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Abstract

The purpose of this paper is to introduce sufficient conditions
for strong differential subordination and strong differential super-
ordination involving the extended operator DR)"" and also to obtain
a sandwich-type result.
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1 Introduction

Denote by U the unit disc of the complex plane U = {z € C : |2| < 1}
U={z€C: |z| <1} the closed unit disc of the complex plane and H(U x U

the class of analytic functions in U x U.
Let

e ={feHUxU), f(z.{) =24 a1 ()" +..., 2€U, (€U},

)

with A}, = A, where a; (¢) are holomorphic functions in U for k > 2, and
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H¥la,n, (] = {f € HUXU), f(z,¢) = ata, (¢) 2"+ans1 (¢) 2" +..., 2 €,
(€U}, fora e Candn €N, a(¢) are holomorphic functions in U for k > n.

Generalizing the notion of differential subordinations, J.A. Antonino and
S. Romaguera have introduced in [16] the notion of strong differential subor-
dinations, which was developed by G.I. Oros and Gh. Oros in [17].

Definition 1.1. [17] Let f (2,¢), H (z,¢) analytic in U x U. The function
f(z,€) is said to be strongly subordinate to H (z,() if there exists a function w
analytic in U, with w (0) =0 and |w (2)| < 1 such that f(z,() = H (w(2),()
for all ¢ € U. In such a case we write f(z,{) << H (2,(), 2z €U, (€ U.

Remark 1.2. [17] (i) Since f (2, () is analytic in U x U, for all ¢ € U, and
univalent in U, for all ¢ € U, Definition 1.1 is equivalent to f (0,¢) = H (0,(),
forall¢ €U, and f(UxU) CH(UxU).

(i) If H (z,¢) = H(2) and f(2,{) = f(z), the strong subordination be-
comes the usual notion of subordination.

As a dual notion of strong differential subordination G.I. Oros has intro-
duced and developed the notion of strong differential superordinations in [18].

Definition 1.3. [18] Let f (2,¢), H (z,¢) analytic in U x U. The function
f(z,¢) is said to be strongly superordinate to H (z,() if there exists a func-
tion w analytic in U, with w(0) = 0 and |w (2)| < 1, such that H (z,() =
fw(2),¢), for all ¢ € U. In such a case we write H (2,() <= f(z,(),
zeU CeU.

Remark 1.4. [18] (i) Since f (z,¢) is analytic in U x U, for all ¢ € U, and
univalent in U, for all ¢ € U, Definition 1.3 is equivalent to H (0,¢) = f(0,¢),
for all ¢ € U, cde(UxU) Cf(UxU).

(i) If H(z,() = H(z) and f(z,() = f(2), the strong superordination
becomes the usual notion of superordination.

Definition 1.5. We denote by Q)* the set of functions that are analytic and
injective on U x U\E (f, (), where E (f,() ={y € OU : limf (z,() = oo}, and
z—y

are such that f' (y,¢) # 0 for y € OU x U\E (f,(). The subclass of Q* for
which f(0,¢) = a is denoted by Q* (a).

For two functions f(2, () = 24+>222, a; (¢) 2/ and g(2, () = 24372, b; (¢) &/
analytic in U x U, the Hadamard product (or convolution) of f(z,¢) and
g (2,C), written as (f * g) (z,() is defined by

F( Qg0 =(fx9) () =2+ a; ()b (¢) 2.

Jj=2
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Definition 1.6. (/1]) For f € A;, A > 0 and m € N, the extended general-
ized Salagean operator DY' is defined by DY' : A7 — A7,

Df(2.0) = f(20)
Dif (ZaC) = (1 - A)f(ZaC) +)‘Zf;(27C) = Dy\f (Z7<)

DY f(2,0) = (1=XN)DYf(2,0) + (DY f (2,0). = Da(DY'f (2,0)),
forzeU, CeU.

Remark 1.7. If f € A¢ and f(2,() = 2+ 322, a; (C) #/, then
DYf(2,0) =24+ 21+ —1)AN"a; (() 2, forz €U, (€ U.

Definition 1.8. ([2]) For f € A%, m € N, the extended Ruscheweyh deriva-
tive R™ is defined by R™ : Af — A,

Rf(2.¢) = f(z0)
R'f(20) = 2fi(2,)

(m+1)R™f(2,0) = z2(R"f(2,Q)). +mR"f(z,(), 2€U (€U

Remark 1.9. If f € Af, f(2,() = 2+ 3.72,a;(() 27, then R™f (2,() =
Z4 > mﬂla](C)zj,zeU,CGU.

