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Abstract

One of the main problems with designing a production line
is to find the optimal number of buffers between workstations
in order to maximizes the throughput. This problem known as
buffer allocation problem. Previous work in this problem fo-
cus on selecting a single buffer profile that has the maximum
throughput. The objective in this paper would be to selecting
from a large number of alternatives, the best subset of buffer
profiles where its throughput are at its maximum. The or-
dinal optimization with optimal computing budget allocation
approaches will be used to isolating the best subset of buffer
profile, where its throughput is maximum, from the set of all
alternatives. Numerical results show that the proposed algo-
rithm finds the best subset of the puffer allocation with high
probability and small replications numbers of samples.

Keywords: Buffer Allocation Problem, Optimal Computing Budget Allo-
cation, Ordinal Optimization, Simulation Optimization.
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1 Introduction

In this paper, we are dealing with one problem in designing a production line,
which is the problem of buffer allocation. In buffer allocation problem (BAP )
the goal is to allocate Q slots amongst the q intermediate buffers between q+1
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workstations in a production line, in order to meet some specified aim. In the
most BAP the performance measures for a production line are the throughput
and the average work in process. The concern is, to allocate Q slots, over q
buffers in order to maximize the throughput or minimize the average work in
process.

The BAP is a difficult optimization problem since it is very difficult to
calculate the exact value of the objective function for a given allocation. So,
the objective function for this optimization problem needs to be estimated,
see Chaharsooghi and Nahavandi [1]. Together, the BAP is involved with a
large number of feasible allocations with respect to the total number of slots
and the number of workstations in production line. Assume that there are Q
slots available that needs to be allocated over the q buffers, then the number
of different alternative designs is

(
Q+q−1

Q

)
. Each alternative is called “buffer

profile”, where it represents a unique combination of storage allocation with a
potential to result in a different output level of the line. For instance, if the
number of slots Q = 18 and the number of buffers q = 5 then we have 7315
different buffer profiles. The objective would be to select from this large set of
alternatives, the best buffer profile that has the maximum throughput.

Previous work in the BAP mostly focus on selecting the single best buffer
profile, see Almomani et al. [2]. In many cases, it is important to provide a set
of good buffer profiles rather than selecting the best one. The purpose of this
paper is using a new selection approach, to find the optimal allocation of buffers
(set of buffer profile) that maximizes the throughput in a short, unbalanced
and reliable production lines. The proposed approach is a combination of the
ordinal optimization (OO), see Ho et al. [3], and the optimal computing budget
allocation method for selecting the top m designs (OCBA-m), see Chen et al.
[4]. The objective of OO in the proposed approach is to isolating a subset of
good enough designs with high probability and reducing the size of the search
space so that it is appropriate to apply the OCBA-m approach. We use the
OCBA-m to formulate the problem as that of maximizing the probability of
correctly selecting all of the top m buffer profile subject to a constraint on the
total number of simulation replications available.

2 Buffer Allocation Problem

Production designs are often organized with a queuing workstations that are
connected in series and are separated by buffers. Figure 1 represents a pro-
duction line of 4 workstations and 3 buffers. The job moves in the direction
of the arrows, from source inventory to the first workstations for served, then
to the first buffer where it waits until the second workstation become empty
then it moves to the second workstations, etc... until it finishes all the stations
in the queue and leave the line. The challenge is, how to allocate the slots in
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away that will achieve the desired performance. Note that, the buffers cannot
be too large because; an increase in the buffer size usually will increase the
total of work in progress, time to the customer, inventory and capital. On the
other hand, the buffers cannot be too small because the workstations will be
untapped to meet demand.

Figure 1: A production line of 4 workstations and 3 buffers

There are two types of BAP ; short and longer lines as presented in Pa-
padopoulos et al. [5]. The short line is a production line with up to 6 work-
stations with maximum of up to 20 slots, whereas the larger lines is otherwise.
Furthermore, the BAP can be defined as balanced and unbalanced line, where
the balanced line is a line with equal mean service time at each of the q + 1
workstations. Production line also, can be defined as a reliable or unreliable
line, where in reliable line each workstation of the line cannot be failed. An
illustration of the definitions can be see in Almomani et al. [2].

