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Abstract

In the open vehicle routing problem (OVRP), the target
would be to reduce the amount of vehicles after reducing the
whole distance (or time) travelled. Every route begins at the
depot and comes to an end at a customer, going to many cus-
tomers, every once, en route, without returning to the depot.
The demand of every customer has to be completely fulfilled by
a single vehicle. The total demand serviced by each vehicle has
to not go over vehicle capacity. A highly effective tabu search
for open vehicle routing called Three Strategies Tabu Search
(TSTS) heuristic for this problem is suggested. The TSTS de-
pends on three strategies MOVE, EXCHANGE and SWAP.
Computational results on fourteen standard benchmark prob-
lem instances demonstrate that the suggested TSTS is com-
parable in terms of solution quality for the best performing
published heuristics.
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1 Introduction

The supply of products or the delivery of services is essential for both customers
and contemporary business actions, considering the appropriate working costs
make up a large portion of the total field expenses of a company. The problem
condenses from a useful point of view once the vehicle fleet is employed, which
is, vehicles do not amount to company property [23]. In these cases, efficient
organizing is a crucial good results element with the functional effectiveness
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and the ensuing service level, given that non-company assets have the effect of
the physical interface using final customer [21].
The open vehicle routing functional structure is confronted with a business
that either does not own a vehicle fleet whatsoever, or its fleet is improper or
insufficient in order to meet the demand of its customers [23]. Therefore, this
company needs to deal with all or part of its distribution activities to exter-
nal carriers. These contractors have their own vehicles, they pay their own
vehicle costs (e.g. capital city, functioning, servicing and rebate), and they in
addition usually think about a reimbursement type depending on mileage [15].
Anytime the company does not need the service provider or the vehicle back
at the depot, the routes and then the vehicles must not range from the vehicle
voyage after the last delivery (i.e. the returning voyage to the depot) which
will increase more mileage towards the reparations type.
The allocation associated with supply features to third party logistic (3PL)
suppliers is a advantageous company process for many corporations. As an
example, whenever a business has its fleet and customer demand differs over
time, the perfect solution is for the open vehicle routing problem (OVRP) will
supply the appropriate combined possessed and hired vehicles [21]. Likewise,
companies which have numerous deliveries experience have a similar kind of
problem. Even though hiring vehicles is costlier for each device distance trav-
eled (DT), numerous expenses, for instance funds, upkeep and devaluation
expenses, tend not to occur [24, 25]. Standard real-life OVRP examples would
be the home delivery associated with packages and newspapers [22]. Lately,
[20] created a web-based choice support system for any real-life OVRP app in
regards to the supply of lubrication goods. In all of the cases, the companies
that do not work in the delivery corporation utilize their particular vehicles
and do not go back to the depot, however the bill is founded on the total DT
from the depot towards the last customer. Whenever many deliveries tend to
be finished, the travel distance and period linked to every vehicle is logged
and drivers are liberated to get back to the favored location, since this part
of travel is not refunded. Moreover, the usual assumption is that the price
of one more vehicle will certainly overbalance any traveling costs that might
be saved by its use. The other demonstrates the tradeoff between the vehicle
hiring cost and transport cost indicated in terms of DT.
The OVRP can be defined as follows: It is provided an undirected graph G=(
V̀ , E ) in which V̀ =(0, 1, ..., n) is the set of (n+ 1) vertices and E is the set of
edges. Vertex 0 symbolizes the depot, and the vertex set V =V \ 0 refers to n
customers. A nonnegative cost dij is connected with each edge i, j ∈ E . Each
customer i ∈ V needs a supply of qi units from depot 0 (we assume q0=0 ),
and set of m similar vehicles of capacity Q positioned at depot 0 is employed
to provide the customers. A route is described as a minimum cost simple cycle
in G moving from the depot 0 and so that the whole demand of the customers
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visited does not surpass the vehicle capacity Q. The objective of the OVRP
would be to design essentially m routes in order that all customers are visited
precisely once and the sum of the route costs is minimized. The OVRP is NP-
hard as it is natural generalization of the traveling salesman problem (TSP).
This paper evolves efficient tabu search (TSTS) for solving OVRP. It is worth
noting that tabu search have been used on many various vehicle routing prob-
lems [4, 7, 8].
The remaining of the paper is arranged as follows: (Section 2) gives a thor-
ough literature review on strategies suggested for the OVRP. (Section 3) shows
how to formulate initial solution and fitness function. (Section 4) gives a brief
description on Tabu Search (TS). (Section 5) elaborates the suggested hybrid
TSTS and offers an in depth explanation of most algorithmic components.
Computational experiments evaluating the evidence of strategy and the qual-
ity of the proposed method, plus a relative efficiency examination, tend to
be shown in (Section 6). Finally, in (Section 7) conclusions are driven and
suggestions for additional research are recommended.