J=2 ml(j-1)!
Extending the results from [10] to the class A7 we obtain:

Definition 1.10. (/11]) Let A > 0 and n,m € N. Denote by DR"™ : Af —
AZ the operator gwen by the Hadamard product of the extended generalized
Salagean operator DY' and the extended Ruscheweyh operator R",

DR f (2,¢) = (DX * R") f (2,(),
for any z € U, ¢ € U, and each nonnegative integers m, n.

Remark 1.11. If f € A7 and f(2,¢) = 2+ 322, a; (C) 2, then

DR F(2.0) = 24 S5 (14 (i~ DA™ S ()9, for = € U, C €
U.

Remark 1.12. For m = n we obtain the operator DRY' studied in [12],

[13], [14], [15], [3], [4], [5].

For A =1, m = n, we obtain the Hadamard product SR™ [6] of the Salagean
operator S™ and Ruscheweyh derivative R™, which was studied in [7], [8], [9].

Using simple computation one obtains the next result.
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Proposition 1.13. For m,n € N and A > 0 we have For m,n € N and
A > 0 we have

DRY™"f(2,() = (1= A) DRY"f (2,() + Az (DRY" f (2,¢)). (1)
and
2(DRY"f (2,)). = (n+ 1) DRY"™ ' f (2,{) = nDRY"f (2,().  (2)

The main object of the present paper is to find sufficient condition for
certain normalized analytic functions to satisfy

DRIV f(2,0)

O DR Or

<= G2 (Z7C) )

where ¢; and ¢, are given convex and univalent functions in U x U such that
q1(2,() #0and ¢ (2,¢) #0, forall z € U, £ € U.

In order to prove our strong differential subordination and strong differen-
tial superordination results, we make use of the following known results.

Lemma 1.14. Let the function q be univalent in U xU and 0 and ¢ be ana-
lytic in a domain D containing q (U X U) with ¢ (w) # 0 when w € q (U X U).

iﬁéN%C)IZQ(%O¢QN%CDamHM%C)=9QM%CD+Q(&O-Swm%e
that

1. Q is starlike univalent in U x U and
2. Re(z ZO>>0forz€U Cel.

If p is analytic with p(0,¢) = ¢ (0,¢), p (U xU) € D and

0(p(z Q) +2p. (2,0 ¢ (p(2,0) << 0(q(20) + 2¢. (2,) ¢ (¢ (2, C)) ,
then p(z,() << q(z,¢) and q is the best dominant.

Lemma 1.15. Let the function q be conver unwalent in U X U and v and
¢ be analytic in a domain D containing q (U X U). Suppose that

1. Re(Z(q(;f >>0forz€UC€Ucmd

2. Y (z,¢) = 2¢, (2,¢) ¢ (¢ (2,()) is starlike univalent in U x U.
Ifp(2,¢) € H[q(0,¢),L,{]NQ*, with p(UxTU) € D and v(p(z()) +
2p. (2) ¢ (p(2,0)) is univalent in U x U and

v(q () + 24, (2,0) ¢ (q(2,0) == v(p(2,0) + 20, (2,0) ¢ (p(2,()),

then q(z,() << p(z,¢) and q is the best subordinant.
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2 Main results

We begin with the following

DRI 1 (2,0) 7 7 *

e H(UxU),zeU &EeU, fe A
(DR 1(2,0)) ( ) ¢ / 5_
m,n € N, A > 0 and let the function q(z,&) be convex and univalent in U x U

such that q (0,€) = 1. Assume that

O‘—i_ﬁ ZQ;/2<Z7C>
Re( 50

for a,5,€ C, B #0 and

Theorem 2.1. Let

>>O, 2eU, CeU, (3)

An + 1)> DRV f(2,€)

2 —
w;n’n(Oé?ﬂ;Z?C) = (Oé_'_/@ )\ (DRm,Nf(z C))2
A )

DRI F (2,€)

(DRY™f (2,0))*
2DRY™'f(2,0) 282 (DRYT" [ (2,0)
(DRY"f(2.0)* A (DRY"f (2,))°
If q satisfies the following strong differential subordination

AB(n+ 1)(n + 2)

(4)

+5(n+1)[1 — Xn+2)]

V" (@, By 2,C) =< aq (2, C) + Bzq; (2,C), (5)
for a, 5 € C,5 # 0 then

DRIV F (2,0)
(DRY" f (2,0))*

and q 1s the best dominant.

<=<q(z,¢), zeU CeU, (6)

m—+1,n
Proof Let the function p be defined by p(z,() = %, z e U,
A 25
CelU,z#0, fe AZ. The function p is analytic in U X U and p(0,¢) = 1.

