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Abstract

In the paper we prove some growth properties related to the maximum
terms and maximum moduli of composite entire functions using generalised L�-
order and generalised L�-type as compared to the growths of their corresponding
left and right factors.
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1 Introduction, De�nitions and Notations.

Let C be the set of all �nite complex numbers and f be entire de�ned

in the open complex plane C: The maximum term � (r; f) of f =
1P
n=0

anz
n

on jzj = r is de�ned by � (r; f) = max (janj rn) and the maximum modulus

M (r; f) of f =
1P
n=0

anz
n on jzj = r is de�ned by M (r; f) = max

jzj=r
jf (z)j :We use

the standard notations and de�nitions in the theory of entire functions which
are available in [11]. In the sequel the following notation is used :

log[k] x = log
�
log[k�1] x

�
for k = 1; 2; 3; :::: and log[0] x = x:

To start our paper we just recall the following de�nition :

De�nition 1. The order �f and lower order �f of an entire function f are
de�ned as

�f = lim sup
r!1

log[2]M(r; f)

log r
and �f = lim inf

r!1

log[2]M(r; f)

log r
:

De�nition 2. The type �f of an entire function f is de�ned as

�f = lim sup
r!1

logM (r; f)

r�f
; 0 < �f <1:

Sato [6] de�ned the generalised order and generalised lower order of
an entire function as follows :

De�nition 3. [6]Let m be an integer � 2. The generalised order �[m]f and

generalised lower order �[m]f of an entire function f are de�ned as

�
[m]
f = lim sup

r!1

log[m]M (r; f)

log r
and

�
[m]
f = lim inf

r!1

log[m]M (r; f)

log r
respectively.

For m = 2; De�nition 2 reduces to De�nition 1:
If �f <1 then f is of �nite order. Also �f = 0 means that f is of order zero.
In this connection Datta and Biswas [2] gave the following de�nition :

De�nition 4. [2] Let f be an entire function of order zero. The quantities ���f
and ���f of f are de�ned by:

���f = lim sup
r!1

logM (r; f)

log r
and ���f = lim inf

r!1

logM (r; f)

log r
:
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Let L � L (r) be a positive continuous function increasing slowly i.e.,
L (ar) � L (r) as r ! 1 for every positive constant a. Singh and Barker [7]
de�ned it in the following way:

De�nition 5. [7]A positive continuous function L (r) is called a slowly chang-
ing function if for " (> 0) ;

1

k"
� L (kr)

L (r)
� k" for r � r (") and

uniformly for k (� 1) :
If further, L (r) is di¤erentiable, the above condition is equivalent to

lim
r!1

rL0 (r)

L (r)
= 0 :

Somasundaram and Thamizharasi [8] introduced the notions of L-order and
L-type for entire function where L � L (r) is a positive continuous function
increasing slowly i.e.,L (ar) � L (r) as r ! 1 for every positive constant �a�.
The more generalised concept for L-order and L-type for entire function are
L�-order and L�-type. Their de�nitions are as follows:

De�nition 6. [8]The L�-order �L�f and the L�-lower order �L
�

f of an entire
function f are de�ned as

�L
�

f = lim sup
r!1

log[2]M (r; f)

log [reL(r)]
and �L

�

f = lim inf
r!1

log[2]M (r; f)

log [reL(r)]
:

De�nition 7. The L�-type �L�f of an entire function f is de�ned as

�L
�

f = lim sup
r!1

logM (r; f)

[reL(r)]
�L

�
f

; 0 < �L
�

f <1 :

In the line of Sato [6], Datta and Biswas [2] one can de�ne the gener-
alised L�-order �[m]L

�

f and generalised L�-lower order�[m]L
�

f of an entire function
f in the following manner :

De�nition 8. Let m be an integer � 1. The generalised L�-order �[m]L
�

f and

generalised L�-lower order �[m]L
�

f of an entire function f are de�ned as

�
[m]L�

f = lim sup
r!1

log[m]M (r; f)

log [reL(r)]
and �[m]L

�

f = lim inf
r!1

log[m]M (r; f)

log [reL(r)]
respectively.

