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Abstract

Selection approaches are used to identify the best system
from a finite set of alternative systems. If it involves a small
number of alternatives, then Ranking and Selection is the right
procedures to be used in order to select the best system. Nev-
ertheless, for a case of a large number of alternatives we need
to change our concern from finding the best system to find-
ing a good system with high probability by using the Ordinal
Optimization procedure. Almomani and Abdul Rahman [1] has
proposed a new selection approach to select a good system when
the number of alternatives is very large. In this paper, we
study the efficiency of Almomani and Abdul Rahman [1] se-
lection approach base on some parameters such as the initial
sample size, increment in simulation samples, total budget,
and the elapsed (execution) time. In doing so, we apply their
approach on the M/M/1 queuing systems, in an attempt to de-
termine the adequate choices on these parameters in order to
get the best performance for the selection approach.
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1 Introduction

Selection approaches are commonly used to select the best system of a
finite set of alternatives. The best system is defined as the system with a
maximum or minimum mean, where the means are deduced by a statistical
sampling. We consider the problem of finding the best system when the number
of alternatives is finite but huge. However, with a large number of alternatives,
this problem are not easy to solve, since it will need a huge computational
time and a large sample. Therefore, we change our concern from estimating
accurately the means for these systems to selecting a good system with high
probability. This is the idea of Ordinal Optimization (OO) procedure that
has been proposed by Ho et al. [2]. In order to improve the efficiency of
OO procedure, Chen et al.[3] has proposed the Optimal Computing Budget
Allocation (OCBA) procedure. This procedure reduces the computation cost
by allocating the available computing budget among different systems instead
of simulating equally all systems.

Ranking and Selection (R&S) procedures include the Indifference-Zone
(IZ) and the Subset Selection (SS), see Kim and Nelson [4], are used to select
the best system when the number of alternatives is relatively small. In fact,
they are used in second stage, after the OO procedure reduces the number of
alternatives, so that it will appropriate for the R&S procedures. Almomani
and Abdul Rahman [1] has proposed a new sequential selection approach in
order to solve the selection problems for a huge number of alternatives. In this
approach, the first step is to use the OO procedure to select a subset that inter-
sects with the set of the actual best m% system. Then the OCBA procedure
is used to allocate the available simulation samples in a way that maximize the
probability of correct selection. Finally, using the R&S procedures to select
the best system from the survivors systems.

There are two measures to identify the quality of the selection approaches;
the Probability of Correct Selection (P (CS)) and the Expected Opportunity
Cost (E(OC)) of potentially incorrect selection, see He et al. [5]. These
two measures are important, since there is a potential for incorrect selection in
simulation. The P (CS) is used traditionally when the goal is selecting the best
system with high probability of correct selection. Meanwhile, the E(OC) has
become important in many applications in business and engineering that lead
to a recently new selection approach in order to reduce the opportunity cost
of a potentially incorrect selection. For more details, see Gupta and Miescke
[6], [7], Chick and Inoue [8], [9].

In this paper, we discuss the significant differences in efficiency of the selec-
tion approach by Almomani and Abdul Rahman [1] when different simulation
parameters are applied. We focus on the parameters such as; the initial sam-
ple size (t0), increment in simulation samples (∆), total budget (B), and the
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elapsed (execution) time (T ), and present the numerical illustrations for each
parameter. The rest of this paper is organized as follows; In Section 2, we
present the problem settings. In Section 3, we review the Ranking and Selec-
tion procedures, whereas the Ordinal Optimization and Optimal Computing
Budget Allocation are presented in Section 4. Next, we present the algorithm
by Almomani and Abdul Rahman [1] in Section 5. The simulation issues and
the efficiency of the selection approach are discussed together with a series of
numerical examples in Section 6, a future research present in Section 7, and
Section 8 concludes this study.

2 Problem Setting

Consider the following optimization problem

min
θ∈Θ

J(θ) (1)

where Θ is a feasible solution which is arbitrary, finite and huge. Let J be the
expected performance measure of some complex stochastic system, written as
J(θ) = E[L(θ, ξ)], where θ is a vector that represents system design parame-
ters, ξ represents all the random effect of the system and L is a deterministic
function that depends on θ and ξ.

In this paper, without loss of generality, we assume that the best system is
the system that has the smallest mean, which is unknown and to be inferred
from simulation. Therefore, our goal is selecting the system that has the small-
est sample mean. Suppose that there are n systems, and let ξij represents an
observation from the jth output in system i , where ξi = {ξij, j = 1, 2, . . .}
denotes the output sequence from the system i. We assume that ξij are
independent and identically distributed (i.i.d.) normal with unknown means
µi = E(ξij) and variances σ2

i = V ar(ξij). In addition, we assume that each
ξ1, ξ2, . . . , ξn is mutually independent. Actually, the normality assumption is
not a problem since simulation outputs are obtained from batch means or as
an average performance. Therefore, using a Central Limit Theorem (CLT )
the normality assumption holds. In practice, usually the σ2

i are unknown, so
we estimate it using the sample variances s2

i for ξij. Since we assume that
the smallest mean is best, therefore if the ordered µi-values are denoted by
µ[1] ≤ µ[2] ≤ . . . ≤ µ[n], then the system having mean µ[1] is referred to as the
best system. Note that, the Correct Selection (CS) occurs when the system
selected by the selection approaches is the same as the actual best system.
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3 Ranking and Selection Approaches

The problem on the selection some (all) of the systems base on their ordered
means, can be solved by Ranking and Selection (R&S) procedures. A natural
strategy of the R&S procedures for dealing with this problem is to compare
between different systems whose response is normally distributed when the
number of systems in the feasible solution set is small. These procedures are
usually used to select the best system or a subset that contain the best systems
when the number of systems is small, with a pre-specified significance level.
We consider two procedures; the indifference-zone, and the subset selection in
the next two sections.