2 Literature Review

Because of its broad applicability and excessive complexity, the OVRP pos-
sesses produced significant research considering each its modeling and solution
features. Over the last ten years, tabu search, deterministic annealing, large
neighborhood search and branch-and-cut, amongst other methods, have been
successfully applied to the OVRP. Though optimal solutions can be had apply-
ing specific strategies, the computational time needed to solve properly large
problem instances continues to be beyond reach. For that reason, the concen-
trate of most researchers is provided to the design of metaheuristic methods
effective at generating premium quality around optimum solutions with sensi-
ble computational problems. Nevertheless, research on the large-scale data set
of [15] is limited so far.
[3] are one of the primary to handle real-life apps which fit the OVRP func-
tional framework. They look at an exhibit airmail supply problem having many
aspect restrictions, for instance delivery and pickup time windows, capacity on
the total route length, vehicle capacities, open routes along with features. Two
routing problems (deliveries and pickups) are individually solved, while using
the well-known savings heuristic of [6] .
[23] produced a two-phase structure heuristic, cluster first route second (CFRS),
for the OVRP with capacitated vehicles and unrestricted route lengths. From
the first phase, clusters of customers are created contemplating only the capac-
ity of the vehicles. The clusters are consequently well balanced and enhanced
by reassigning customers. In the second phase, open routes are designed
through solving a minimum spanning tree problem (MSTP). Fines used to
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modify the MSTP solution and to retrieve the feasibility.
[4] suggested a TS metaheuristic algorithm. Initial solutions are produced
when using the closest neighbor heuristic and the K-tree technique. Every
solution is presented to an unstringing and stringing strategy for route ad-
vancement. The suggested rendering utilizes the 1−0 Transfer (insert) and
the 1−1 Exchange (swap) neighborhood structures [12]. A specific character-
istic is which in-feasible intermediate solutions (in conditions of capacity and
maximum route length) are also regarded. The objective function is penalized
to manage the infeasibilities, while two penalty conditions for the over-capacity
and over-duration are presented.
[19] produced an adaptive large neighbor-hood search (ALNS) strategy, which
includes some big neighborhoods which contend to change the existing solu-
tion. A predefined list of N− and N+ providers are selected to remove and
insert customers through the existing solution. At every iteration, the altered
solution is approved if specific requirements identified by a simulated annealing
(SA) [13] get better at construction are fulfilled. A adaptive layer randomly
controls that neighborhood to chose (roulette wheel) having a prejudice to its
past efficiency. For diversification, a noise function is utilized in all providers.
Eventually, with regards to fleet size minimization, one more stage just before
LNS is employed.
Finally, [14] produced a branch-and-cut solution way of the OVRP. When com-
pared with additional precise methods suggested in the literature for the sealed
and asymmetric capacitated VRP, many adjustments are presented concerning
the integer programming formula, the reducing airplanes and the separating
algorithms. Perfect solutions are developed for each small- and medium-scale
OVRP instances, as the comparative difficulty between the open and closed
route variations of the problem is furthermore examined.