Datta, Biswas and Hoque [3] reformulated De�nition 8 in terms of the
maximum terms of entire functions in the following way:
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De�nition 9. [3] The growth indicators �[m]L
�

f and �[m]L
�

f for an entire function
f are de�ned as

�
[m]L�

f = lim sup
r!1

log[m] � (r; f)

log [reL(r)]
and �[m]L

�

f = lim inf
r!1

log[m] � (r; f)

log [reL(r)]

respectively where m be an integer � 1.

Similarly, in the line of Somasundaram and Thamizharasi [8] for any
positive integer m � 2 one may de�ne the generalised L�-type �[m�1]L

�

f in the
following manner:

De�nition 10. The generalised L�-type �[m�1]L
�

f for m � 2 of an entire func-
tion f is de�ned as follows:

�
[m�1]L�
f = lim sup

r!1

log[m]M (r; f)

[reL(r)]
�
[m]L�
f

; 0 < �
[m]L�

f <1 :

Lakshminarasimhan [4] introduced the idea of the functions of L-
bounded index. Later Lahiri and Bhattacharjee [5] worked on entire functions
of L-bounded index and of non uniform L-bounded index. In the paper we
study some growth properties related to the maximum terms and maximum
moduli of composite entire functions using generalised L�-order and gener-
alised L�-type as compared to the growths of their corresponding left and
right factors.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [9] Let f and g be any two entire functions with g(0) = 0: Then
for all su¢ ciently large values of r;

� (r; f � g) � 1

2
�

�
1

8
�
�r
4
; g
�
� jg(0)j ; f

�
:

Lemma 2. [1] If f and g are two entire functions then for all su¢ ciently large
values of r;

M

�
1

8
M
�r
2
; g
�
� jg(0)j ; f

�
�M(r; f � g) �M (M (r; g) ; f) :
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3 Theorems.

In this section we present the main results of the paper.

Theorem 3. Let f and g be any two entire functions such that �[m]L
�

f and �L
�
g

are both �nite and positive where m � 1.Then for each � 2 (�1;1) ;

lim inf
r!1

n
log[m] � (r; f � g)

o1+�
log[m] � (exp (r�) ; f)

= 0 and

lim inf
r!1

n
log[m] � (r; f � g)

o1+�
log[2] � (exp (r�) ; g)

= 0 where � > (1 + �) �L
�

g :

Proof. If 1 + � < 0; then the theorem is trivial. So we take 1 + � > 0:Now in
view of Lemma 2 and the inequality � (r; f) � M (r; f) fcf: [10] g ; we have
for all su¢ ciently large values of r that

�(r; f � g) �M(r; f � g) �M (M (r; g) ; f)

i:e:; log[m] �(r; f � g) � log[m]M (M (r; g) ; f)

i:e:; log[m] �(r; f � g) �
�
�
[m]L�

f + "
� �
logM (r; g) eL(M(r;g))

�
i:e:; log[m] �(r; f � g)

�
�
�
[m]L�

f + "
� �
reL(r)

�(�L�g +")
+
�
�
[m]L�

f + "
�
L (M (r; g))

i:e:;
n
log[m] � (r; f � g)

o1+�
�

��
reL(r)

�(�L�g +")
�
�
[m]L�

f + "
�
+
�
�
[m]L�

f + "
�
L (M (r; g))

�1+�
: (1)

Again we get for a sequence of r tending to in�nity and for "(> 0) that

log[m] �
�
exp

�
r�
�
; f
�
�
�
�
[m]L�

f � "
�
log
�
exp

�
r�
�
exp

�
L
�
exp

�
r�
��	�

i:e:; log[m] �
�
exp

�
r�
��
; f) �

�
�
[m]L�

f � "
� �
r� + L

�
exp

�
r�
���

: (2)