3.1 Indifference-zone (IZ)

The goal of IZ procedure is to select a system that is within δ from the best
system, where δ is the Indifference Zone. In mathematical notation, we seek to
achieve P (CS) ≥ 1− α given that |µ[2] − µ[1]| ≥ δ. We should be careful when
to specify the value of δ and 1−α, because, if δ is too small, then the number of
replication samples that are required to guarantee the design is expected to be
large. Therefore, δ can be thought of the smallest difference of µ[2]−µ[1] and is
considered worth detecting. On the other hand, if we consider a large number
of 1−α then it may require a large number of replication samples to meet the
designer request. However, to use IZ procedure, the number of alternatives n
should be less than or equal 20. In 1978, Rinott [10] has proposed a two stage
approach when the variances are completely unknown. This procedure is called
the classical R&S procedure and since then most of the new IZ procedures
are using this procedure directly or indirectly. Also, Tamhane and Bechhofer
[11] have presented a simple procedure that is valid when the variances are not
be equal.

3.2 Subset selection (SS)

The main strategy of SS procedure is to screen out the search space and
eliminate noncompetitive systems in order to construct a subset that contains
the best system with high probability. This procedure is appropriate to select
a subset that contains the actual best system when the number of alternatives
is relatively large. We require that P (CS) ≥ 1 − α, where CS is selecting a
subset that contains the actual best system, with 1 − α as a predetermined
probability.

The SS procedure dates back to Gupta [12], who presented a single stage
procedure for producing a subset containing the best system with a specified
probability. Extensions of this work which is relevant to the simulation setting
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include Sullivan and Wilson [13] who derived a two stage SS procedure that
determines a subset of maximum size m that, with a specified probability will
contain systems that are all within a pre-specified amount of the optimum.
Another comprehensive reviews of the R&S procedures can be found in Bech-
hofer et al. [14], Goldsman and Nelson [15], and Kim and Nelson [4], [16],
[17].

4 Ordinal Optimization and Optimal Comput-

ing Budget Allocation

In this section, we review the Ordinal Optimization (OO) procedure. Then,
we argue the best way to allocate the total simulation sample in order to fur-
ther enhance the efficiency of the OO procedure by using Optimal Computing
Budget Allocation (OCBA).

4.1 Ordinal optimization (OO)

The OO procedure focuses on isolating a subset of good systems with high
probability and reducing the required simulation time for discrete event simu-
lation. The goal of OO procedure is to find a good enough system, rather than
to estimate accurately the performance value of these systems. This procedure
has been proposed by Ho et al. [2].

Consider the optimization problem given in equation (1). If we simulate
the system to estimate the E[L(θ, ξ)], then the confidence interval of this
estimator cannot be improved faster than 1/

√
k where k is the number of

replications used in order to estimate the J(θ), see Chen et al. [3]. In fact,
this is good for many problems, only when it involves with a small number
of alternatives. However, this is not good enough when it involves a complex
simulation problem with a large number of alternatives. Actually, each sample
of L(θ, ξ) requires one simulation run, so we will need a large number of samples
which is very hard and maybe impossible, when it involves with a huge number
of alternative systems in the search space. However, in this situation, we could
relax the objective as to get a good enough solution rather than doing extensive
simulation, which is impossible in many real world applications.

Let the correct selection is to select a subset G of g systems from the
search space that contains at least one of the top m% best systems. Since
the search space is huge then the probability of correct selection is given by
P (CS) ≈ (1− (1− m

100
)g). Furthermore, suppose that the correct selection is

to select a subset G of g systems that contains at least r of the best s systems.
If we assume S to be the subset that contains the actual best s systems, then
the probability of correct selection can be obtained using the hypergeometric
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distribution as

P (CS) = P (|G ∩ S| ≥ r) =

g∑
i=r

(
s
i

)(
n− s
g − i

)
(
n
g

)
However, since the number of alternatives is very large then the P (CS) can
be approximated by the binomial random variable, as

P (CS) ≈
g∑
i=r

(
g
i

)( m

100

)i (
1− m

100

)g−i
.

Another comprehensive review of OO procedure can be found in Deng et
al. [18], Dai [19], Xiaolan [20], Deng and Ho [21], Lee et al. [22], Li et al. [23],
Zhao et al. [24], and Ho et al. [25].

4.2 Optimal computing budget allocation (OCBA)

The OCBA is used to determine the best simulation lengths for all sim-
ulation systems in order to reduce the total computation time. In fact, this
procedure was proposed to improve the performance of OO procedure by de-
termining the optimal numbers of simulation samples for each system, instead
of simulating equally all the systems.