Differentiating this function, with respect to z,we get
1 1
/
2p, (2,Q) = =mmar v
DRY™f (2,0) A

DRY™"f(2,0)  DRY™'f(20) (DRT“’"J” (2,0 )
DRY"f(2.¢) ' DRY"f(z.0) DRY™f (2,¢)
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By using the identity (1) and (2), we obtain

/ _ 4 .
P00 " DTG
2 —AMn+1) DRI f (2,¢) DRY™f (2,¢)
) DRy f (2,¢) A+ D +2) DR f (2,C)

2

m,n+1 m+1n
Ho D= A 2] Ao T2 (szﬁi”’"ff(iz’c?) )

DRI™f(:.0)

2= A(n + 1) DRy f (2,€) DRI (2,0)
+Axn+1)(n+2

N DR Goy TNeE pp C oy

DRI (2,¢) 22 (DRI (2,0)]

n —An DY '
A T o T oRr oy )

By setting
0 (w) :=aw and ¢ (w):=p, a,e€C, B#0,

it can be easily verified that 6 is analytic in C, ¢ is analytic in C\{0} and that

¢ (w) # 0, w € C\{0}.

Also, by letting Q (z,¢) = 2¢. (2,¢) ¢ (¢ (2,¢)) = Bzq. (z,¢) we find that
Q (z,() is starlike univalent in U x U.

Let h(z,¢) =0(q(2,¢) + Q(2,¢) = aq(z,¢) + Bz (2, Q).

If we derive the function (), with respect to z, perform calculations, we

zh(2.0) | _ atf zq;’z(z,4)>
have Re( Q=0) ) - Re( 5 T 4deo ) >0

By using (7), we obtain ap (z,¢) + 82p, (2,{) = «

DRIV f(2,0)
(DRI f(2,0))°

2-A(n+1) DR (0 ) (0 zDRY™ 2 (2.0)
+1)(n+2
B { A (DRI ( ) )(DRQ"‘"f(z,C))Q
SDRTMf(2¢) o 2(DRITIf(2,0))°

1=\ 2 -3 -
(n+1)[1—An+2)] (DRY™1(z0))" A (DR 1(0)° ]

m+1,n m,n+2
(Oé _'_/827)\(;74+1)> zDRA f(zfc)_i_ )\/B(n + 1)(”"‘ 2>ZDR)\ f(Z,C)+

(DR (.0)) (DR £(.0))°
DRI (s DRy (20))
4 1) [1 = A(n +2)] 2REGEG  2(PFS .
/8( ) [ ( )] (DRT’nf(Z,C))Q p (DRT’nf(%C))S

By using (5), we have
ap (z,¢) + Bapl (2,¢) << aq(z,¢) + B2¢; (2,C).-
Therefore, the conditions of Lemma 1.14 are met, so we have
p<Z7C)_<_<q<Z7C>7Z€U7C€U7 i'e'
DRy (2,¢)

(DR (2 C))2 <q(z,0), z€U CeU,
A ’
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and ¢ is the best dominant.

Corollary 2.2. Let q(z,() = gigi, —1<B<A<I1,mneN, \>0,

z € U. Assume that (3) holds. If f € Af and

C+Az | L(A-B)C

V3" (a, B2, ) << T B2 CtB

fora,€C, f#0, -1 < B < A<1, where Y\"" is defined in (4), then

DRV f(2,€) . ¢+ Az
(DRY™"f (2,0))° (+ Bz

and % 18 the best dominant.

Proof For ¢(z,() = gigz, —1 < B < A <1, in Theorem 2.1 we get the
corollary:.

Corollary 2.3. Let q(z,() = (%)7, m,n € N, A\>0,2eU (eU.

Assume that (3) holds. If f € A7 and

(g, C+2\", o 29¢x (CHz\TT
A (O-/,B,Z,C) _<_<Q<CTZ) +B(C—Z)2 (Q—Z) ;

fora,f€C,0<vy<1,8#0, where " is defined in (4), then

m+1,n
ZDRim f(z,CQ) oy (C—l—z)V’
(DRY""f (2,0)) (—=

Y
and (gfz) 1s the best dominant.

Proof Corollary follows by using Theorem 2.1 for ¢ (z,() = (HZ)V, 0<
v< L

Theorem 2.4. Let q be convex and univalent in U xU such that ¢ (0,¢) = 1,
m,n € N, A > 0. Assume that

Re(%q;(z,())>0, fora,peC, B#£0, ze U, CeU. (8)
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m—+1,n
If f € AZ, DRy T IEC) o gy [¢(0,¢),1,{INQ* and Y\"" (o, B; z,C) is univa-

(DR 1(2,0))
lent in U x U, where Y\"" (o, 5; 2, () is as defined in (4), then
OéQ(Z,C)‘f’BZ(](Z (Z,C) == w;\n’n (Oé,ﬁ;Z,C), Z€U7 CEU, (9)
implies
D m+1,n .
g(50) << PETEY Ly e, (10)

(DRY™f (2,0))*

and q is the best subordinant.