So from (1) and (2) we obtain for a sequence of r tending to in�nity thatn
log[m] � (r; f � g)

o1+�
log[m] � (exp (r�) ; f)

�

��
reL(r)

�(�L�g +")
�
�
[m]L�

f + "
�
+
�
�
[m]L�

f + "
�
L (M (r; g))

�1+�
�
�
[m]L�

f � "
�
[r� + L (exp (r�))]

: (3)
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Let �
eL(r)

�(�L�g +")
�
�
[m]L�

f + "
�
= k1;

�
�
[m]L�

f + "
�
L (M (r; g)) = k2;�

�
[m]L�

f � "
�
= k3;

�
�
[m]L�

f � "
�
L
�
exp

�
r�
��
= k4:

Then from (3) we obtain for a sequence of r tending to in�nity thatn
log[m] � (r; f � g)

o1+�
log[m] � (exp (r�) ; f)

�

h
r(�

L�
g +")k1 + k2

i1+�
k3r� + k4

i:e:;

n
log[m] � (r; f � g)

o1+�
log[m] � (exp (r�) ; f)

�
r(�

L�
g +")(1+�)

�
k1 +

k2

r(�
L�
g +")

�1+�
k3r� + k4

where k1; k2,k3 and k4 are �nite.
Since

�
�L

�
g + "

�
(1 + �) < �; therefore

lim inf
r!1

n
log[m] � (r; f � g)

o1+�
log[m] � (exp (r�) ; f)

= 0

where we choose "(> 0) such that

0 < " < min

�
�
[m]L�

f ;
�

1 + �
� �L�g

�
;

which proves the �rst part of the theorem.
Similarly, the second part of the theorem follows from the following inequality
in place of (2)

i:e:; log[2] �
�
exp

�
r�
��
; g) �

�
�L

�

g � "
� �
r� + L

�
exp

�
r�
���

for a sequence of values of r tending to in�nity.
This proves the theorem.

Remark 1. In Theorem 3 if we take the condition � 0 < �[m]L
�

f � �[m]L
�

f <1
and 0 < �L

�

g � �L
�
g < 1 � in place of � �[m]L

�

f and �L
�
g are both �nite and

positive �the theorem remains true with � lim �replaced by � lim inf �.

In the line of Theorem 3, the following theorem can be proved:

Theorem 4. Let f and g be any two entire functions with �nite and positive
�
[m]L�

f and �L
�
g where m � 1.Then for each � 2 (�1;1) ;

lim inf
r!1

n
log[m]M (r; f � g)

o1+�
log[m]M (exp (r�) ; f)

= 0 and
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lim inf
r!1

n
log[m]M (r; f � g)

o1+�
log[2]M (exp (r�) ; g)

= 0 where � > (1 + �) �L
�

g :

Remark 2. Also in Theorem 4 if we take the condition � 0 < �[m]L
�

f � �[m]L
�

f <

1 and 0 < �L
�

g � �L
�
g < 1 � inplace of � �[m]L

�

f and �L
�
g are both �nite and

positive �the theorem remains true with � lim �replaced by �lim inf�.

Theorem 5. Let f and g be any two entire functions with 0 < �
[m]L�

f �
�
[m]L�

f <1 where m is any positive integer and 0 < �L
�

g � �L�g <1 : Then

lim sup
r!1

log[m+1] � (r; f � g)
log[m] � (r; f) + L

�
1
8
�
�
r
4
; g
�
� jg(0)j

� � �L
�
g

�
[m]L�

f

:

Proof. In view of Lemma 1; we have for all su¢ ciently large values of r

log[m] � (r; f � g) � o (1) + log[m] �
�
1

8
�
�r
4
; g
�
� jg(0)j ; f

�
: (4)

i:e:; log[m] � (r; f � g) � o (1) +
�
�
[m]L�

f � "
��
log

�
1

8
�
�r
4
; g
�
� jg(0)j

�
+L

�
1

8
�
�r
4
; g
�
� jg(0)j

��

i:e:; log[m] � (r; f � g) � o (1) +
�
�
[m]L�

f � "
�

"
log

(
1

8
�
�r
4
; g
� 

1� jg(0)j
1
8
�
�
r
4
; g
�!)+ L�1

8
�
�r
4
; g
�
� jg(0)j

�#

i:e:; log[m] � (r; f � g) �
�
�
[m]L�

f � "
�
log �

�r
4
; g
�
:8>><>>:

log �
�
r
4
; g
�
+ log

�
1� jg(0)j

1
8
�( r4 ;g)