The goal of OCBA is to allocate the total simulation samples from all
the systems in a way that maximizes the probability of selecting the best
system within a given computing budget, see Chen et al.[3], Chen [26], and
Chen et al.[27]. Let B be the total sample that are available for solving the
optimization problem given in (1). The target is to allocate these computed
simulating samples to maximize the P (CS). In mathematical notation this
can be written as:

max
T1,...,Tn

P (CS)

s.t.
n∑
i=1

Ti = B

Ti ∈ N i = 1, 2, . . . , n

where N is the set of non-negative integers, Ti is the number of samples al-
located to system i, and

∑n
i=1 Ti denotes the total computational samples.

Assume that the simulation times for different systems are roughly the same.
To solve this problem Chen et al. [3] proposed the following theorem.
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Theorem 4.1 Given a total number of simulated samples B to be allocated to
n competing systems whose performance is depicted by random variables with
means J(θ1), J(θ2), . . . , J(θn), and finite variances σ2

1, σ
2
2, . . . , σ

2
n respectively,

as B −→∞, the approximate probability of correct selection can be asymptot-
ically maximized when

1. Ti
Tj

=
(
σi/δb,i
σj/δb,j

)2

; where i, j ∈ {1, 2, . . . , n} and i 6= j 6= b.

2. Tb = σb

√∑n
i=1,i 6=b

T 2
i

σ2
i

where δb,i the estimated difference between the performance of the two systems

(δb,i = Jb − Ji), and Jb ≤ mini Ji for all i. Here Ji = 1
Ti

∑Ti
j=1 L(θi, ξij), where

ξij is a sample from ξi for j = 1, . . . , Ti.

Proof: See Chen et al. [3].

More reviews on the OCBA procedure can be found in Chen et al. [28],
Banks [29], and Chen [30].

5 Algorithm of Almomani and Abdul Rahman

The selection approach as proposed by Almomani and Abdul Rahman [1]
consists of four stages. In the first stage, using the OO procedure, a subset
G is selected randomly from the search space that intersects with the set m%
of actual best systems with high probability (1 − α1). Then, use the OCBA
procedure in order to allocate the available computing budget. This is followed
by the SS procedure to get a smaller subset I that contains the best system
among the subset that is selected before with high probability (1−α2), where
|I| ≤ 20. Finally, using the IZ procedure to select the best system from set I
with high probability (1− α3). The algorithm is described as follows:

Setup: Specify g and k where |G| = g, |G′ | = k, the number of initial sim-
ulation samples t0 ≥ 2, the indifference zone δ, and t = t

(1−α2/2)
1

g−1 ,t0−1

from the t-distribution. Let T l1 = T l2 = . . . = T lg = t0, and determine the
total computing budget B. Here, G is the selected subset from Θ, that
satisfies P (G contains at least one of the best m% systems) ≥ 1 − α1,
whereas G

′
is the selected subset from G, where g ≥ k. The iteration

number is represented by l.

Select a subset G of size g randomly from Θ. Take the random samples
of t0 observations yij (j = 1, . . . , t0) for each system i in G, where i =
1, . . . , g.
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Initialization: Calculate the sample mean ȳi
(1), and variances s2

i , where ȳi
(1) =∑Tl

i
j=1 yij

T l
i

and s2
i =

∑Tl
i

j=1(yij−ȳi(1))2

T l
i−1

, for all i = 1, . . . , g.

Arrange the systems in G in ascending order according to their sample
averages; ȳ

(1)
[1] ≤ ȳ

(1)
[2] ≤ . . . ≤ ȳ

(1)
[g] . Then select the best k systems from

the set G, and represent this subset as G
′
.

Stopping Rule: If
∑g

i=1 T
l
i ≥ B, then stop. Otherwise, randomly select a

subset G
′′

of the g− k alternatives from Θ−G′ , and let (G = G
′ ⋃

G
′′
).

Simulation Budget Allocation: Increase the computing budget by ∆ and
compute the new budget allocation, T l+1

1 , T l+1
2 , . . . , T l+1

g , by using The-
orem 4.1.

Perform additional max{0, T l+1
i − T li } simulations for each system i, i =

1, . . . , g, let l←− l + 1. Go to Initialization.

Screening: Set I = {i : 1 ≤ i ≤ k and ȳ
(1)
i ≥ ȳ

(1)
j − [Wij − δ]−,∀i 6= j}, where

Wij = t
(
s2i
Ti

+
s2j
Tj

)1/2

for all i 6= j, and [x]− = x if x < 0 and [x]− = 0

otherwise.

If I contains a single index, then this system is the best system. Other-
wise, for all i ∈ I, compute the second sample sizeNi = max{Ti, d(hsiδ )2e},
where h = h(1−α3/2, t0, |I|) be the Rinott [10] constant that can be ob-
tained from tables of Wilcox [31].

Take additional Ni−Ti random samples of yij for each system i ∈ I, and

compute the overall sample means for i ∈ I as ȳ
(2)
i =

∑Ni
j=1 yij

Ni

Select system i ∈ I with the smallest ȳ
(2)
i as the best.