Other literature reviewed that relates to the BAP , include Spinellis and Pa-
padopoulos [6] described a simulated annealing procedure for solving the BAP
in reliable production lines, with the objective of maximizing the throughput.
Chaharsooghi and Nahavandi [1] presented a heuristic algorithm to find the
optimal allocation of buffers that maximizes throughput. Alon et al. [7] pre-
sented a stochastic algorithm for solving the BAP , based on the cross-entropy
method. Yuzukirmizia and Smithb [8] proposed a new procedure to get a sub-
optimal buffer profile for closed queuing networks with multiple servers and
finite buffers. For more details about BAP , see Alrefaei and Andradóttir [9],
Daskalaki and Smith [10], Foley and Park [11], Kim et al. [12], Huang et al.
[13], Diamantidis and Papadopoloulos [14].

3 Ordinal Optimization

The objective of the OO is separating a subset of good designs with high prob-
ability and reducing the required simulation time for discrete event simulation.
The target of this approach is to find a good enough solution, rather than es-
timating the performance value of these designs accurately. Therefore, OO
approach is used to select a subset that overlap with the set of the actual best
k% designs with high probability.

Suppose that the correct selection (CS) is to select a subset G of g designs
from the search space set Θ that contains at least one of the top k% best de-
signs. Since we assume that Θ is large, then the probability of correct selection
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is given by P (CS) ≈ 1 − (1 − k
100

)g. Furthermore, suppose that the correct
selection is to select a subset G of g designs that contains at least r of the best
s designs. Let S be the subset that contains the actual best s designs, then
the probability of correct selection can be obtained using the hypergeometric

distribution as P (CS) = P (|G ∩ S| ≥ r) =
∑g

i=r

(si)(
n−s
g−i)

(ng)
. Since |Θ| = n, and

n is large then P (CS) can be approximated by the binomial random vari-

able. Therefore, P (CS) ≈
∑g

i=r

(
g
i

) (
k

100

)i (
1− k

100

)g−i
, where we assume that

s/n × 100% = k%. Another comprehensive review of OO approach can be
found in Ho et al. [3], Deng and Ho [15], Lee et al. [16], Zhao et al. [17] and
Ho et al. [18].

4 Computing Budget Allocation for Selecting

an Optimal Subset

To improve the efficiency of OO choose the simulation lengths for different
designs to minimize the total computation time. The target is to allocate the
total simulation samples from all designs in a way that maximizes the proba-
bility of selecting the best design within a given computing budget, instead of
allocating the computing budget among equally simulating designs. To achieve
this target Chen et al. [19] proposed the optimal computing budget allocation
(OCBA) approach that gives a large number of simulation samples to the de-
signs that have a great effect on identifying the best design, whereas it gives a
limited simulation sample for those designs that have little effect on identifying
the best one.

Most research on the same framework has focused on selecting the single
best design, see Almomani and Abdul Rahman [20], Almomani and Abdul
Rahman [21], Almomani et al. [22], Almomani et al. [23], Almomani and
Alrefaei [24], Alrefaei and Almomani [25], and there has been no research
involving subset selection. Chen et al. [4], Chen et al. [26] fill this gap by pro-
viding an efficient allocation approach for selecting the top m designs, known
as (OCBA-m) approach. They formulate the problem as that of maximizing
the probability of correctly selecting all of the top m designs P (CSm) subject
to a constraint on the total number of samples available, i.e.

max
T1,...,Tn

P (CSm)

s.t.

n∑
i=1

Ti = T (2.1)

where, T the total number of simulation samples, n the total number of de-
signs, m the number of top designs to be selected in the optimal subset, Sm the
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set of m (distinct) indices indicating designs in selected subset, Ti the number
of simulation samples allocated to design i and

∑n
i=1 Ti denotes the total com-

putational samples. The goal is to find a simulation budget allocation that
maximizes the probability of selecting the optimal subset, defined as the set
of m (< k) best designs, for m a fixed number.

