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Abstract 

     In the middle of 17th century, Pierre de Fermat mentioned that no 
value of n > 2 could satisfy the equation x

n
 + y

n
 = z

n
, where n, x, y and z 

are all positive integers. The statement is popularly known as Fermat’s 
last theorem. An acceptable mathematical proof of this theorem is being 
explored still today.  When searched online treasures of resources, one 
may find various proofs of this theorem. In this paper I am not discussing 
any historical attempts that failed or partially succeeded. I am going to 
discuss the approach which I have adopted to proof this theorem. The 
approach is based on odd-even classification of positive integers. 
Assumption that the equation x

n
 + y

n
 = z

n
, where n, x, y and z are all 

positive integers, has a solution for n > 2 leads to some contradiction. 

     Keywords: Fermat’s last theorem, odd-even classification, Fermat’s general 
proof, method of contradiction. 

1      Introduction 

Pierre de Fermat, in 17
th

 century, wrote an equation that is now popularly 

known as Fermat’s Last Theorem (FLT). This he did while studying Arithmetica, 

an ancient Greek text written in about AD 250 by Diophantus of Alexandria [1, 

2]. This is a manual on number theory, the purest form of mathematics, concerned 

with the study of whole numbers, the relationships between them, and the patterns 

they form [16]. The page of Arithmetica which inspired Fermat to create the last 

theorem discussed various aspects of Pythagoras’ theorem, which states, “In a 

right-angled triangle the square of the hypotenuse is equal to the sum of the 
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squares on the other two sides.” In symbolic form, the Pythagoras’s theorem is 

written as 

x
2
 + y

2
 = z

2
 

where z is the length of the hypotenuse, the longest side, and x and y are 

the lengths of the other two sides in a right angle triangle. In particular, 

Arithmetica asked its readers to find solutions to Pythagoras’ equation, such that 

x, y, and z could be any whole number, except zero [5, 6]. There are many 

solutions to this equation as proved in the Section 3 of this paper. The general 

statement of this equation is known as Fermat’s last theorem (FLT), which states 

that for all n greater than 2, there does not exist x, y, z such that  

x
n
 + y

n
 = z

n 
 ……………………………………………… (1) 

Here x, y, z and n are positive integers. Until mid-1990s, this was the most 

famous unsolved problem in Mathematics. Fermat believed he could prove his 

theorem, but he never committed his proof to paper. After his death, 

mathematicians across Europe tried to rediscover the proof of Fermat’s Last 

Theorem. It was as though Fermat had buried an incredible treasure, but he had 

not written down the map [12]. Mathematicians could not resist the lure of such 

an intellectual treasure and competed to find it first. “I have found a remarkable 

proof of this fact, but there is not enough space in the margin of the book to write 

it”, Fermat claimed [1, 11]. There are many stories in support and in against of the 

claim [7, 9, 12]. I am not going to discuss anything like that in this paper. For 

more than 300 years, no one was able to find a proof although various attempts 

produced numerous results and some fields of mathematical studies [3, 4].  

In summer of 1993, a proof was announced by Princeton University 

mathematics professor Andrew Wiles. Actually, Wiles announced a proof of a 

special case of the Shimura-Taniyama Conjecture -a special case that implies FLT 

[1, 10, 21]. Wiles’ proof was 200 pages long and had required more than seven 

years of dedicated effort. A gap in the proof was discovered later that summer, but 

Wiles, working with Richard Taylor, was able to fill it by the end of September 

1994 [17, 18]. Are mathematicians finally satisfied with Andrew Wiles's proof of 

Fermat's Last Theorem? Why has this theorem been so difficult to prove? These 

are still some unanswered questions [13, 14]. Without discussing merits and 

demerits of the proofs provided by Wiles, I am writing my own proof of FLT.  

In this paper, a simple proof is provided for n = 1, n = 2, n = 3, n = 4 and 

then for n = m. For n = 1, 2 solution exists whereas for n > 2, there is no solution. 