6 Simulation Issues and the Efficiency of the

Selection Approach

In this section, we argue the effects of some changes in simulation param-
eters such as, the initial sample size t0, increment in simulation samples ∆,
total budget B, and the elapsed (execution) time T to the selection approach
as proposed by Almomani and Abdul Rahman [1]. We apply the selection
approach onto the M/M/1 queuing systems. Furthermore, we would like to
determine the appropriate values of the t0 and ∆, since there is no clear formu-
lation to determine these two values when the number of alternatives is very
large. We also discuss the performance of Almomani and Abdul Rahman [1]
selection approach when we increase the total budget B.
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6.1 Different simulation parameters

6.1.1 Initial sample size (t0)

The sample size in the first stage is called the initial sample size or t0.
It plays an important role in the performance of many selection approaches.
In fact, the initial sample size cannot be too small since we might get poor
estimates for the sample mean and variances. On the other hand, t0 cannot be
too large, because in the first stage there exists many non critical systems and
by giving a large number of samples for these systems will result in loosing a
large number of samples and also wasting a computation time. Chen et al. [3]
and Chen et al. [27] suggested that as a good choice for the initial sample size,
the value of t0 should be between 10 and 20. Unfortunately, there is no clear
formulation to calculate an appropriate value of the initial sample size t0 for
the selection approaches, when the number of alternatives is large.

Note that, if t0 is too small, we might get a poor estimate of σ2
i (s2

i ). In
certain situation, it could be that s2

i is much greater than σ2
i , leading to an

unnecessarily large sample size (Ni) that been used in screening step in the
selection algorithm. The Rinott constant h = h(1−α3/2, t0, |I|) is determined
by the desired confidence level (1 − α3/2), the initial sample size t0, and the
number of systems in the set I (|I|). From Wilcox Tables [31] we note that,
constant h will increase as |I| increased, and it will decrease as α3 and t0
decrease. Thus, the experiment design factor that under control is t0. So, this
study will look into the t0’s effect on the performance of the studied approach.

6.1.2 Increment in simulation samples (∆)

In order to improve the performance of OO procedure, the OCBA tech-
nique is used to determine the best simulation lengths for all simulation sys-
tems and to reduce the total computation time. Here, we argue the effect of
the increment in simulation samples, ∆ on the performance of the selection
approach. The increment in simulation samples, ∆ is defined as a positive
integer that represents the additional number of simulation samples in the
Simulation Budget Allocation step in the algorithm.

In order to avoid repetition increment in the OCBA algorithm, the incre-
ment in simulation samples ∆ cannot be too small, such that it will increase
the simulation time. On the other hand, if ∆ is too large will result in a waste
in computation time and unnecessary higher confidence level. Chen et al. [3]
and Chen et al. [27] have suggested that ∆ should be between 5 and 10% of
the simulated system as a good choice for the increment in simulation samples.
However, so far there is no fixed values of ∆ or no clear method in determine
it in order to get the best performance using the OCBA technique.
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6.1.3 Total budget (B)

In sequential stopping rule, the total budget B is used as a condition to
repeat the sampling. According to Almomani and Abdul Rahman [1], they
used the sequential stopping rule such that to repeat the sampling while∑n

i=1 Ti ≤ B, where Ti is the number of samples allocated to system i.

Clearly, the increase in the total budget B, will improve the efficiency
of the selection approach by increasing the P (CS) and at the same time by
decreasing the E(OC), where the P (CS) and E(OC) are measures for the
selection quality. In particular, when B →∞ then P (CS) = 1 and E(OC) =
0. Whereas, by increasing the B will increase the number of simulation samples
and the elapsed time. This study will look into these effects of the total budget
B on the studied selection approach.

6.1.4 Elapsed time (T )

The elapsed (execution) time is related to the number of simulation samples
used in selection approach to select the best system from a large number of
alternatives system. In selection approach, the target is selecting the best
system with a small number of simulation samples with minimum elapsed
time. In our study, using different values of the initial sample size (t0) and
the increment size in simulation samples (∆), we want to see their connections
with a different values of the elapsed times.

We use “java” as the programming language to calculate the elapsed time.
The elapsed time is represented by the different between the starting time and
the ending time of the programme. The idea is to store the initial time of the
programme in a variable called “StartTime”. Once the programme ended, the
time will be stored into another variable called “EndTime”. Therefore, the
difference between the StartTime and the EndTime will present the elapsed
time of the programme.

However, the real total elapsed (execution) time should be defined as a com-
bination of Central Processing Unit (CPU) time plus the difference between
the StartTime and the EndTime. It is not representing the amount of time
the user has been logged in. In our work, we take the elapsed time (denote as
“Time”) as a runtime for a programme which is equal to the compiler time plus
the result time per millisecond, where a millisecond (from milli- and second;
abbreviation: ms) is a 1/1000 of a second. For more details see Schildt [33].
We run all our programmes using a computer model of Optiplex380, manu-
factured by Dell with installed memory (RAM) 2.00 GB and the Processor
Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz 2.93GHz.
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6.2 Numerical examples

Here, we present the numerical illustrations of the effects of changes in
the simulation parameters on the Almomani and Abdul Rahman [1] selection
approach as we mentioned before in section 6.1. All examples are involved
with the M/M/1 queuing system with one server where the inter arrival times
and the service times are exponentially distributed, see Ross [32].

6.2.1 Example 1

In this example, the objective is to select one of the best m% systems
that has the minimum average waiting time per customer from n M/M/1
queuing systems. We use the Probability of Correct Selection (P (CS)), and
the Expected Opportunity Cost (E(OC)) of a potentially incorrect selection
as a measure of selection quality. The Opportunity Cost (OC) is defined as
the difference between unknown means of the selected best system and the
actual best system.