�
+ L

�
1
8
�
�
r
4
; g
�
� jg(0)j

�
log �

�
r
4
; g
�

9>>=>>;
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i:e:; log[m+1] � (r; f � g) � log[2] �
�r
4
; g
�

+

 
�L

�

g � "
�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�

� log
"
exp

( 
�L

�

g � "
�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�)#

+ log

(�
log �

�
r
4
; g
�
+ L

�
1
8
�
�
r
4
; g
�
� jg(0)j

��
+ o (1)

log �
�
r
4
; g
� )

i:e:; log[m+1] � (r; f � g) � log[2] �
�r
4
; g
�

+

 
�L

�

g � "
�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�

+ log

8>><>>:
�
log �

�
r
4
; g
�
+ L

�
1
8
�
�
r
4
; g
�
� jg(0)j

��
+ o (1)

exp

��
�L

�
g �"

�
[m]L�
f +"

�
L
�
1
8
�
�
r
4
; g
�
� jg(0)j

��
log �

�
r
4
; g
�
9>>=>>;

i:e:; log[m+1] � (r; f � g)

� log[2] �
�r
4
; g
�
+

 
�L

�

g � "
�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�
: (5)

Now from (5) it follows for a sequence of values of r tending to in�nity that

log[m+1] � (r; f � g) �
�
�L

�

g � "
�
log
nr
4
eL(

r
4)
o

+

 
�L

�
g � "

�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�
: (6)

Now we get for all su¢ ciently large values of r that

log[m] � (r; f) �
�
�
[m]L�

f + "
�
log
�
reL(r)

	
i:e:; log[m] � (r; f) �

�
�
[m]L�

f + "
�
log
nr
4
eL(

r
4)
o
+ log 4: (7)
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Hence from (6) and (7) it follows for all su¢ ciently large values of r that

log[m+1] � (r; f � g) �
 
�L

�
g � "

�
[m]L�

f + "

!�
log[m] � (r; f)� log 4

�
+

 
�L

�
g � "

�
[m]L�

f + "

!
L

�
1

8
�
�r
4
; g
�
� jg(0)j

�

i:e:; log[m+1] � (r; f � g)

�
 
�L

�
g � "

�
[m]L�

f + "

!�
log[m] � (r; f) + L

�
1

8
�
�r
4
; g
�
� jg(0)j

��

�
 
�L

�
g � "

�
[m]L�

f + "

!
log 4

i:e:;
log[m+1] � (r; f � g)

log[m] � (r; f) + L
�
1
8
�
�
r
4
; g
�
� jg(0)j

�
�

 
�L

�
g � "

�
[m]L�

f + "

!
�

�
�L

�
g �"

�
[m]L�
f +"

�
log 4

log[m] � (r; f) + L
�
1
8
�
�
r
4
; g
�
� jg(0)j

� : (8)

Since " (> 0) is arbitrary, it follows from (8) that

lim sup
r!1

log[m+1] � (r; f � g)
log[m] � (r; f) + L

�
1
8
�
�
r
4
; g
�
� jg(0)j

� � �L
�
g

�
[m]L�

f

:

Thus the theorem is established.

In the line of Theorem 5, the following theorem can be proved:

Theorem 6. Let f and g be any two entire functions with 0 < �
[m]L�

f �
�
[m]L�

f <1 where m � 1 and 0 < �L�g � �L�g <1: Then

lim inf
r!1

log[m+1] � (r; f � g)
log[m] � (r; f) + L

�
1
8
�
�
r
4
; g
�
� jg(0)j

� � �L
�

g

�
[m]L�

f

:

The proof is omitted.