In Equation (1), we can write y and z as (x + a) and (x + b) respectively for some 

positive integers a and b such that b > a. This is without any loss of generality. 

Thus, Equation (1) can be written as below. 

x
n
 + (x + a)

n
 = (x + b)

n 
 ………………………………..………… (2) 

Where x, a, b, n, are positive integers. Also for n = 1, x = (b – a) and for n 

 2, x > (b – a). The proof consists of two parts: existence of solution for n = 1, 2 
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and non-existence of solution for n > 2. It is proved in the paper that there exist 

positive integer x for some positive integers a, b and a < b such that Equation (2) 

is true when n = 1, 2.  

In order to prove the FLT i.e. non-existence of solution to Equation (2) for 

n > 2, Equation (2) can be written as 

 x
n
 = (b – a)  )...( ...)()( 121223

3
2

2
1

1
  nnnnnnnnn aabbababxCabxCxC  

Or,    x
n
 = (b – a) * q   ……………………………..………………   (3) 

where q is a positive integer and (b – a) << q. Three integers: x, a, b 

involved in the Equation (3), are either even or odd positive integers. The possible 

odd-even classification of x, (b – a), q and resultant feasibilities of a solution to 

Equation (3) are tabulated in the Table 1.  

Table 1: Possible even-odd values of variables involved 

Sl 

No 

x a b x
n
 (b – a) q x

n
 = (b – a) * q 

1 E E E E E E @ 

2 E E O E O O Not Possible 

3 E O E E O O Not Possible 

4 E O O E E ?  

5 O E E O E D Not possible 

6 O E O O O O  

7 O O E O O O  

8 O O O O E D Not possible 

In the Table 1, D stands for ‘Do not care’. It means that irrespective of 

whether q is odd or even, product in right hand side of Equation (3) i.e. [q * (b – 

a)] is even and therefore no solution is feasible in these cases. Similarly no 

solution is possible in case of serial no. 2 and 3. At the serial no 4, ‘?’ indicates 

that value could be odd or even depending on whether n is odd or even; and ‘@’, 

at serial no 1, indicates the case that it is one of the remaining 7 cases after 

canceling out the even factors from both sides of Equation (3). Thus in order to 

prove the FLT, we have to prove that there exists no x to satisfy the Equation (3) 

even in cases at serial no 4, 6 and 7 of the Table 1.  

This paper is organized in six sections. The existence of solution for n = 1 

and n = 2 is proved in Section 2. The proof of non-existence of solution of the 

Fermat’s Last theorem for n = 3 is described in the Section 3 and for n= 4 in 

Section 4. The Section 5, deals with general proof of Fermat’s Last theorem for 

any positive integer n > 2. The paper is concluded in the Section 6. Finally, it is 
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mentioned in the Section 7 that the problem is open problem to the extent that 

another simpler proof may still be found, however the question that there exists no 

mathematical proof of FLT is solved herewith. 

 

 

2      Proof of Existence of Solutions for n = 1 and n = 2 

Consider the Equation (2) for n = 1. It is x = b – a. Since integers b and a 

are positive integers and b > a, there exists many positive integers such that  

x + y = z 

It also follows from the closure property of the set of positive integers 

under the binary operation of addition of integers.  

Now let us consider the Equation (2) for n = 2. The Equation (2), in this 

case, becomes  

x
2
 = 2x(b – a) + (b

2
 – a

2 
)  ……………………………….……     (4) 

where x, a, and b are positive integers. Once the equation is solved for x in 

terms of a and b, we get 

x = (b – a)  )(2 abb   …………………………………   (5) 

We can find infinite number of pairs of positive integers (a, b) such that x 

is a positive integers and thereof y and z are positive integers satisfying the 

Equation (1) for n = 2. For instance for a = 1, b = 2, we have x = 3, y = 4 and z =5. 

These values of x, y and z satisfy the Equation (1). 