Assume that the arrival rate λ is a fixed number as λ = 1, and the service
rate µ is belong to the interval [a, b], where µ ∈ [7, 8]. Suppose that we have
3000 of M/M/1 queuing systems, and we discretize the problem by assuming
that µ ∈ Θ = 7+ i/3000, where i = 0, 1, . . . , 3000. Therefore, the best queuing
system with the minimum average waiting time, would be the 3000th queuing
system with µ3000 = 8.0. For this example, we consider four different parameter
settings.

In the first settings, assume that n = 3000, g = 200, α2 = α3 = 0.005,
δ = 0.05, k = 20 and ∆ = 50 (these settings are chosen arbitrarily). Sup-
pose we want to select one of the best (1%) systems, then our target is the
systems from 2971 to 3000. The correct selection here would be, selecting
the system that belongs to {2971, 2972, . . . , 3000}. Furthermore, here the an-
alytical probability of the correct selection can be calculated as P (CS) ≥
1 −

((
1− 1

100

)200
+ 0.005 + 0.005

)
≥ 0.85. Now, we choose t0 as 10, 20, 30,

50, 80, 100 and 200 to see the effect of the different initial sample sizes t0 on
the selection approach. We consider the total number of simulation samples
(total budget) B = 8000 for each value of t0. Initially, we find that the pro-
gramme cannot continue in cases of t0 are 50, 80, 100 and 200. With this it
shows that the selection approach works just fine when t0 = 10, 20, 30 whereas
it fails to work when t0 = 50, 80, 100, 200. We record the minimum values of
B for each t0 in Table 1, to represent the least number of B for each t0 to able
the selection approach works from first stage to the next stage.

As an extension from this we repeat the experiment for each pair of the
t0 and the minimum number of B, (as in Table 1) 10 replications and the
results are presented in Table 2 to Table 8. From the tables, “Best” means the
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Table 1: The minimum values of B for each value of t0
t0 10 20 30 50 80 100 200

min B 2000 4000 6000 10000 16000 20000 40000

index of the chosen system that being considered as the best system, |I| is the
number of systems from Screening step,

∑g
i=1 Ti is the total sample size used

in Stopping Rule step,
∑

i∈I Ni is the total sample size used in Screening
step and “Time” to represent the elapsed (execution) time of the programme,
which is per millisecond (ms), where ms = 1/1000 second. The E(OC) values
of our approach are represented by E(ȳb− ȳi∗), whereas the analytical E(OC)
is defined as E(w̄b − w̄i∗). The w̄i∗ and ȳi∗ for each is the unknown average
waiting time and the sample mean respectively for the actual best system i∗,
where i∗ =3000 and w̄i∗ = 0.142857143. Whereby w̄b and ȳb are the unknown
average waiting time and the sample means for the best system b respectively.
We can calculate w̄i∗ and w̄b using a formulation of w̄i = 1

µi−λi ; where µi and
λi are the service rate and the arrival rate for the system i respectively, with
i = i∗ and b. After the simulation was performed, ȳi can be calculated from
the system output.

Table 2: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 10, B = 2000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2973 3 14732 990 9120 -0.003508125 0.000183910
2 2971 19 23653 11763 10752 -0.002986155 0.000197552
3 2124 19 27110 14738 10023 0.000841202 0.006218588
4 2988 19 15267 3865 8930 -0.004301730 0.000081679
5 2985 14 14325 1978 9001 -0.001504849 0.000102114
6 1352 19 20619 8540 10273 -0.001535257 0.012165594
7 2979 18 19148 7075 10607 -0.004808459 0.000143000
8 2996 2 15140 1312 9109 0.000908011 0.000027216
9 2461 19 24259 13948 11072 -0.000454362 0.003763257
10 2984 11 13636 959 8626 0.000166640 0.000108927

From the result, we notice that, when the total budget B is increased
the

∑g
i=1 Ti,

∑
i∈I Ni and elapsed time will increase. Also, for each value of

t0 we found that the size of set I is less than 20, (|I| ≤ 20), which follows
our assumption, since we need |I| ≤ 20 to apply the IZ procedure. There
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Table 3: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 20, B = 4000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2899 14 16791 1436 14599 -0.001810955 0.000690395
2 2979 3 23561 5959 16013 0.001004808 0.000143000
3 2987 12 25663 9363 16476 -0.000205038 0.000088490
4 1901 19 18298 2161 15717 -0.000520183 0.007889051
5 2980 3 19883 2450 15730 -0.000636478 0.000136184
6 2973 13 17554 2043 15745 -0.000622536 0.000183910
7 1043 19 19868 4636 15979 -0.001833651 0.014681060
8 2973 19 21245 4655 16549 -0.000514841 0.000183910
9 2974 9 17439 1028 15040 -0.000840743 0.000177090
10 1322 4 18160 867 15014 -0.002721290 0.012406287