Suppose the m best designs are the designs with the m largest means,
which is unknown and to be inferred from simulation. Let n the number of
designs, and let Yij represent the j

th output from the design i. We assume that
Yij are independent and identically distributed normal with unknown means
Yi = E(Yij) and variances σ2

i = V ar(Yij). If σ2
i are unknown, we estimate it

by the sample variances s2i for Yij. Since we assume a largest mean is better,
therefore we will take Sm to be the m designs with the largest sample means.
Let Ȳir be the r-th largest of {Ȳ1, Ȳ2, . . . , Ȳn}, i.e. Ȳi1 ≥ Ȳi2 ≥ . . . ≥ Ȳin ,
where Ȳi =

1
Ti

∑Ti

i=1 Yij is the sample mean for design i. Then, the selected
subset is given by Sm = {i1, i2, . . . , im}. The correct selection is defined by Sm

containing all of the m largest mean designs.
To solve (2.1) problem, Chen and Lee [27] proposed the following theorem

that was useful in choosing the simulation samples for all designs in a way that
maximizes the approximate P (CSm).

Theorem 4.1 Given a total number of simulation replications T to be allo-
cated to n competing designs whose performance is depicted by random vari-
ables with means Y1, Y2, . . . , Yn, and finite variances σ2

1, σ
2
2, . . . , σ

2
n respectively,

as T −→∞, the approximate probability of correct selection for m best (APCSm)

can be asymptotically maximized when Ti

Tj
=

(
σi/δi
σj/δj

)2

; for any i, j ∈ {1, 2, . . . , n}
and i ̸= j, where δi = Ȳi − c, for c a constant.

Note that, the parameter c impacts the quality of the APCSm to P (CSm).
Since APCSm is a lower bound of P (CSm), choosing c to make APCSm as
large as possible is likely to provide a better approximation of APCSm to
P (CSm), see Chen et al. [4] and Chen and Lee [27]. However, in this paper

we choose c to be c =
(σ̂im+1

Ȳim+σ̂im Ȳim+1)
(σ̂im+σ̂im+1)

where σ̂i = σi/
√
Ti.

5 Assumptions of the Model

This paper assume that the production line is short, reliable and is unbal-
anced with unlimited supply of jobs in the first workstation -the workstation
will never been starved- and unlimited space after the final workstation -the
workstation will never be blocked-. Jobs received service at each workstation
with the service times being independently random variables following the ex-
ponential distribution with rate µi, for i = 0, 1, . . . , q. With the model given
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above, the objective is to maximize the throughput, subject to a given total
slots. This problem of buffer allocation can be stated as:

max P (B)

s.t.

q∑
i=1

Bi = Q

Bi ≥ 0 i = 1, 2, . . . , q (3.1)

where; P (B) is the throughput of the q + 1 workstation production line as
a function of the buffer sizes vector. B = (B1 B2 . . . Bq) is the buffer
vector, and Bi integer for all i = 1, 2, . . . , q. Q is a fixed nonnegative integer
representing the slots available in the production line.

6 Selecting an Optimal Subset Algorithm

The approach that proposed in this paper includes a combination of OO ap-
proach and OCBA-m method for identify the top m buffer profiles, when the
number of alternatives is large. In the first stage, use the OO approach to
selected randomly a subset G form the set of alternatives that overlaps with
the set that contains the actual best k% buffer profiles with high probability.
In stage two, the OCBA-m method use to identify all top m buffer profiles
from the subset G that selected in the first stage. Clearly, the OO approach
isolated the subset G of good enough buffer profiles with high probability and
reducing the size of the set of alternatives so that it is appropriate to apply
the OCBA-m method. The algorithm is described as follows:

Algorithm:

Setup: Determine the size of setG, |G| = g, where, G is defined as the selected
subset from the set of all alternatives Θ, that satisfies P (G contains at
least one of the bestm% buffer profiles) ≥ 1−

(
1− m

100

)g
. Let the number

of initial simulation samples t0 ≥ 5, and the size of search space |Θ| = n.
Determine the total computing budget T , and the value of m (best top
m). Let l = 0 and let T l

1 = T l
2 = . . . = T l

g = t0, where l is the iteration
number.

Select a subset G of g alternatives randomly from Θ. Take a random
samples of t0 observations Yij (1 ≤ j ≤ t0) for each buffer profile i in G,
where i = 1, 2, . . . , g.

Initialization: Calculate the sample mean Ȳi and sample standard deviation

si as; Ȳi = 1
T l
i

∑T l
i

j=1 Yij and si =

√
1

T l
i−1

∑T l
i

j=1(Yij − Ȳi)2, where i =

1, 2, . . . , g.
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Order the buffer profiles in G according to their sample means (through-
put); Ȳ[1] ≥ Ȳ[2] ≥ . . . ≥ Ȳ[g]. Then select the top m buffer profiles from
the set G, and represent this subset as Sm.