 

 

3      Proof of Nonexistence of Solutions for n = 3 

Let us now consider the case of n = 3. In this case, Equation (3) turns out 

to be  

x
3
 = (b – a) * q        ..………………………………………… (6) 

where  

q = (3x
2 
+ 3x(b + a) + b

2
 + a

2
 + ab)       ……………………… (7) 

Take the case 4 of the Table 1, wherein x is even and a and b are odd. In 

this case (b – a) is even and q is odd. If there exist a positive integer solution of 

Equation (2) for n = 3, then RHS of Equation (6) is a perfect cube of some 

positive integer i.e.  some positive integers a and b such that (b – a)*q is cube of 

integer x.  
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Lemma 1: A positive even integer can be written as 2
k 

* p, where p is an odd 

positive integer and k is any positive integer. 

Proof: For a positive even integer x,  a positive integer m such that x = 2m. If m 

is odd then it is proved otherwise m = 2m1. If m1 is odd then it is proved otherwise 

m1 = 2m2. Similarly, we extend the process to K
th

 steps such that mk is either 1 or 

an odd positive integer. Thus x can be written as 

x = 2
k 
* mk   [end of the proof of lemma] 

For RHS, in Equation (7), to be a perfect cube, (b – a) must be an odd 

multiple of 2
3k

 for some positive integer k i.e.    

(b – a) = 2
3k 

* p            …..………………………………    (8) 

Substituting for (b – a) in Equation (6) from Equation (8), we have  

x
3
 = 2

3k 
* (p * q)           ………..………………………       (9) 

If p = 1 and q is a prime number then there is no solution, therefore 

assume that (p * q) is a composite odd number such that it is a cube of an odd 

positive integer r i.e. (p * q) = r
3
. It shows that there is a solution to the Equation 

(2) for n = 3, if and only if q is a composite integer of possibly many factors in 

such a way that (p * q) is a cube of a positive integer r.  Therefore, q can be 

written as product of two odd integers: q1 and q2; i.e.  

(3x
2 
+ 3x(b + a) + b

2
 + a

2
 + ab) = q1 * q2 --------------------- (10) 

We can always find two odd integers  and  such that q1 and q2 can be 

written as (x + ) and (3x + ) respectively. This implies that  some odd integers 

(either positive or negative)  and  such that Equation (10) is valid. The 

Equation (10) now can be written as  

(3x
2 
+ 3x(b + a) + b

2
 + a

2
 + ab) = (x + ) * (3x + ) ………(11) 

Solving Equation (11) we get,   

(3x
2 
+ 3x(b + a) + b

2
 + a

2
 + ab) = 3x

2
 + ( + 3) x +  

i.e.  

 + 3 = 3(a + b), and 

  = b
2
 + a

2
 + ab 

Using the two results, we have  

( – 3)
2
 = –3 (b – a)

2
  

This is a contradiction, because square of an integer cannot be negative. 

Thus there exist no integers  &  such that Equation (11) becomes true. This 
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implies that RHS of Equation (6) is not a perfect cube and therefore there exists 

no solution to Equation (2) for n = 3 when x is even, a is odd and b is odd.  

 

 

4      Proof of Nonexistence of Solutions for n = 4 

Let us now consider the case for n = 4. In this case Equation (3) turns out 

to be  

x
4
 = (b – a) * q              …..…………………………………… (12) 

where  

q = [4x
3 

+ 6x
2
 (b + a) + 4x(b

2
 + a

2
 + ab) + (b

3
 + a

3
 + b

2
a + 

ba
2
)]  ..…………(13) 

Take the case in serial no. 4 in the Table 1, wherein x is even integer and a 

& b are odd integers. In this case (b – a) is even and q is also even. If there exist a 

positive integer solution of Equation (2) for n = 4, then RHS of Equation (12) 

must be an integral power 4 of positive integer x i.e.  positive integers a and b 

such that (b – a)*q is integral power of x raised to the power 4.  