Theorem 7. Let f and g be any two entire functions with 0 < �
[m]L�

f �
�
[m]L�

f <1 where m is any positive integer and 0 < �L
�

g � �L�g <1 : Then

lim sup
r!1

log[m+1]M (r; f � g)
log[m]M (r; f) + L

�
1
8
M
�
r
2
; g
�
� jg(0)j

� � �L
�
g

�
[m]L�

f

:
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Theorem 8. Let f and g be any two entire functions such that 0 < �[m]L
�

f �
�
[m]L�

f <1 where m � 1 and 0 < �L�g � �L�g <1: Then

lim inf
r!1

log[m+1]M (r; f � g)
log[m]M (r; f) + L

�
1
8
M
�
r
2
; g
�
� jg(0)j

� � �L
�

g

�
[m]L�

f

:

We omit the proofs of Theorem 7 and Theorem 8 because those can
be carried out in the line of Theorem 5 and Theorem 6 respectively and with
the help of Lemma 2:

Theorem 9. Let f and g be any two entire functions with �[n]L
�

f < 1 and

�
[m]L�

f�g =1 where m and n are positive integers. Then

lim
r!1

log[m] �(r; f � g)
log[n] �(r; f)

=1:

Proof. Let us suppose that the conclusion of the theorem do not hold.Then
we can �nd a constant � > 0 such that for a sequence of values of r tending
to in�nity

log[m] �(r; f � g) � � log[n] �(r; f): (9)

Again from the de�nition of �[n]L
�

f ; it follows that for all su¢ ciently large values
of r that

log[n] �(r; f) �
�
�
[n]L�

f + "
�
log
�
reL(r)

�
i:e:; log[n] �(r; f) �

�
�
[n]L�

f + "
�
log
�
reL(r)

�
: (10)

Thus from (9) and (10) we have for a sequence of values of r tending to in�nity
that

log[m] �(r; f � g) � �
�
�
[n]L�

f + "
�
log
�
reL(r)

�
i:e:;

log[m] �(r; f � g)
log (reL(r))

�
�
�
�
[n]L�

f + "
�
log
�
reL(r)

�
log (reL(r))

i:e:; lim inf
r!1

log[m] �(r; f � g)
log (reL(r))

= �
[m]L�

f�g <1:

This is a contradiction.
Thus the theorem follows.

In the line of Theorem 9, the following theorem may also be proved:
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Remark 3. Theorem 9 is also valid with �limit superior�instead of �limit�if
�
[m]L�

f�g = 1 is replaced by �[m]L
�

f�g = 1 and the other conditions remaining the
same.

Theorem 10. Let f and g be any two entire functions with �[n]L
�

f < 1 and

�
[m]L�

f�g =1 where m and n are positive integers. Then

lim
r!1

log[m]M(r; f � g)
log[n]M(r; f)

=1:

Further if �[m]L
�

f�g =1 instead of �[m]L
�

f�g =1 then

lim inf
r!1

log[m]M(r; f � g)
log[n]M(r; f)

=1:

Corollary 11. Under the assumptions of Theorem 9 or Remark 3 and Theo-
rem 10,

lim
r!1

log[m�1] �(r; f � g)
log[n�1] �(r; f)

=1

and

lim
r!1

log[m�1]M(r; f � g)
log[n�1]M(r; f)

=1:

Proof. By Theorem 9 or Remark 3 we obtain for all su¢ ciently large values of
r and for K > 1 that

log[m] �(r; f � g) > K log[n] �(r; f)

i:e:; log[m�1] �(r; f � g) > log[n�1] f�(r; f)gK ;

from which the �rst part of the corollary follows.
Similary, from Theorem 10 the second part of the corollary is established.