Stopping Rule: If
∑g

i=1 T
l
i ≥ T , stop. Return Sm as the subset that con-

taining all of the m best buffer profiles. Otherwise, select randomly a
subset Sz of the g −m alternatives from Θ− Sm. Take G = Sm

∪
Sz.

Simulation Budget Allocation: Increase the computing budget by ∆ and

compute the new budget allocation, T l+1
1 , T l+1

2 , . . . , T l+1
g using

T l+1
1(
s1
δ1

)2 =

T l+1
2(
s2
δ2

)2 = · · · = T l+1
g(
sg
δg

)2 , where δi = Ȳi − c and c =
σ̂im+1

Ȳim+σ̂im Ȳim+1

σ̂im+σ̂im+1
with

σ̂i = si/
√

T l
i , for all i = 1, 2, . . . , g.

Perform additional max{0, T l+1
i −T l

i } simulations samples for each buffer
profile i where i = 1, 2, . . . , g, let l←− l + 1. Go to Initialization.

7 Empirical Illustration

We present here numerical results obtained by applying the algorithm that
presented in Section 6 to solve the BAP . Consider a production line involving
q+ 1 workstations M0,M1, . . . ,Mq, modeled as single server queuing stations,
and q intermediate buffers B1, B2, . . . , Bq as shown in Figure 2. Assume that
there are unlimited supply of jobs in front of workstation M0 and unlimited
space after workstation Mq. Jobs receive service at each workstation with
the service times at workstation Mi are being independent and exponentially
distributed with rate µi, for all i = 1, 2, . . . , q.

Figure 2: A production line with q+1 workstations, q buffers, unlimited supply
jobs in front of workstation M0, and unlimited room for all jobs departing from
workstation Mq

We are interested in selecting a design that gives a maximum throughput.
This mean, we are trying to solve the following maximization problem:

max
x∈Θ

P (x) (5.1)
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where P (x) is the throughput of the design, given that design x is being used
and Θ is the set of all

(
Q+q−1

Q

)
possible designs (alternatives). We assume that

the production line here is a reliable line and we allow buffers to have zero
size.

In the first example, assume that there are Q = 15 slots to be allocated
over q = 5 buffers. Thus, we have 6 workstation and Θ contains 3876 different
designs (n = 3876), and assume that µ0 = µ1 = µ2 = µ3 = 5 and µ4 = µ5 = 10,
which mean that, the assumed production line in this example is unbalanced
line. Furthermore, let the size of set G is g = 50, number of initial simulation
samples t0 = 10, total computing budget T = 5000, and the increment in
simulation samples ∆ = 30. Suppose that our goal is selecting the top 2
design of the best 5% designs from the set Θ. Therefore, the correct selection
here is selecting the 2 designs belong to set {θ1, θ2, . . . , θ193}, where θi, i =
1, 2, . . . , 193 representing the top designs that have the maximum throughput
in the set Θ. The approximate analytical probability of correct selection is
P (CS) ≥ 1− (1− 0.05)50 ≥ 0.92.

Table 1 contains the results of this experiment with 10 replications for
selecting 2 designs of the best 5% designs, where

∑g
i=1 Ti is the total sample

size used in Stopping Rule step in the proposed algorithm, BEST SUBSET
means the index of the chosen 2 designs that being considered as the best
designs, P (θ∗) is the throughput for the first selected design and P (θ∗∗) is the
throughput for the second selected design.

Table 1: The implementation of the proposed algorithm given the parameters
n = 3876, g = 50,∆ = 30, k% = 5%, t0 = 10, T = 5000,m = 2

