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Abstract

Let H be a complex Hilbert space and B(H) the algebra of
all bounded linear operators on H. In this paper, we study the
class of pairs of operators A,B ∈ B(H) that have the follow-
ing property, ATB = T implies B∗TA∗ = T for all T ∈ C1(H)
(trace class operators). The main result is the equivalence be-
tween this character and the fact that the ultra-weak closure
of the range of the elementary operator ∆A,B defined on B(H)
by ∆A,B(X) = AXB −X is equivalent to the generalized quasi-
adjoint operators. Some new C∗-algebras generated by a pair
of operators A,B ∈ B(H) are also presented.
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1 Introduction

For A,B ∈ B(H),∆A,B denotes the elementary operator on B(H) defined by
∆A,B(X) = AXB − X (for X ∈ B(H)). When A = B, (∆A,A = ∆A). In [1]

Joel Anderson et.al showed that ifA isD-symmetric,(i.e, ran(δA) = ran(δA∗)),
where ran(δA) denotes the norm closure of the range of the inner derivation
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δA defined by δA = AX − XA (X ∈ B(H)), then for T ∈ C1(H), AT = TA
implies A∗T = TA∗.

The ideal C1(H) admits a trace class function tr(T ), given by tr(T ) =
Σn(Ten, rn) for any complete orthonormal system en in H. As a Banach space
C1(H) can be identified with the dual of K of compact operators by means
of the linear isometry T → fT , where fT = tr(XT ). Moreover, B(H) is the
dual of C1(H). The ultra-weakly continuous linear functionals on B(H) are
those of the form fT for T ∈ C1(H) and the weakly continuous ones are those
of the form fT with T of finite rank. In this paper we present a result similar
to the result given by Anderson et.al in [1] for elementary operator ∆A,B.We
also initiate the study of generalized quasi-adjoint operators.

2 Preliminaries

Anderson et.al In [1] proved the following theorem

Theorem 2.1 [1] If A ∈ B(H), then the following statements are equiva-
lent

(i) A is D-symmetric
(ii) (a) [A], the corresponding element of the Calkin algebra, is D-symmetric

and
(b) T ∈ C1(H).AT = TA implies A∗T = TA∗.

In the following definitions we will introduce a new pairs of operators in B(H)×
B(H)

Definition 2.2 For A,B ∈ B(H), the pair (A,B) is called generalized
quasi-adjoint if ran(∆A,B) = ran(∆B∗,A∗) (norm closure of the ranges). The
set of all such pairs is denoted GS(H).

Definition 2.3 For A,B ∈ B(H), the pair (A,B) is called generalized P -
symmetric if T ∈ C1(H), BTA = T implies A∗TB∗ = T . The set of all such
pairs is denoted GF0(H).

Remark 2.4 Recall that the pair (A,B) are generalized quasi-adjoint if
and only if ran(∆A,B) satisfies the following property:

Z ∈ ran(∆A,B) implies Z∗ ∈ ran(∆A,B). This is equivalent toAnn(ran(∆A,B))
is self-adjoint, i.e,

if f ∈ Ann(ran(∆A,B)), then f∗ ∈ Ann(ran(∆A,B)), where f∗(X) = f(X∗)
for all X ∈ B(H).

Definition 2.5 A C∗-algebra is a Banach algebra A over the field of com-
plex numbers, together with the map ∗ : A → A which is called an involution.
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The image of an element x ∈ A, under this involution, written x∗, satisfies the
following conditions:

1. (x+ y)∗ = x∗ + y∗, ∀x, y ∈ A.
2. (λx)∗ = λx∗, ∀x ∈ A.
3. (x∗)∗ = x, ∀x ∈ A.
4. The C∗-identity holds for all x ∈ A, that is,

‖x∗x‖ = |xx∗‖ = ‖x‖2

The Banach algebra B(H) of all bounded operators defined on a complex
Hilbert space H is a C∗-algebra of operators.

3 Main results

In this section we will present some properties of generalized quasi-adjoint
operators and we will prove similar result to Theorem 2.1 by taking ∆A,B

instead of δA. In , [14] J.P Williams showed that if, A ∈ B(H), then

Ann(ran(δA)) ' Ann(ran(δA)) ∩ Ann(K(H))⊕ ker(δA) ∩ C1,

where ran(δA), K(H), ker(δA) and C1, denote respectively, the range of δA, the
ideal of compact operators, the kernel of δA and the trace class operators. We
start by proving a similar decomposition for ∆A,B. Let B be a Banach space
and let S be a subspace of B. Denote by B′ the set of of all linear functionals,
and the set B∗ = {f ∈ B′ : f is bounded (norm-continuous)},

Ann(S) = {f ∈ B∗ : f(s) = 0foralls ∈ S}

Theorem 3.1 [6] Let E,F be Banach spaces and let B(E,F ) be the set of
all bounded linear operators A : E → F . If S ∈ B(E,F ) a bounded operator,
then

Ann(ran(S∗∗)) = Ann(ran(S∗∗)) ∩ Ann(F )⊕ ker(S∗)

Let A,B ∈ B(H). The following theorem gives a similar result of S.Mecheri
[6] concerning ∆A,B.