3 Initial Solution

Any kind of tabu search algorithm demands an initial solution since that search
procedure starts, specifically the meaning of the neighbourhood and the resul-
tant first move. The majority of the research which implement tabu search,
and particularly these specialized to VRP problems, spend little awareness of
the initial solution. Commonly, the initial solution is insignificant, such as
determining every customer to a route, or is acquired using a fast and well-
known heuristic. We believe the primary reasons behind this are already the
fact that the initial solution has hardly any impact on the quality of a final
solution, and the requirement of obtaining a beginning solution rapidly, leav-
ing behind all the work progress for the tabu search algorithm. This process
has not prevented the accomplishment of very good results, since the tabu
search is actually effective any time efficiently used. Nevertheless, even as will
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be presented in the article, the initial solution could be computed rapidly and
still provide an essential factor to improve a final solution.
In order to obtain an initial solution, we have developed a procedure, that
constructs a feasible solution to the OVRP by finding a feasible assignment
of customers to vehicles. The customers are assigned randomly to a selected
route. The proposed procedure can be summarized as follows:
Step 1: Make a number of routes equal to number of vehicles (all vehicle have
the same capacity, Nv and n represent the number of vehicles and the number
of nodes sequentially).
Step 2: For i = 1 to n− 1, do
select a random node, assign it to current route. If the capacity of vehicle
reached the maximum, assign node to a new route.
Step 3: For i = 1 to Nv, do
calculate length of each route.
Step 4: For i = 1 to Nv, do
select the first node in route and swap it by all next node, in each swap find
length of route. Choose the shortest length of route.

3.1 Formulation of the Fitness Function

A fitness function F is a specific type of objective function which quantifies the
optimality of solution. The shorter the route, the higher is the fitness value.
Therefore, we designed the fitness function as follows :

F = TD
Nv∏
i=1

max[1, (RQ/Q)], (1)

where TD is total length of route, RQ is all demand of nodes in route, and Q
is the capacity of each vehicle i.

4 Tabu Search Optimization

Fred Glover suggested in 1986 anew strategy, that he referred to as tabu search,
allowing hill climbing to conquer local optima. Actually, several components
of this first tabu search suggestion, plus some components of later prepara-
tions, had been presented in [9], which includes short-term memory to avoid
the change of current moves, and longer-term frequency memory to strengthen
desirable elements. The essential process of tabu search is to follow the search
when a local optimum is encountered by enabling non-improving moves; cy-
cling back to formerly visited solutions is prohibited by the use of memories,
called tabu lists, which record the current history of the search. The main
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notion to exploit info to guide the search may be from the informed search
methods recommended in the late 1970s in the field of artificial intelligence
([17]). It is intriguing to note that, in 1986 also, Hansen proposed a method
similar to tabu search, that he named steepest ascent/mildest descent([10]).
It is additionally vital that you remark which Glover did not see tabu search
as a appropriate heuristic, but instead being a metaheuristic, i.e. a general
technique for driving and managing ”inner” heuristics particularly customized
for the problems available. The steps of TS [11]are

1. Choose an initial solution x0. Set the Tabu List (TL) to be empty, and
set the counter k := 0.

2. Generate neighborhood moves list M(xk) = {x̀ : x̀ ∈ N(xk) }, based on
tabu restrictions, where N(xk) is a neighborhood of xk.

3. Set xk+1 equal to the best trial solution in M(xk), and update TL.

4. If stopping conditions are satisfied, terminate. Otherwise, go to Step 2.

5 Three Strategies Tabu Search Algorithm

As earlier began, the initial solution attained by the construction heuristic
identified in (section 3) is improved by means of TSTS method. As when it
comes to every local search method, the solution search space is discovered by
executing moves from current solution to the subsequent one. Two methods
of each Move, Exchange and Swap are employed, in addition to intersection
procedure.