Remark 4. The condition �[m]L
�

f�g = 1 is necessary in Theorem 9, Theorem
10 and Corollary 11 which is evident from the following example :

Example 1. Let f = exp z; g = z, m = n = 2 and L (r) = 1
p
exp

�
1
r

�
where p

is any positive real number.
Also

�L
�

f = 1 <1 and �L
�

f�g = 1 <1:

Now taking R = 2r in the inequality � (r; f) �M (r; f) � R
R�r� (R; f) fcf: [10] g

we get that
� (r; f � g) �M (r; f � g) = exp r
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and
� (r; f) �M (r; f) = exp r:

Also

� (r; f � g) � 1

2
M
�r
2
; f � g

�
=
1

2
exp

�r
2

�
and

� (r; f) � 1

2
M
�r
2
; f
�
=
1

2
exp

�r
2

�
:

Therefore

lim
r!1

log[2] � (r; f � g)
log[2] � (r; f)

= lim
r!1

log[2]M (r; f � g)
log[2]M (r; f)

= 1:

Also

lim
r!1

logM (r; f � g)
logM (r; f)

= 1 and

1

2
� lim inf

r!1

log � (r; f � g)
log � (r; f)

� lim sup
r!1

log � (r; f � g)
log � (r; f)

� 2:

Remark 5. Considering f = exp z; g = z, m = n = 2 and L (r) = 1
p
exp

�
1
r

�
for any positive real number p, one can also verify that the condition �[m]L

�

f�g =1
in Theorem 10; Remark 3 and Corollary 11 is essential.

Theorem 12. If f and g be any two entire functions such that (i) 0 < �[n]L
�

f <

1; (ii) 0 < �[n�1]L
�

f <1; (iii) �[m]L
�

f�g = �
[n]L�

f and (iv) �[m�1]L
�

f�g <1. Then
for any � > 1;

lim inf
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�
��

[n]L�
f �

[m�1]L�
f�g

�
[n�1]L�
f

and

�
[m�1]L�
f�g

��
[m]L�
f�g :�

[n�1]L�
f

� lim sup
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

:

Proof. From the de�nition of generalised L�-type and in view of the inequality
� (r; f) � M (r; f) fcf: [10] g ; we obtain for all su¢ ciently large values of r
that

log[m�1] � (r; f � g) � log[m�1]M (r; f � g)

�
�
�
[m�1]L�
f�g + "

��
reL(r)

	�[m]L�f�g (11)

and

log[n�1] � (r; f) �
�
�
[n�1]L�
f + "

��
reL(r)

	�[n]L�f : (12)
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Also taking R = �r in the inequality M (r; f) � R
R�r� (R; f) fcf: [10] g we

obtain for a sequence of values of r tending to in�nity that

log[m�1] � (r; f � g)

� log[m�1]M

�
r

�
; f � g

�
+O(1) �

�
�
[m�1]L�
f�g � "

��� r
�

�
eL(

r
� )
��[m]L�f�g

i:e:; log[m�1] � (r; f � g) �

�
�
[m�1]L�
f�g � "

�
��

[m]L�
f�g

�
reL(r)

	�[m]L�f�g +O(1) (13)

and

log[n�1] � (r; f)

� log[n�1]M

�
r

�
; f

�
+O(1) �

�
�
[n�1]L�
f � "

��� r
�

�
eL(

r
� )
��[n]L�f

i:e:; log[n�1] � (r; f) �

�
�
[n�1]L�
f � "

�
��

[n]L�
f

�
reL(r)

	�[n]L�f +O(1): (14)

Now from (11) and (14) it follows for a sequence of values of r tending to
in�nity that

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�
��

[n]L�
f

�
�
[m�1]L�
f�g + "

��
reL(r)

	�[m]L�f�g�
�
[n�1]L�
f � "

�
freL(r)g�

[n]L�
f +O(1)

: (15)

In view of the condition (iii) we get from (15) that

lim inf
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�
��

[n]L�
f

�
�
[m�1]L�
f�g + "

�
�
�
[n�1]L�
f � "

� :