Theorem 3.2 Let A,B ∈ B(H), then

Ann(ran(∆A,B)) = Ann(ran(∆A,B)) ∩ Ann(K(H))⊕ ker(∆B,A) ∩ C1.

Proof. It suffices to take in Theorem (3.1) E = F = K(H) and

S = ∆A,B : K(H)→ K(H),

where S∗ = ∆B,A : C1 → C1 using trace duality.
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Remark 3.3 The concept of ”generalized quasi-adjoint” for elements of
the Calkin algebra, can be defined as in Definition 2.1. Note that Remark 2.1
remains true in this case.

Theorem 3.4 Let A,B ∈ B(H). Then the following assertion are equiva-
lent:

1. The pair (A,B) is generalized quasi-adjoint.
2. (i) The pair ([A], [B]), the corresponding pair of elements in the Calkin

Algebra B(H)/K(H) is generalized quasi-adjoint.
(ii) BTA = T implies A∗TB∗ = T for all T ∈ C1(H).

3. (i) ran(∆A,B)
w∗

= ran(∆B∗,A∗)
w∗

(ii) The pair ([A], [B]) is generalized quasi-adjoint.

Proof. The proof is the same as that of Theorem(3.2) in [6].

Remark 3.5 It is known from [13] that ifA,B are contrations, thenATB =
T, T ∈ C1 implies A∗TB∗ − T = 0. Thus the pair (A,B) is generalized quasi-
adjoint if and only if the pair ([A], [B]) is generalized quasi-adjoint.

In the following theorem we will present an example of quasi-adjoint operator.

Theorem 3.6 Let A ∈ B(H) be isometric. Then A is quasi-adjoint.

Proof. Let A ∈ B(H) be isometric and consider the operator P defined by
P = I − V V ∗. Then ∆A∗(X) = ∆A(−A∗XA) − PX for all X ∈ B(H). To
prove that A is quasi-adjoint, it suffices to show that PB(H) ⊆ R(∆A). Define
the sequence of operators (Sn)m≥1 by Sn = Σn−1

k=0
k−n
n
AkPXV k. It follows that

∆A(Sn)−PX = − 1
n
Σn

k=1A
kPXAk. It easy to see that: (AkPx,AjPy) = 0 for

all x, y ∈ H and for all positive integers k, j(k 6= j). By this we get,

‖AkPXAkx‖2 =
n∑

i=1

‖AkPXAkx‖2 ≤ n‖PX‖2‖x‖2

for all x ∈ H. It follows that

‖∆A(Sn)− PX‖ ≤ i√
n
‖PX‖

for all X ∈ B(H). This implies that PX ∈ R(∆A). Thus A is quasi-adjoint.

Theorem 3.7 Let A,B ∈ B(H). Then (A,B) ∈ GF0 ⇔ ran(∆A,B)
w∗

is
self-adjoint.



ELEMENTARY OPERATORS AND NEW C∗-ALGEBRAS 37

Proof. The w∗-topology is generated by all fT with T ∈ C1 and so ran(∆A,B)
w∗

is the intersection

∩{kerfT : fT (
n∑

i=1

AiXBi −X) = 0∀X ∈ B(H)}.

Since

fT (
n∑

i=1

AiXBi −X) = tr(T (
n∑

i=1

AiXBi −X)) = tr((
n∑

i=1

AiTBi − T )X)

, this intersection is
ker∆B.A ∩ C1(H).

If (A,B) ∈ GFo, Then

ker∆B,A ∩ C1(H) = ker∆A∗,B∗ ∩ C1(H)

and so the weak ∗-closure of

(ran(∆B∗,A∗)) = (ran(∆A,B))∗.

Conversely, if ran(∆A,B)
w∗

is self-adjoint. The set of T ∈ C1(H) for which
fT vanishes on ran(∆A,B) must be self-adjoint (Y ∈ ran(∆A,B) implies 0 =

fT (Y ∗) = tr(TY ∗) = tr(T ∗Y )). Hence

ker∆B,A ∩ C1(H) = ker∆A∗,B∗ ∩ C1(H),

and (A,B) ∈ GF0. Now consider the following sets:

T0(A,B) = {(C,D) ∈ B(H)×B(H) : CB(H)D +B(H} ⊂ ran(∆A,B)
w∗

.

I0(A,B) = {(C,D) ∈ B(H)×B(H) : Cran(∆A,B)D+ran(∆A,B)} ⊂ ran(∆A,B)
w∗

.

B0(A,B) = {(C,D) ∈ B(H)× B(H) : ran(∆C,D)} ⊂ ran(∆A,B)
w∗

.

Theorem 3.8 Let A,B ∈ B(H). If the pair (A,B) is generalized quasi-
adjoint, then we have

(i) T0(A,B), I0(A,B) and B0(A,B) are C∗-algebras w∗-closed in B(H)×
B(H).