Table 4: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 30, B = 6000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 1245 14 25520 4843 22105 -0.001922796 0.013027503
2 2998 9 19411 1262 20670 0.000137230 0.000013606
3 2989 9 21696 480 21216 -0.003209647 0.000074869
4 2976 2 32181 11494 23119 -0.000010734 0.000163452
5 2988 13 24416 3634 21731 0.000304445 0.000081679
6 956 17 54440 34805 28089 -0.001520444 0.015404094
7 2988 16 21506 1341 21232 -0.001677157 0.000081679
8 2204 5 28964 7414 22620 0.000365434 0.005628306
9 2974 15 44380 27554 26145 0.001073081 0.000177090
10 1234 3 20736 1173 21029 -0.003149694 0.013116654

are negative values for some values in the E(OC) of our approach, whereas we
know that the E(OC) should be positive values. The reason for this situation is
that in our approach we used OO procedure to select randomly the set G in the
first stage, so in some replications, the actual best system i∗ will not be selected
from the first stage. It means that the actual best system i∗ may not belongs
to the set G. This will imply that we may not take into consideration, the
addition observation in final stage, compare to the best system b. Therefore,
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Table 5: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 50, B = 10000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2967 19 32095 4327 34001 -0.000506349 0.000224843
2 2270 12 31496 3671 34394 -0.001562686 0.005144831
3 2990 17 30731 3226 33791 -0.001270842 0.000068059
4 2975 4 34190 6192 34429 -0.000041503 0.000170271
5 2984 2 29469 1144 33491 -0.003383476 0.000108927
6 1208 13 42173 14937 36051 0.000180282 0.013327780
7 1845 15 37330 9039 34984 -0.001122835 0.008314437
8 368 17 32984 4852 34539 -0.000924643 0.020470383
9 2989 17 32562 11691 34851 -0.002216927 0.000074869
10 2980 4 38422 8877 36320 -0.000995063 0.000136184

Table 6: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 80, B = 16000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2985 15 64340 24638 56867 -0.002486243 0.000102114
2 2997 2 56076 14732 55649 -0.001599895 0.000020411
3 2977 4 59453 18303 55754 -0.000723406 0.000156634
4 2994 2 76102 37073 59295 -0.000992409 0.000040828
5 2460 15 64818 40768 57662 -0.000470404 0.003770423
6 2983 9 61452 22782 56093 -0.001146220 0.000115740
7 2995 13 44454 4946 52861 -0.002068828 0.000034021
8 317 6 42472 2862 54372 -0.000935940 0.020925136
9 1361 3 43560 5013 53677 0.000014186 0.012093531
10 2977 14 73237 36119 59906 -0.000668625 0.000156634

in certain occasions sample mean for the best system b will become less than
the sample mean for the actual best system i∗, (i.e. ȳb < ȳi∗) and will result
in the E(OC) of our approach is equal to E(ȳb − ȳi∗) < 0. However, we can
consider that the E(OC) of our approach as the absolute value of the difference
between the sample means of the best system b and the actual best system i∗,
since our focus would be the difference means between those systems.

Table 9 summarizes the results for over 100 replications in selecting one of
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Table 7: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 100, B = 20000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2351 14 48406 4043 64335 0.000090873 0.004555761
2 2983 14 66142 21747 68484 0.000571347 0.00011574
3 2979 2 53990 7775 65918 0.000578487 0.000143000
4 2980 9 51088 5584 66160 -0.001119932 0.000136184
5 1522 7 60711 13179 67189 -0.000560227 0.010815637
6 2991 8 47600 1453 64678 -0.000929129 0.000061250
7 2979 5 57598 10753 66674 -0.000532607 0.00014300
8 2989 3 53696 5197 65645 -0.001005581 0.000074869
9 1781 4 75711 26651 70450 0.000203385 0.008803542
10 2012 6 79521 31931 71401 -0.000627771 0.007052911

Table 8: The numerical illustration for n = 3000, g = 200, k = 20,∆ =
50,m% = 1%, t0 = 200, B = 40000

Run Best |I|
∑g

i=1 Ti
∑

i∈I Ni Time E(OC)
Our approach Analytical

1 2979 10 133224 46909 135335 0.000455854 0.000143000
2 2981 11 127307 40342 138964 -0.000100628 0.000129369
3 2988 13 136981 54009 141489 -0.000010765 0.000081679
4 2979 2 99268 12764 132870 -0.000663566 0.000143000
5 1249 17 93098 9196 127409 -0.001289119 0.012995109
6 1805 14 88346 11287 126256 -0.000755032 0.008619757
7 2998 2 121853 33521 133018 -0.001680106 0.000013606
8 2424 13 161544 79558 141287 0.000200142 0.004028874
9 2260 5 84533 1548 125760 -0.000655040 0.005217882
10 2987 18 158632 77372 142306 0.000372755 0.000088490

the best (1%) systems. Here we define B as the total budget and T represents
the average of the elapsed (execution) time. In addition, referring to the

algorithm of Almomani and Abdul Rahman [1],
∑g

i=1 Ti is the average number

of the total sample size in the Stopping Rule step, and
∑

i∈I Ni is the average

number of the total sample size in Screening step, with the E(OC) is the
average number of the Expected Opportunity Cost. In this table, keep in
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mind that, we take the absolute values of the difference between ȳb and ȳi∗ to
calculate the E(OC) of our approach.