The expression (b – a)*q in the RHS in Equation (12) is an odd multiple of 

some integral power of 2 (from lemma 1). For (b – a)*q to be an integral power 4 

of x, (b – a)*q must be an odd multiple of 2
4k

 (from lemma 1), for some positive 

integer k i.e.    

(b – a)*q = 2
4k 

* p            …..………………………………….. (14) 

where p is an odd integer. Using this result in Equation (14), we have  

x
4
 = 2

4k 
* p                       ….…..………………………(15) 

Here p is greater than 1, it is proved in lemma 2 below. 

Lemma 2: The odd integer p in Equation (15) is greater than 1. 

Proof: When x is even, a is odd and b is odd, (x + a) and (x + b) are odd integers. 

From Equation (12) it is obvious that (b – a)*q is difference of 4
th

 power of (x + a) 

and 4
th

 power of (x + b). If (x + a) = 2m + 1 and (x + b) = 2n + 1, then 

(2n + 1)
4
 – (2m + 1)

4
 = 2

3 
(n – m) (n + m + 1) [2m

2 
+ 2n

2 
+ 2(m + n) + 1] 

………. (15A) 

Since x is a positive even integer, a & b are positive odd integer and b > a, 

n and m must be  1. Therefore irrespective value of n and m, the least odd factor 

is [2m
2 
+ 2n

2 
+ 2(m + n) + 1] and it is > 1 for any such positive integers x, a and b. 

(End of proof) 
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If p is a prime number then there is no solution, therefore assume that p is 

a composite odd number such that it is an integral power 4 of some odd positive 

integer r i.e. p = r
4
. This implies that q can be factored into many integers possibly 

some even and some odd i.e. there is an integer solution to the Equation (2) for n 

= 4, iff q is a composite integer of at least four positive integers factors. This 

implies that q can be written as product of three positive integers: q1, q2 and q3; i.e. 

[4x
3 
+ 6x

2
 (b + a) + 4x(b

2
 + a

2
 + ab) + (b

3
 + a

3
 + b

2
a + ba

2
)] = q1*q2*q3  ….(16) 

We can always find three integers ,  and  such that q1, q2 and q3 can be 

written as (2x + ), (2x + ) and (x + ) respectively. This is without loss of any 

generality. This implies that  some integers (either positive or negative) ,  and 

 such that Equation (16) is valid and it can be written as  

[4x
3 
+ 6x

2
 (b + a) + 4x(b

2
 + a

2
 + ab) + (b

3
 + a

3
 + b

2
a + ba

2
)]  

= (2x + ) (2x + ) (x + ) ………….(17) 

Solving the following Equation (17) we get,   

[4x
3 
+ 6x

2
 (b + a) + 4x(b

2
 + a

2
 + ab) + (b

3
 + a

3
 + b

2
a + ba

2
)]  

= 4x
3
 + 2x

2 
( +  + 2) + x ( + 2 + 2) +  

i.e.  

  +  + 2 = 3 (b + a)   ....................... (18) 

 + 2 + 2 = 4(b
2
 + a

2
 + ab) ....................... (19) 

  = (b
3
 + a

3
 + b

2
a + ba

2
)             ……………... (20) 

Eliminating   and  from Equation (19) using Equations (18) and (20), 

we get the following cubic Equation in , 

4
3 
– 6

2
 (b + a) + 4 (b

2
 + a

2
 + ab) – (b

3
 + a

3
 + b

2
a + ba

2
) = 0 …… (21) 

Multiplying the Equation (21) with (b – a) we get, 

4
3 
(b – a) – 6

2
 (b

2
 – a

2
) + 4 (b

3
 – a

3
) – (b

4
 – a

4
) = 0 ……… (22) 

Adding and subtracting 
4
 in the LHS of the Equation (22) and rearranging it, we 

get 

( – b)
4 
= ( – a)

4
    ………...………………… (23) 

It means either b = a or  = (b + a)/2. Since b  a, only possibility is that  

= (b + a)/2. Using this value of  in Equations (18) and (19) we get, 

 +  = 2(b + a), and 

  = 2(b
2
 + a

2
)  

Using the two results, we have  
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( – )
2
 = –4(b – a)

2
   

It means ( – ) is imaginary i.e. it is not even real. Thus there exists no 

integers  &  such that Equation (17) becomes true. This implies that RHS of 

Equation (12) is not an integral power 4 of an integer. Hence there exists no 

solution for Equation (2) for even x, odd a and odd b when n = 4. 