Proof Let the function p be defined by p(z,() := w,
(DRY"™f(2.0))
z#O,CGU,fEAZ.
By setting v (w) := aw and ¢ (w) := 3, where o, § € C,  # 0, it can be
easily verified that v is analytic in C, ¢ is analytic in C\{0} and that ¢ (w) # 0,
w € C\{0}.

Since 7;((:&5))) = 34 (2,¢), it follows that Re (ﬁ((;((;é)))) = Re (%q; (z,¢ )) >
0, for o, 5 € C, g # 0.
(9)

Now, by using

zeU,

we obtain
From Lemma 1.15, we have

DRy f (2,¢)
(DR f (2,0))*

q(2,¢) =< p(2() = zeU, Cel,

and ¢ is the best subordinant.

Corollary 2.5. Let q(z,¢) = &52, -1 < B < A<1,mneN A>0

Assume that (8) holds. If f € A, % € H*[q(0,0),1,{]NQ* and
A 25

Az (A-B)¢a
(+Bz " (C+ Bz)

== w;%n (aaﬁ; <, C) )

fora,BeC, f#0, -1 < B < A<1, where Y\"" is defined in (4), then

(+ Az oy ZDRTH’”f (2,C)
¢+ Bz (DRY™f (2,¢))

and % 1s the best subordinant.
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Proof For ¢(z,() = ¢tz 1 < B < A < 1, in Theorem 2.4 we get the
corollary.

Corollary 2.6. Let q(z, C) = <%)v’ m,n € N, A > 0. Assume that (8)

« 2ZDRYTVTf(z, . .
holds. ]ffE.AC, W eH [ (O,C),l,C]ﬂQ and
y—1

fora,f€C,0<vy <1, #0, where " is defined in (4), then

<< + z)V - DRIV f(2,€)
(-2 (DRY™ f (2,¢))”

and (CJF;) 1s the best subordinant .

Proof Corollary follows by using Theorem 2.4 for ¢ (z,() = (gz )7, 0<
v <1

Combining Theorem 2.1 and Theorem 2.4, we state the following sandwich
theorem.

Theorem 2.7. Let ¢ and ¢ be analytic and univalent in U x U such that

a1 (Zu C) 7é 0 and q2 (Z’C) 7& 07 fOT’ all z € Uv C S U7 with Z(q1>lz (Z7C) and
2 (q2)’, (2,C) being starlike umvalem‘ Suppose that q, satisfies (3) and gy satis-

* ZDR b (:6) * * m,n .
fies (8). [ffGA;mé}l [¢(0,¢),1,¢]NQ* and ¥ (av, B; 2,(C)

is as defined in (4) univalent in U x U, then
aqi (27 C) + 62 (QI); (Z, C) <= ¢§m (0575; 2, C) << Qqz (Zu C) + BZ (QZ); (27 C) )
for a, B € C, B # 0, implies

DR (2,0
(DRY™f (2,))°

and g1 and qo are respectively the best subordinant and the best dominant.

0 (Za C) ~

‘<QZ(27§)7 5E(Cf57é07

For ¢, (2,¢) = gigii, ¢ (2,¢) = gig” where —1 < By < By < A; < Ay <

1, we have the following corollary.
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Corollary 2.8. Let m,n € N, A\ > 0. Assume that (3) and (8) hold for

_ (tAiz _ (HAsz : « ZDRYTNL(0)
¢ (2,Q) = Ga and q2 (2, ) = &5, respectively. If f € Az, (DR 120))’

H*[q(0,¢),1,{]NQ* and

C—I—Alz (Al_Bl) <Z
C+Blz (C+BlZ)2

C‘I‘AQZ (A2 —Bg) gZ
¢+ Baz (C+ B22)2 ’

<= P (v, B3 2,0) =< @

fora,p€C, 3#0, =1 < By < By <A <Ay <1, where ¢\"" is defined in
(4), then

C(+ Az zDR;nH’"f (z,0) (+ Az

(+ Bz (DRY™f (2,))° (+ Boz’

A1z C+Asz
(+B1z and (+Baz

hence
tively.

are the best subordinant and the best dominant, respec-

3 Open Problem

An open problem is to find sufficient conditions for certain normalized analytic
functions to satisfy

DRy f (2,0)
(DR} f (2,0))°

qQ1 (Z,C) == << Q2 (27C)7

where ¢; and ¢, are given convex and univalent functions in U X U such that
¢1(z,¢) #0and ¢ (2,() #0, forall z € U, ( € U.
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