5.1 Move Strategy :

Method one : suppose that customer x is in route Rm, and customer y in route
Rn. Using the move strategy, customer x could be removed from route Rk and
inserted following customer y in route Rn. After that we could have the new
routes denoted as R̀m = (0, ..., x− 1, x + 1, ...) and R̀n = (0, ..., y, x, y + 1, ...).
Method two : liked first method but the idea was how to choose the two cus-
tomers. The chosen here was made according to the length between them thus
we need to find the smallest length pair of customers so we take first customer
from Rm and find the length between it and all customer in Rn and so on until
last customer in first route was reached.
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5.2 Exchange Strategy :

Method one : the method is described as exchange of customers between two
different routes. For example we swap customers x∈Rm and y∈Rn position.
Method two : As we done in second method of move strategy to find the
smallest length between two customer then swap position.

5.3 Swap Strategy :

Method one : suppose that two customers w and z are in route Rm. Us-
ing the swap strategy, the position of the two customers are swaped so if the
route Rm = (0, ..., w, ..., z, ...) then after swapping operation the route is Rm

= (0, ..., z, ..., w, ...).
Method two : suppose that three customers y, w and z are in route Rm.
Using the swap strategy, find all probabilities of swapping these three cus-
tomers. In each probability compute the total length of route then choose the
smallest length of route. As example if Rm = (0, ..., y, ..., w, ...z, ...) hence first
probability may be Rm = (0, ..., w, ..., y, ..., z, ...) , second probability is Rm =
(0, ..., w, ..., z, ..., y, ...) and so on until last probability.

5.4 Intersection procedure :

In this procedure we attempt to reduce the length of routes in solution there-
fore, we apply two methods.
Method one (four customers): suppose that two customers x and y ∈ Rm and
other two customers w & z ∈ Rn, then we remove the intersect arcs between
four customers by using the first method of exchange strategy.
Method two (six customers): It is the same as the first method but the differ-
ence is in the number of customers and the idea that how to choose them. We
have three types through which we can choose, firstly three customers from
each route, secondly two customers from route and four from the other and
thirdly two customers from different the three routes.

5.5 Stopping Criteria

Because the algorithm is actually open-ended, therefore the stopping criteria
are usually needed. It might run forever since the optimum is unidentified.
Due to this problem, algorithm stops searching just after it finishes diversify
on the repeating and we additionally limit the maximum iteration up to 1000
in order to avoid wasting time. This is due to, in case when there are a great
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number of repetitions, the algorithm might run forever until it finished diversify
but also in the same time the solution are not enhanced after such number of
iteration. Because the optimum is not known, therefore the maximum number
of iteration is necessary.

6 Computational Experiments

The suggested method have been tested on the well-known bench-mark data
sets of [5, 15]. Particularly, there are 14 problems denoted as C1−C14 coming
from [5]. The set range in size from 50 to 199 customers, suppose Cartesian
coordinates and Euclidean distances.
Parameter Setting and Tuning : The suggested solution strategy exposes
three parameters, specifically Pm, Pe and Ps. This parameters specify the
proportion of every strategy to occur inside range of solutions. The three
parameters values modifications from 0 to 1, where Pm, Pe and Ps represent
Move, Exchange and Swap strategies.