RUN
∑g

i=1 Ti BEST SUBSET BUFFER PROFILE P (θ∗) P (θ∗∗)
1 239627 {3318, 1961} {(5 2 4 3 1), (4 2 6 2 1)} 3.88354 3.86445
2 258301 {1961, 3067} {(5 5 3 1 1), (5 4 5 0 1)} 3.86445 3.79179
3 245247 {3344, 3126} {(6 3 5 1 0), (4 4 4 3 0)} 3.82349 3.80021
4 229535 {2840, 3507} {(7 0 6 1 1), (3 3 5 3 1)} 3.80984 3.90525
5 250014 {3342, 3360} {(5 1 1 7 1), (5 5 2 3 0)} 3.84846 3.88357
6 233676 {1929, 3510} {(6 6 2 1 0), (5 2 7 1 0)} 3.80924 3.84489
7 234135 {1930, 3370} {(5 4 5 1 0), (4 3 3 4 1)} 3.87346 3.80966
8 241935 {2779, 2379} {(3 5 4 3 0), (5 5 3 1 1)} 3.89886 3.84499
9 232914 {1966, 3290} {(7 0 0 6 2), (2 6 3 4 0)} 3.79300 3.79017
10 240693 {3319, 3324} {(6 3 4 1 1), (5 6 4 0 0)} 3.88406 3.85962

Clearly, in the first replication in Table 1, the proposed algorithm selected
the designs numbered 3318 and 1961 with buffer profile (5 2 4 3 1) and (4 2
6 2 1) and the estimated throughput are 3.88354 and 3.86445, respectively. It
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means that we get the maximum throughput in this replication when the slots
are allocated on the buffers on two ways: in the first way; the slots in B1 is 5,
the slots in B2 is 2, the slots in B3 is 4, the slots in B4 is 3 and the slots in B5

is 1, or in the second way; the slots in B1 is 4, the slots in B2 is 2, the slots in
B3 is 6, the slots in B4 is 2 and the slots in B5 is 1. For the sake of comparison,
we have simulated all the 3876 designs for a long simulation run and found
that the best design is 2816 with buffer profile (4 5 4 2 0) and the throughput
is 3.94214. Clearly, the throughput for the 2 selected design is very closed to
the throughput for the best design. Since, the 2 selected design in the first
replication is belong to the best 5% designs from the set of 3876 designs, so
we can call this set as a correct selection subset. In the other word, the top 2
designs that are selected in this replication are 3318 and 1961.

In the second example, consider slots Q = 20, to be allocated over q = 5
buffers. The set of all alternatives Θ contains 10626 different designs. We
applied the proposed algorithm with the following parameters; n = 10626,
g = 100, t0 = 10, T = 10000 and ∆ = 50. The goal is selecting the top 4
designs from the best 3% designs from set Θ. Therefore, the correct selection
here is selecting the 4 designs that belong to the set {θ1, θ2, . . . , θ318}, where
θi, i = 1, 2, . . . , 318 represents the top designs in the set Θ. The approximate
analytical probability of correct selection is P (CS) ≥ 1− (1− 0.03)100 ≥ 0.95.
The results of the first 10 replications of this experiment are recorded in Table
2 for selecting 4 designs of the best 3% designs, the P (θ) here is the average of
throughput for the 4 selected designs. We have simulated all the 10626 designs
for a long simulation runs and found that the best design is numbered 7394
with a buffer profile (5 6 6 2 1) with throughput 4.10753.

Table 2: The implementation of the proposed algorithm given the parameters
n = 10626, g = 100,∆ = 50, k% = 3%, t0 = 10, T = 10000,m = 4∑g

i=1 Ti BEST SUBSET BUFFER PROFILE P (θ)
2211127 {6369,6561,7335,7327} {(8 4 5 3 0),(7 9 2 2 0),(5 6 4 5 0),(7 1 6 3 3)} 4.03099
2300132 {6451,5565,5606,6570} {(3 4 6 5 2),(4 5 2 5 4),(5 4 5 0 6),(4 7 3 3 3)} 4.00604
2198462 {5610,5655,6618,7336} {(5 3 6 4 2),(4 5 2 9 0),(6 0 5 4 5),(3 4 3 3 7)} 4.03030
2200043 {6569,7338,6575,5744} {(3 9 5 1 2),(3 3 4 2 8),(8 4 1 5 2),(9 0 7 3 1)} 4.01354
2188779 {6520,6690,5613,8019} {(4 4 5 3 4),(7 5 2 2 4),(5 3 4 5 3),(5 3 6 3 3)} 4.05654
2213453 {9587,8109,7327,5411} {(4 5 1 6 4),(4 4 4 2 6),(5 5 5 0 5),(3 3 3 3 8)} 4.04306
2200765 {8749,7474,8487,9835} {(4 5 6 2 3),(5 7 4 2 2),(7 6 5 0 2),(8 8 4 0 0)} 4.04633
2159997 {7474,6448,7431,5297} {(2 5 4 4 5),(9 4 4 2 1),(3 5 6 2 4),(9 7 0 2 2)} 3.99662
2223101 {7334,6517,7440,9589} {(3 10 5 0 2),(3 8 4 2 3),(8 4 5 1 2),(9 8 0 3 0)} 4.10604
2211453 {8744,8069,8158,8161} {(5 4 6 3 2),(4 9 2 5 0),(6 4 5 0 5),(3 7 3 3 4)} 3.97463
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In the first replication in Table 2, the proposed algorithm selected the de-
signs numbered 6369, 6561, 7335 and 7327 with buffer profile (8 4 5 3 0),(7
9 2 2 0),(5 6 4 5 0) and (7 1 6 3 3), respectively, and the estimated average
of throughput 4.03099. Actually, the values of the throughput for the designs
6369, 6561, 7335 and 7327 are 4.00306, 4.05654, 4.0371 and 4.02729, respec-
tively. Clearly in this replication we get the maximum throughput when the
slots are allocated on the buffers on 4 ways: in the first way; the slots in B1