As " (> 0) is arbitrary, it follows from above that

lim inf
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�
��

[n]L�
f �

[m�1]L�
f�g

�
[n�1]L�
f

: (16)

Again from (12) and (13) we get for a sequence of values of r tending to in�nity
that

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�

�
�
[m�1]L�
f�g � "

��
reL(r)

	�[m]L�f�g +O(1)

��
[m]L�
f�g

�
�
[n�1]L�
f + "

�
freL(r)g�

[n]L�
f

: (17)
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Since �[m]L
�

f�g = �
[n]L�

f , we obtain from (17) that

lim sup
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�

�
�
[m�1]L�
f�g � "

�
��

[m]L�
f�g

�
�
[n�1]L�
f + "

� :
As " (> 0) is arbitrary, it follows from above that

lim sup
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; f)

�
�
[m�1]L�
f�g

��
[m]L�
f�g :�

[n�1]L�
f

: (18)

Thus the theorem follows from (16) and (18).

In the line of Theorem 12, we may state the following theorem without
proof :

Theorem 13. If f and g be any two entire functions with (i) 0 < �
[n]L�
g <

1; (ii) 0 < �[n�1]L
�

g <1; (iii) �[m]L
�

f�g = �
[n]L�
g and (iv) �[m�1]L

�

f�g <1. Then
for any � > 1;

lim inf
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; g)

�
��

[n]L�
g �

[m�1]L�
f�g

�
[n�1]L�
g

and

�
[m�1]L�
f�g

��
[m]L�
f�g :�

[n�1]L�
g

� lim sup
r!1

log[m�1] � (r; f � g)
log[n�1] � (r; g)

:

Theorem 14. If f and g be any two entire functions such that (i) 0 < �[n]L
�

f <

1; (ii) 0 < �[n�1]L
�

f <1; (iii) �[m]L
�

f�g = �
[n]L�

f and (iv) �[m�1]L
�

f�g <1. Then

lim inf
r!1

log[m�1]M (r; f � g)
log[n�1]M (r; f)

�
 
�
[m�1]L�
f�g

�
[n�1]L�
f

!
� lim sup

r!1

log[m�1]M (r; f � g)
log[n�1]M (r; f)

:

Theorem 15. If f and g be any two entire fucntions such that (i) 0 < �[n]L
�

g <

1; (ii) 0 < �[n�1]L
�

g <1; (iii) �[m]L
�

f�g = �
[n]L�
g and (iv) �[m�1]L

�

f�g <1. Then

lim inf
r!1

log[m�1]M (r; f � g)
log[n�1]M (r; g)

�
 
�
[m�1]L�
f�g

�
[n�1]L�
g

!
� lim sup

r!1

log[m�1]M (r; f � g)
log[n�1]M (r; g)

:

The proof of Theorem 14 and Theorem 15 are omitted because those
can be carried out in the line of Theorem 12 and Theorem 13 respectively.
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4 Open Problem

Actually this paper deals with the extension of the works on the growth
properties of composite entire functions on the basis of their generalised L�-
order and generalised L�-type. Further in order to determine the relative
growth of two entire functions having same non zero �nite generalised L�-lower
order, one may introduce the de�nition of generalised L�-weak type denoted
as � [m�1]L

�

f of entire functions having �nite generalised L�-lower order in the
following way:

�
[m�1]L�
f = lim inf

r!1

log[m]M (r; f)

[reL(r)]
�
[m]L�
f

; 0 < �
[m]L�

f <1

and therefore using this growth indicator one may calculate the above growth
rates of composite entire functions under some di¤erent conditions. In this
connection, the following natural questions may arrise for the worker of this
branch :
1. Can these theories be modi�ed by the treatment of the notions of L�-
relative order ( respectively generalised L�-relative order), L�-relative type
(respectively generalised L�-relative type) and L�-relative weak type ( respec-
tively generalised L�-relative weak type)?
2. Further can some extensions of the same be done for special type of lin-
ear di¤erential polynomials viz. the wronskians, di¤erential polynomials and
di¤erential monomials?
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