Now consider the cases corresponding to serial no. 6 in the Table 1 

wherein x is odd, a is even and b is odd. In this case (b – a) is odd and q is also 

odd. Similar is the case for serial no. 7 in the Table 1 wherein x is odd, a is odd 

and b is even. Since (b – a) << q, for Equation (12) to be valid q must be 

composite number in such a way that (b – a)q is an integral power 4 of some odd 

integer. Therefore the remaining proof is the same as in the case of row 4 (except 

that all factors of q in this case are odd integers) of the Table 1. It implies that 

there is no solution for FLT for n = 4. 

 

5      Proof of Nonexistence of Solutions for n = m 

Let us now consider the case of n = m, where m > 4. In this case Equation 

(3) turns out to be  

x
m

 = (b – a) * q              …..……………………………………… (24) 

where  

q = 





  )1...21...()22(3

3)(2
2

1
1

maambmbababmxCmabmxCmmxCm  

Take the case of serial no. 4 in the Table 1, wherein x is even and a and b 

are odd. In this case (b – a) is even and q is either even or odd depending upon 

whether k is even or odd. If there exist a positive integer solution of Equation (2) 

for n > 4, then RHS of Equation (24) is an integral power m positive integer x i.e. 

 some positive integers a and b such that (b – a)*q is integral power of x raised to 

the positive integer m.  

If q is even, then for RHS to be an integral power m of such integer x, (b – 

a)*q must be an odd multiple of 2
mk

 (from lemma 1), for some positive integer k 

i.e.    

(b – a)*q = 2
mk 

* p            …..……………………………(25) 

where p is an odd integer. Using this result in Equation (24), we have  

x
m

 = 2
mk 

* p                       ….…..………………. (26) 

Here p is always greater than 1 as proved in lemma 2. If p is a prime 

number then there is no solution, therefore assume that p is a composite number 
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such that it is an integral power m of some odd integer i.e. q is a composite integer 

such that it is product of at least m positive integers.  This implies that there is a 

solution to the Equation (2) for n = m, iff q is a composite integer and it is product 

of at least m positive integers factors. Therefore, q can also be written as product 

of two positive integers: q1 and q2 such that  







  )......()()( 121223

3
2

2
1

1
mmmmmmmmm aabbababxCabxCxC  

= q1 * q2 

Similarly, if q is odd, then (b – a) being even, must be an odd multiple of 

2
mk

 for some positive integer k i.e. (b – a) = 2
3k 

* t, for some odd positive integer t. 

This means t*q is integral power m of some odd positive integer u in such a way 

that  

x
m

 = 2
mk 

* u
m

 

There is a solution to the Equation (2) for n = m, iff q is a composite 

integer of possibly many positive integer factors. Since there are many integer 

factors, q can be written as product of two positive integers: q1 and q2 such that 







  )......()()( 121223

3
2

2
1

1
mmmmmmmmm aabbababxCabxCxC  

= q1* q2 

It means that whether q is odd or even, q can be written as product of two 

positive integers q1 and q2. These two integers q1 and q2 can be expressed in terms 

of x as (mx
m – 2

 – ) and (x – ) respectively. Using this fact, we have 






  )1...21...()22(3
3)(2

2
1

1
maambmbababmxCmabmxCmmxCm  

= (mx
m – 2 

 – ) (x – ) 

= mx
m – 1 

–  mx
m – 2 

– x + )         ……………… (27) 