(ii) T0(A,B) is a bilateral ideal of I0(A,B).

(ii) ran(∆C,D) ⊂ ran(∆A,B)
w∗

for all C,D ∈ C∗(A,B), the C∗-algebra
generated by the pair (A,B) ∈ GF0(H).
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Proof. (i) Let (C,D) ∈ T0(A,B). This implies

CL(H)D − L(H) ∈ ran(∆A,B)
w∗
,

that is,
CXD − Y ∈ ran(∆A,B)

w∗
∀X, Y ∈ B(H

. So if we let X = 0 it follows that: Y ∈ ran(∆A,B)
w∗
, ∀Y ∈ B(H). As a

consequence C∗ and D∗ are in ran(∆A,B)
w∗

.
Moreover, since (A,B) ∈ GF0, (D

∗, C∗) ∈ T0, we conclude that:

C∗(D∗XC∗)D∗ −D∗XC∗ ∈ ran(∆A,B)
w∗

(DY C − Y ) ∈ ran(∆A,B)
w∗
.

Hence

(D,C) ∈ T0(A,B),

therefore (C∗, D∗) = (D,C)∗ ∈ T0(A,B).
Similarly, we can show that I0 is also a C∗-algebra. Just note that if

(C,D) ∈ I0, then

(CXD − Y ) ∈ ran(∆A,B)
w∗
, ∀X, Y ∈ ran(∆C,D) ⊆ B(H),

i.e., (C,D) ∈ T0. This gives (C∗, D∗) ∈ T0 ⊆ I0.
Finally, B0 is a C∗-algebra, because ran(∆C,D) ⊆ ran(∆A,B), but ran(∆C,D) ⊆

I0. Thus (C∗, D∗) ∈ B0. Now, we want to show that the upper sets are w∗-
closed. Recall that

(A,B) ∈ GF0(H)⇔ Ann(ran(∆A,B)) ∩ L(H)′w∗

is self-adjoint if and only if Ann(ran(∆A,B))∩L(H)′w
∗ ∼= ker(∆A,B)∩C1(H),

where L(H)′w
∗

is the set of all ultra-weakly continuous linear functionals in
B(H).

LetC,D ∈ ker(δA,B)∩C1(H)⇒ C = BCA, D = BDA. Thus, there exists
a linear functional fC,D given by fC,D(X) = tr(CXD), X ∈ B(H). Consider

fC,D(∆A,B) = tr(C(AXB)D − CXD)
= tr((CA)X(BD))− tr(CXD) = tr((AC))X(BD))− tr(DXC)
= tr(BDA(CX)) − tr(DXC) = tr(DCX − DXC) = 0, hence fC,D ∈

Ann(ran(∆A,B). Consequently T0(A,B) is w∗-closed in B(H)×B(H).
(ii) Clearly T0 is a sub-algebra of I0.
Let (C,D) ∈ I0(A,B) and

(E,F ) ∈ T0(A,B) → C, D, E and F ∈ ran(∆A,B)
w∗

, then for all X ∈
ran(∆A,B) we conclude that CEX and XDF are in ran(∆A,B)

w∗
. Hence



ELEMENTARY OPERATORS AND NEW C∗-ALGEBRAS 39

(CEXDF − X) ∈ ran(∆A,B)
w∗

. This shows that T0(A,B) is a right ideal.
Since T0(A,B) is a C∗-algebra, it follows that T0(A,B) is a bilateral ideal of
I0(A,B).

(iii)Note that (A,B) ∈ B0(H), Since ran(∆A,B) ⊆ ran(∆A,B)
w∗

. Thus
B0(H) is a C∗-algebra containing the pair (A,B) and obviously (I, I), hence
it contains C∗(A,B).

Theorem 3.9 Let A,B ∈ B(H). If (A,B) is generalized quasi-adjoint, then

B∗ran(∆A,B) + ran(∆A,B)A∗ ⊂ ran(∆A,B)
w∗

Proof. Assume that the pair (A,B) is generalized quasi-adjoint. Then it
follows from Theorem 1 that:

ran(∆A,B)
w∗

= ran(∆B∗,A∗)
w∗

. But since
B∗∆B∗,A∗(X) = ∆B∗,A∗(B∗X) and ∆B∗,A∗(X)A∗ = ∆B∗,A∗(XA∗), we de-

duce that
B∗ran(∆A,B) ⊂ B∗ran(∆A,B)

w∗

= B∗ran(∆B∗,A∗)
w∗

⊆ ran(∆B∗,A∗)
w∗

=

ran(∆A,B)
w∗

.
By the same arguments shown above:
Since ∆B∗,A∗(X)A∗ = ∆B∗,A∗(XA∗), we deduce that

ran(∆A,B)A∗ ⊂ ran(∆A,B)
w∗

A∗ = ran(∆B∗,A∗)
w∗

A∗ ⊆ ran(∆B∗,A∗)
w∗

=

ran(∆A,B)
w∗

. This completes the proof.

4 Open Problem

How to extend all results in this paper to the elementary operator AXB−CXD
?
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