6.1 Computational Results

Computational results for the OVRP are ranked according to a hierarchical
objective function. The primary objective is to minimize the total Nv, the
secondary objective is to minimize the total traveled distance. However, one
should note that these two objectives are often conflicting since the reduction
of the total Nv may increase the total traveling distance. The best results
are marked in bold indicate that, for the instance, the TSTS provided a new
best result. The proposed algorithmic framework was coded in Matlab and
executed on a Pentium i5 2.4 GHz computer system, with 6 GB of RAM, un-
der Windows 7, for solving the sets of 14 problem, in total, VRP benchmark
instances.
Table 1 : illustrates the characteristics of the fourteen problem instances of
[5] where N and Q represent the number of customers and capacity of vehicle
Sequentially.
Table 2 : summarizes the results obtained from the application of the proposed
solution method, abbreviated as TSTS algorithm as the first method of the
three strategies, on the problem instances of [5]. Furthermore, the detailed
results of the best performing metaheuristic implementations from other au-
thors are also provided, using the following abbreviations: SA and TS [18],
genetic algorithm (GA) [2], scatter search algorithm combined by ACO (SS-
ACO) [27], particle swarm intelligent (PSO) [1], genetic algorithm combined
with particle swarm intelligent (GAPSO) [16] and (HEAS) [26] in addition to
the Best Known Result (BKR). In addition to a multi-start version, where the
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algorithm is repeated 10 times and the best solution is kept. The table demon-
strates the efficiency and effect of the proposed solution method compared to
the existing state-of-the-art of the OVRP. It produces two new best solutions.
Table 3 : summarizes the results obtained from the application of the pro-
posed solution method, abbreviated as TSTS algorithm as second method of
three strategies. The table is divided into three groups according to param-
eters setting. In the first group we set one parameter equals to 1 and other
two parameters equal to 0 (i.e Ps = 1 and Pe = Pm = 0), but in the second
group we set one parameter equal to 0.5 and other two parameters equal to
0.25 (i.e Ps = 0.5 and Pe = Pm = 0.25) and finally we set one parameter equals
to 0.2 and other two parameters equal to 0.4 (i.e Ps = 0.2 and Pe = Pm =
0.4) as shown in the table. we mentioned that the solution match most of the
14 best known solutions but from three groups we investigated that the best
known result is achieved when Pm has a large ratio which means move strategy
produced most of the best solutions.
Table 4 : summarizes the results obtained from the application of the sug-
gested solution method, abbreviated as TSTS algorithm as the second method
of the three strategies after set the parameter Pm to take a high ratio in so-
lution comparing to others two parameters Pe and Ps as shown in table. This
method produced the best known results except instances C5.
Table 5 : show the results for first method of intersection procedure after sets
the parameter Pm equal to 1 and the others two parameters Pe and Ps equal
to 0. This method produced the best known results except three instances C1,
C5 and C11.
Table 6 : show the results for second method of intersection procedure after
sets the parameter Pm equal to 1 and the other two parameters Pe and Ps equal
to 0. This method produced the best known results except four instances C1,
C3, C5 and C11.
Table 7 : show the results for two methods of intersection procedure after set
three parameter Pe, Pm and Ps equals to (1/3). This method produced the
best known results for six only instances C6, C8, C9, C10, C13 and C14.
The above computational experiments illustrate how the suggested solution
strategy is both effective and efficient in finding top quality solutions with sen-
sible computational problems. The strategy appears to scale effectively based
on the total number of customers. The latter additionally suggests how the pa-
rameter settings employed for the computational experiments provided a good
compromise between solution quality. Finally, since these results acquired hav-
ing fixed parameter settings overall problem instances, the robustness of the
method is apparent.
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Table 1: Benchmark data sets of [5]
Instance N Q Nv

C1 50 160 5
C2 75 140 10
C3 100 200 8
C4 150 200 12
C5 199 200 16
C6 50 160 6
C7 75 140 10
C8 100 200 9
C9 150 200 13
C10 199 200 17
C11 120 200 7
C12 100 200 10
C13 120 200 11
C14 100 200 11

