σ, ε) is continuous function for all σ, ε ∈ SN (36)

f ∈ C1 (0, T,H) , g ∈ C1 (0, T,HΓ) , h ∈ C1
(

0, T,H
′

Γ

)
(37)

u0 ∈ H1, σ0 ∈ H1 (38)

The main result of this section is the following :

Theorem 4.1 Let (30)–(38) hold, Then there exists a unique solution u ∈
C1 (0, T,H1) , σ ∈ C1 (0, T,H1) of the problem (25)–(29)

Proof. In order to prove Theorem 4.1 we need some preliminaries .

Let ũ ∈ C1 (0, T,H1) , σ̃ ∈ C1 (0, T,H1) be two functions such that :

σ̃ = ξ (t) ε (ũ) (39)

ũ = g (40)

σ̃ν = h (41)

(The existence of this couple follows from the properties of the trace maps)
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Considering the functions defined by :

ū = u− ũ, σ̄ = σ − σ̃ (42)

˙̄u = u0 − ũ (0) , σ̄0 = σ0 − σ̃ (0) (43)

It is easy to see that the pair (u, σ) ∈ C1 (0, T,H1 ×H1) is a solution of
(25)–(29) if and only if (ū, σ̄) ∈ C1 (0, T, V × ϑ) is a solution of the problem :

˙̄σ (t) = ξ (t) ε ( ˙̄u (t)) +G (σ̄ (t) + σ̃ (t) , ε (ū (t)) + ε (ũ (t)))− ˙̃σ (t) (44)

ū (0) = ū0, σ̄ (0) = σ̄0 (45)

So , with the previous notations , it results that the problem (25)–(29) may
be written under the form (1)–(2) with the following notations :

x = ε (ū) , y = σ̄, x0 = ε (ū0) , y0 = σ̄0

A = ξ,G = B − Ȧ

So, the result of Theorem 2.1 is applicable here . Hence , under assump-
tions on the functions ξ,G, f, g, h, u0 and σ0 we obtain the existence and
uniqueness of the solution for the problem (44)–(45) having the regularity
ū ∈ C1 (0, T, V ) , σ̄ ∈ C1 (0, T, ϑ). Moreover from Theorem 2.1 it results that
(u, σ) is also the unique solution of the problem (25)–(29)having the regularity
u ∈ C1 (0, T,H1) , σ ∈ C1 (0, T,H1)

5 Open Problem

Question 1 : Can we generalise this result of existence and uniqueness in the
case when :

ẏ (t) = A (λ(t)) ẋ (t) +B (λ(t), x (t) , y (t)) for all t ∈ [0, T ]

x (0) = x0, y (0) = y0

in which the unknowns are the functions x : [0, T ] → X , y : [0, T ] → Y
and λ : [0, T ]→ E ?

Question 2 : Under which hypothesis on λ the generalisation is true ?
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[2] S. Barnaś, Existence results for hemivariational inequality involving p(x)-
Laplacian, Opuscula Math.,Vol.32, No.3, (2012), 439–454.

[3] N. Cristescu, Elastic/viscoplastic constitutive equations for rock, Int : J.
Roch, Mech. Min. Sci & Geomech. Abster,Vol.24, No.5, (1987), 271–282.

[4] N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers,
Editura Tehnica, Bucharest, (1982).

[5] S. Djabi, A Cauchy Lipschitz Method In Quasistatic rate-type viscoplas-
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