From Equation (27), we have 

–  m = 
m

C
2 
(b + a)                             ………………..(28) 

–  = 2...32  maambmb          ………………. (29) 

 = 1...21  maambmb      .……………………. (30) 

From Equations (28) and (29), we get  

)(2

)1()()( 11

ab

mabab mm







  

and from Equation (30), we have  
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)(

)(

ab

ab mm




  

Equating these two values we have, 

)(2

)1()()( 11

ab

mabab mm



 
 =

)(

)(

ab

ab mm



  

Or,  2b
m 

– 2a
m

 = (m – 1) [b
m 

– ba
m – 1 

+ ab
m – 1 

– a
m

] 

Or,  (3 – m) (b
m 

– a
m

) = (m – 1) ab (b
m – 2 

–  a
m – 2

) 

Or,  ab
m

m

ab

ab

mm

mm










 3

1

22
     …………………….. (31) 

For positive integers a and b such that b > a, LHS of Equation (31) is a 

positive real number where as RHS of the equation is a negative real number 

because m > 4 (and therefore 3 – m < 0). Therefore, Equation (31) is a 

contradiction. This contradiction is because of the initial assumption that equation 

(2) has a solution for n = m in the case corresponding to serial no. 4 of the Table 1. 

Hence there is no solution for Equation (2) in this case for n = m. 

Now consider the cases corresponding to serial no. 6 in the Table 1 

wherein x is odd, a is even and b is odd. In this case (b – a) is odd and q is also 

odd. Similar is the case corresponding to serial no. 7 in the Table 1 wherein x is 

odd, a is odd and b is even. Since (b – a) << q, for Equation (24) to be valid q 

must be composite number in such a way that (b – a)*q is an integral power m of 

some odd integer. Therefore the remaining proof is the same as in the case of 

serial no. 4 (except that all factors of q in this case are odd integers) of the Table 1. 

It implies that there is no solution for FLT for n = m.  

 

 

6      Conclusion 

There can be no problem in the field of physics, chemistry or biology that 

has so vehemently resisted attack for so many years. E.T. Bell predicted that 

civilization would come to an end as a result of nuclear war before Fermat’s Last 

Theorem would ever be resolved. Fermat claimed that he had the proof but no 

record of it has ever been found. Ever since that time, countless professional and 

amateur mathematicians have tried to find a valid proof (and wondered whether 

Fermat really ever had one). Then in 1994, Andrew Wiles of Princeton University 

announced that he had discovered a proof while working on a more general 

problem in geometry. He came out with a proof that is very lengthy and 

cumbersome proof. Many doubt it as a mathematical proof of the theorem [13, 

15].  
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There is no royal road to logic. Really valuable ideas can only be had by 

paying close attention. Nature is innately mathematical and she speaks to us in 

mathematics. We only have to listen to describe nature in mathematical form [8, 

9]. The method to express y and z in terms of x has simplified the entire process. 

Further the odd-even classification has helped in narrowing down the cases where 

actual proof is required. The approach facilitated to generalize the proof for n = 3 

and n = 4 to a general proof for any positive integer n. The proof is based on the 

concept of contradiction. I will wait for the time when someone will write a few 

nice word for me as someone wrote for Andrew Wiles. 

7      Open Problem 

In this paper a simple proof of Fermat’s Last Theorem(FLT) has been 

presented. The proof is based on odd-even classification of integers. For more 

than 300 years, no one was able to find a proof although various attempts 

produced numerous results and some fields of mathematical studies [3, 4].  

In summer of 1993, a proof was announced by Princeton University 

mathematics professor Andrew Wiles. Wiles’ proof was 200 pages long and took 

more than seven years of dedicated effort. Are mathematicians finally satisfied 

with Andrew Wiles's proof of Fermat's Last Theorem? It is still an open question. 

Why has this theorem been so difficult to prove? These are still some unanswered 

questions [13, 14]. Since FLT is number theoretic problem, its proof has to be 

determined around number theory and not using geometry.  
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