Table 2: Detailed results for the second methods TSTS

Instance SA TS GA SS-ACO PSO GAPSO HEAS BKR TSTS
C1 528 524 524.61 524.61 524.61 524.61 524.61 524.61 338.83
C2 838 844 849.77 835.26 844.42 835.26 847.14 835.26 638.15
C3 829 835 840.72 830.14 829.4 826.14 712.36 826.14 1152.87
C4 1058 1052 1055.85 1038.2 1048.89 1028.42 1066.89 1028.42 1922.62
C5 1376 1354 1378.73 1307.18 1323.89 1294.21 1311.35 1291.45 3164.97
C6 555 555 560.29 559.12 555.43 555.43 555.43 555.43 293.85
C7 909 913 914.13 912.68 917.68 909.68 909.68 909.68 579.51
C8 866 866 872.82 869.34 867.01 865.94 865.94 865.94 1019.39
C9 1164 1188 1193.05 1179.4 1181.14 1163.41 1162.89 1162.55 1897.12
C10 1418 1422 1483.06 1410.26 1428.46 1397.51 1404.75 1395.85 2938.75
C11 1176 1042 1060.24 1044.12 1051.87 1042.11 1042.11 1042.11 2173
C12 826 819 877.8 824.31 819.56 819.56 840.64 819.56 1035.42
C13 1545 1547 1562.25 1556.52 1546.2 1544.57 1545.93 1541.14 1774.82
C14 890 866 872.34 870.26 866.37 866.37 866.37 866.37 1000.76
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Table 3: Detailed results for three proposed strategies according to parameter
setting

(Ps, Pm, Pe) (1, 0, 0) (0, 1, 0) (0, 0, 1) (.5, .25, .25) (.25, .25, .5) (.25, .5, .25) (.4, .2, .4) (.4, .4, .2) (.2, .4, .4)
c1 833.20 587.90 1281.68 600.50 703.23 696.23 687.37 598.79 600.33
c2 1337.53 825.73 1882.41 839.69 909.84 827.70 899.90 976.00 870.43
c3 1588.03 852.92 2814.83 890.18 848.51 818.96 866.34 915.92 839.49
c4 2383.91 1063.17 3989.29 1077.46 1097.48 1122.80 1162.24 1123.95 1100.40
c5 3115.46 2164.52 5333.63 2903.77 3023.60 2929.22 3066.25 3027.64 3446.97
c6 849.92 470.49 1113.23 463.14 450.43 486.88 441.43 441.90 438.01
c7 1366.82 808.79 1836.10 963.64 1008.30 935.14 916.11 935.37 952.55
c8 1617.80 812.41 2562.67 779.27 830.27 824.50 784.59 831.03 772.15
c9 2395.35 988.82 3587.84 803.25 985.37 1036.55 1047.41 1005.09 1036.29
c10 3094.21 1290.84 4369.87 1475.70 1385.45 1342.65 1418.82 1305.77 1342.03
c11 2229.07 843.01 5389.57 1391.45 1620.15 1168.33 1566.96 1367.59 1422.27
c12 1923.73 628.76 3090.08 693.50 665.62 681.40 718.11 628.24 657.03
c13 2631.44 847.99 4846.54 960.17 976.59 948.37 941.47 897.00 962.05
c14 2064.10 642.92 3048.76 600.14 633.84 614.39 673.81 620.36 656.80

Table 4: Detailed results for Move strategy according to parameter setting

(Pm, Pe, Ps) (1, 0, 0) (.9, .05, .05) (.8, .1, .1) (.7, .15, .15) (.6, .2, .2) (.5, .25, .25)
c1 595.25 551.12 529.34 516.85 572.58 696.23
c2 836.71 809.22 905.57 960.03 564.76 827.7
c3 852.92 783.91 834.92 831.47 854.18 818.96
c4 1085 1065.28 1034.67 983.92 946.94 1122.8
c5 2252.13 2726.57 3220.42 3451.23 3135.09 2929.22
c6 470.49 445.87 435.31 474.54 443.81 486.88
c7 814.57 878.37 896.21 971.73 835.96 935.14
c8 812.41 755.73 779.21 775.1 804.08 824.5
c9 988.82 977.04 973.75 955.68 1022.8 1043.25
c10 1290.84 1335.93 1317.03 1402.14 1299.22 1393.79
c11 851.46 1152.84 1268.48 1194.45 1167.23 1168.33
c12 628.76 642.33 651.91 706.67 675.01 681.4
c13 847.99 953.29 939.72 874.31 855.63 948.37
c14 642.92 639.84 635.76 650.55 611.59 614.39