Table 9: The performance of the selection algorithm for n = 3000, g = 200, k =
20,∆ = 50,m% = 1% over 100 replications for all values of t0

t0 10 30 50 100 200
B 2000 6000 10000 20000 40000
T 9305.76 23472.83 36256.68 67532.71 138686.80∑g
i=1 Ti 16403 28508 35203 58534 118892∑
i∈I Ni 4171 8784 7872 12701 35176

Our approach
P (CS) 75% 61% 66% 70% 68%

Analytical
P (CS) 85% 85% 85% 85% 85%

Our approach

E(OC) 0.0021902 0.0014895 0.0012921 0.0009813 0.0007499
Analytical

E(OC) 0.0030829 0.0052927 0.0041874 0.0031094 0.0036003

From Table 9, note that the T and
∑g

i=1 Ti values are keep changing for
different values of t0 with increasing pattern as t0. This is expected when
we increase the total budget B. Furthermore, the

∑
i∈I Ni are approximately

increasing for all cases of t0 except when t0 = 50, 100. This happened since in
this approach we calculate the values of Ni after increasing the value of ∆ to
compute the new budget allocation for each system. However, the effects of t0
on Ni are still not clear since the values of Ni are depending on the new budget
allocation for each system that extracted by using Theorem 4.1. Besides that,
Table 9 shows that the P (CS) for our approach are relatively high and are
quite closed to the analytical P (CS). We found a high value in P (CS) when
t0 = 10 as high as 75% compared to other values of t0. Furthermore, the
E(OC) for our approach are closed to the analytical E(OC), with the smallest
difference when t0 = 10.

Figure 1 shows the relation between the E(OC) of our approach and the
analytical values for all t0 values, when this experiment were repeated for 100
replications. The figure considers the differences between the ȳb and ȳi∗ as
absolute value. Apparently the Almomani and Abdul Rahman [1] selection
approach produces a very small values of the E(OC) and they are mostly
very closed to the analytical values in most replications. Figure 2 presents
the E(OC) values of our approach for each t0. We find that the largest value
in E(OC) when t0 = 10. Overall, the E(OC) values using our approach are
small.
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Figure 1: Relationship between our approach E(OC) and analytical E(OC)
for all values of t0 when n = 3000, g = 200, k = 20,∆ = 50,m% = 1% over
100 replications
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Figure 2: The E(OC) values of our approach for all t0 values when n =
3000, g = 200, k = 20,∆ = 50,m% = 1% over 100 replications

Now consider the same objective to select one of the best (1%) systems over
100 replications for the same parameter settings but with B = 50000 as a total
budget. The results are reported in Table 10. Clearly, we can see the increasing
pattern in the average of the elapsed (execution) time T when the values of t0
are increase. Also, notice that for t0 of 10, 20 and 30, the values of T are very
closed together. Furthermore, the values of

∑g
i=1 Ti for t0 = 10, 20, 30, 50, 80

are relatively closed together since they used the same total budget. In the
same time, when t0 is 100 and 200, the values of

∑g
i=1 Ti are relatively large

since these two values of t0 are large comparing with the remainder values of
t0. The values of

∑
i∈I Ni are different for all values of t0, since it depends on

the new budget allocation that extracted by using Theorem 4.1. However, the
P (CS) for our approach are almost the same for all values of t0 except when
t0 = 200. Since we used the total budget of B = 50000 for all t0, then we
consider that this budget is sufficient to get the best system with high P (CS).
Also, we find that the P (CS) for our approach are approximately equal with
the analytical values of P (CS) for all t0 values except when t0 = 200. We
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assume that when t0 = 200, it suggests that total budget B should be more
than 50000. The P (CS) for our approach in this experiment is high (better)
than the P (CS) in the Table 9. This is expected since we increased the total
budget, B to 50000. Clearly, that the highest P (CS) occurred when t0 = 10
with the value as high as 84%. We also find that, the E(OC) for our approach
is small for all values of t0 where for each t0 of 100 and 200 it becomes smaller
and the values are closed to the analytical values. By comparing the values
of E(OC) for our approach and the analytical between Table 9 and Table 10,
we find that they are smaller in Table 10. The difference values of E(OC)
between our approach and the analytical also smaller in Table 10 as compared
in Table 9.

Table 10: The performance of the selection algorithm for n = 3000, g =
200, k = 20,∆ = 50,m% = 1%, B = 50000 over 100 replications for each
value of t0

t0 10 30 50 100 200

T 31806.12 37893.73 51101.87 78518.35 140060.80∑g
i=1 Ti 78006 70352 78752 84886 119095∑
i∈I Ni 41229 32124 31523 36829 38049

Our approach
P (CS) 84% 80% 82% 81% 77%

Analytical
P (CS) 85% 85% 85% 85% 85%

Our approach

E(OC) 0.0018024 0.0016028 0.0012074 0.0009987 0.0007062
Analytical

E(OC) 0.0020682 0.0019704 0.0018143 0.0019885 0.0023973

Figure 3 shows the relationship between the E(OC) for our approach and
the analytical for a 100 replication when the difference between the ȳb and
ȳi∗ are considered as an absolute values. We note, the E(OC) values for our
approach are small and closed to the analytical values in most replications.
From Figure 1, notice that most replications show high analytical values in
the E(OC) compared to our approach. Meanwhile, this situation is less shown
in Figure 3. This is due to the usage of high total budget B in Figure 3. Figure
4 shows the E(OC) values for our approach for each value of t0. It is clear that
for all values of t0 the E(OC) for our approach is very small with the largest
value occurs when t0 = 10, 30.