is 8, the slots in B2 is 4, the slots in B3 is 5, the slots in B4 is 3 and the slots
in B5 is 0, or in the second way; the slots in B1 is 7, the slots in B2 is 9, the
slots in B3 is 2, the slots in B4 is 2 and the slots in B5 is 0, or in the third
way; the slots in B1 is 5, the slots in B2 is 6, the slots in B3 is 4, the slots
in B4 is 5 and the slots in B5 is 0, or in the fourth way; the slots in B1 is 7,
the slots in B2 is 1, the slots in B3 is 6, the slots in B4 is 3 and the slots in
B5 is 3. Clearly, the throughput for the 4 selected design is very closed to the
throughput for the best design, which is 7394 with a buffer profile (5 6 6 2 1)
with throughput 4.10753. Since, the 4 selected design in the first replication
is belong to the best 3% designs from the set of 10626 designs, so we can call
this set as a correct selection subset. In the other word, the top 4 designs that
are selected in this replication are 6369, 6561, 7335 and 7327.

These two experiments are then repeated for 100 replications, and the
results are summarized in Table 3, with

∑g
i=1 Ti represents the average number

of the total sample size in the Stopping Rule in the proposed algorithm.
Clearly, the proposed algorithm that presented in Section 6 selected the best
buffer profile with high P (CS) and is closed to the analytical values. In the
same time, the number of simulation samples that are being used are relatively
small.

Table 3: The performance of the proposed algorithm over 100 replications

Number of
workstations

Number of
Buffers Slots n

∑g
i=1 Ti

Approach
P (CS)

Analytical
P (CS)

6 5 15 3876 250232 0.88 0.92
6 5 20 10626 2130593 0.80 0.95

8 Open Problem

The difficulty in buffer allocation problem comes from a situation that it has
a huge number of feasible allocations with respect to the total number of
buffer spaces and the number of stations in production line. The proposed
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selection approach is useful and reliable to find the optimal allocation of buffers
that maximizes the mean production rate in a short, unbalanced and reliable
production lines. Future research should be conducted to solve another type
of production lines with a different objective function such as to minimize
the average work in process by using the proposed approach, and to conduct
a comparison between the proposed approach and other approaches that are
being used to solve problem.

9 Conclusion

We have shown how to solved the buffer allocation problem for a finite produc-
tion line, by using a new selection approach. In this approach we start with
ordinal optimization approach to select a relative small subset with a proba-
bility of overlapping with the subset that contains the actual best k% designs
is high. Next, we allocate the available computing budget using the OCBA-m
method to identify all top m designs from the subset that selected by ordinal
optimization in the first stage. The advantage of our selection approach is
that, it can be used to select the best buffer profile from a large number of
alternatives, this is because it use the ordinal optimization approach in order
to decrease the number of the competing alternatives, to be appropriate for
the optimal computing budget allocation method to selecting the best sub-
set of buffer profiles. Numerical illustrations demonstrate that the proposed
algorithm finds the top m buffer profiles in a short, unbalanced and reliable
production lines. Moreover, the algorithm is able to allocate buffer profiles
with maximum throughput using a relatively small simulation replications, at
the same time with high probability of correct selection.
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