Table 5: Computational result for method one of intersection procedure

Instance c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14
TSTS 646.97 746.84 808.60 1020.80 2172.30 549.24 705.13 746.30 882.86 1150.60 1185.50 370.89 747.99 428.99
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Table 6: Computational result for method two of intersection procedure
Instance TSTS (2, 2, 2) TSTS (2, 4) TSTS (3, 3)

c1 646.97 694.77 646.97
c2 834.12 738.14 839.49
c3 862.99 866.04 981.05
c4 1160.20 1020.80 1090.10
c5 2214.90 2172.30 2243.20
c6 685.04 549.24 649.97
c7 830.59 705.13 877.52
c8 746.30 746.30 746.30
c9 938.05 882.86 995.74
c10 1122.50 1122.50 1122.50
c11 1079.10 1079.10 1146.50
c12 370.89 370.89 370.89
c13 777.43 747.99 1049.50
c14 385.16 385.16 580.51

Table 7: Computational result for intersection procedure
Instance TSTS (2, 2) TSTS (2, 2, 2) TSTS (2, 4) TSTS (3, 3)

c1 682.97 708.72 682.97 777.47
c2 1310.70 1310.70 1347.90 1310.70
c3 1327.60 1352.50 1391.40 1378.80
c4 1788.70 1788.70 1788.70 1865.10
c5 4667.00 4635.50 4667.00 4716.40
c6 455.75 455.75 455.75 455.75
c7 1177.10 1265.40 1254.90 1265.40
c8 739.53 739.53 855.23 825.87
c9 964.99 1077.00 1095.60 1019.70
c10 1175.00 1238.30 1321.90 1251.70
c11 3273.30 3315.00 3370.00 3546.10
c12 1065.00 1065.00 1065.00 1138.10
c13 1207.70 1373.80 1219.40 1227.00
c14 563.16 523.20 523.20 711.52
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7 Conclusion

The paper introduced algorithm TSTS for solving the OVRP. The basic tabu
search framework is utilized to direct the local search process. Results on
well-known benchmark data sets of the literature had shown the competition
and precision of the suggested approach with fixed settings of parameters and
sensible computational problems. In comparison to the state-of-the-art, it
turned out to be effective providing many new best solutions, although it
acquired the minimum released fleet size for each small and large-scale problem
instances. Additionally, an overall solution framework is presented, which
can be used to handle additional vehicle routing problem versions or related
discrete permutation flow combinatorial optimization problems. A research
direction worth going after is towards analysis of more complex recombination
operators which will include intelligent pattern-identification systems.

8 Open Problem

we offer algorithm TSTS for fixing the OVRP. The fundamental tabu search
structure is utilized to direct the local search process. Benefits in well-known
benchmark data sets from the literature proven the competition and also accu-
racy and reliability of the suggested approach with fixed settings of parameters
and realistic computational problems. In comparison to the state-of-the-art,
this became effective generating many new best solutions, although it obtained
the minimum published fleet size with regard to each small and large-scale
problem instances. Moreover, a general solution framework is presented, that
may be used to treat other vehicle routing problem variants or related discrete
permutation flow combinatorial optimization problems. A research direction
worth pursuing is towards the analysis of more complex recombination oper-
ators which will include intelligent pattern-identification systems. An inter-
esting perspective for future research is to extend the model and the heuristic
approaches to

• Improvement of currently present metaheuristics TSTS in order to effi-
ciently solve other VRP.

• Design of effective hybrid metaheuristics though decreasing complexity
and also to suggest new metaheuristics actual life purposes.

• Concern with the improvement of more intelligent parameter to manage
the utilization of heuristics in a more adaptable way.

• Using different constraint-handling techniques such as penalty functions
and filter sets.
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