Clearly, using a total budget, B = 50000 we will get the desired P (CS)
with a minimum value of E(OC). Also, we find that if we take unnecessary
simulation samples, it will increase the execution time.
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Figure 3: Relationship between our approach E(OC) and analytical E(OC) for
all values of t0 when n = 3000, g = 200, k = 20,∆ = 50,m% = 1%, B = 50000
over 100 replications
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Figure 4: The E(OC) values of our approach for all t0 values when n =
3000, g = 200, k = 20,∆ = 50,m% = 1%, B = 50000 over 100 replications

Now we consider the pairwise combination of t0 = 20, 50 and 100, a rea-
sonable total budget B as 10000, 15000 and 27000 respectively and with the
same parameter settings n = 3000, g = 200, k = 20,∆ = 50,m% = 1%. Table
11 contains the results of this experiment, over a 100 replication for selecting
one of the best (1%) systems. Compared to the results in Table 10, in this ex-
periment we get high values of P (CS) with a minimum E(OC) for a case with
small number of budget together with a small number of simulation samples.
Thus, this last experiment was executed in short time.

Figure 5 shows the relation between the E(OC) values of our approach
and the analytical for 100 replications. Although in this last experiment we
used relatively a small number of total budget B, we still find that the E(OC)
values for our approach are very small and are closed to the analytical values
in most replications. However, in this experiment the number of replications
that selected the best system which is faraway from the actual best system is
also small. Figure 6 shows the E(OC) values for our approach for each value
of t0. Clearly, we find that, for each value of t0 the E(OC) is very small with
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Table 11: The performance of the selection algorithm for n = 3000, g =
200, k = 20,∆ = 50,m% = 1% over 100 replications

t0 20 50 100
B 10000 15000 27000
T 16160.54 36485.31 72012.35∑g
i=1 Ti 20793 38981 66745∑
i∈I Ni 4372 11682 21877

Our approach P (CS) 83% 80% 78%
Analytical P (CS) 85% 85% 85%

Our approach E(OC) 0.0018189 0.0011006 0.0011060

Analytical E(OC) 0.0018010 0.0016727 0.0022173

the largest value occurs when t0 = 20.

Figure 5: Relationship the E(OC) values of our approach and the analytical
for each value of t0 when n = 3000, g = 200, k = 20,∆ = 50,m% = 1% over
100 replications
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Figure 6: The E(OC) values of our approach for all t0 values when n =
3000, g = 200, k = 20,∆ = 50,m% = 1% over 100 replications
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From all the above experiments, we can make a few conclusions on the
Almomani and Abdul Rahman [1] selection approach. Initially, we find that
the approach is affected by t0 in different ways. From the numerical results,
we note that the initial sample size t0 do have affects on the B, where it needs
the minimum value of B in order to make the approach works. Clearly, when
we increase the budget B we will get a better performance (high P (CS) and
minimum E(OC)) for each value of t0. In particular, when we take B = 50000,
we get high values in P (CS) and minimum values of E(OC) for each value of
t0, but in the same time, the using of the unnecessary samples will cause high
elapsed time. The second parameter affected by t0 is the elapsed (execution)
time, where we found that the elapsed time will increase if we increase the
values of t0. Besides that, the total sample size in Stopping Rule in algorithm
of Almomani and Abdul Rahman [1] (

∑g
i=1 Ti), are also increased when t0 are

increased. We also find that for a small value of t0 will end up with high
value in E(OC). On the other hand, the total sample size in Screening
step in algorithm Almomani and Abdul Rahman [1] (

∑
i∈I Ni), is not clearly

affected by t0 since the values are calculated after we compute the new budget
allocation for each system. Besides that, we also note that the P (CS) values
for Almomani and Abdul Rahman [1] selection approach are very closed to the
analytical values for each value of t0, and they become better (high) when we
increase the total budget, B.

6.2.2 Example 2

Now we want to study the effects of the increment in simulation sample
size, ∆, using the same selection approach with the same queuing systems and
assumptions as in Example 1. The difference is only we would like to consider
six different values of ∆, where ∆ are 10, 20, 50, 80, 100 and 200, with the same
total budget B = 10000. Let n = 3000, g = 200, α2 = α3 = 0.005, δ = 0.05,
k = 20 and t0 = 20 for all different values of ∆. Suppose we want to select
one of the best (1%) systems, then our target is the systems from 2971 to
3000. Also the analytical probability of the correct selection can be calculated

as P (CS) ≥ 1−
((

1− 1
100

)200
+ 0.005 + 0.005

)
≥ 0.85. Table 12 contains the

results of this experiment, with a 100 replication. All variables in this table
are defined as the same as the previous example.

From the table, we find that the values of T and
∑g

i=1 Ti keep changing
for each value of ∆ with increasing pattern with exception, when ∆ = 20
which shows the minimum values of T and

∑g
i=1 Ti. The increasing values are

as expected when we increase the values of increment in simulation samples
∆, however the increasing amounts are relatively small. We also notice that,
the values of

∑
i∈I Ni are different with each value of ∆, but we cannot see

a clear relation between them, since the values of
∑

i∈I Ni are depending on
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Table 12: The performance of the selection algorithm for n = 3000, g =
200, k = 20, t0 = 20,m% = 1%, B = 10000 over 100 replications

∆ 10 50 80 100 200

T 15358.87 16160.54 17581.20 18438.66 23558.76∑g
i=1 Ti 16842 20793 27841 29453 51266∑
i∈I Ni 7256 4372 5818 4072 7433

Our approach
P (CS) 81% 83% 80% 79% 83%

Analytical
P (CS) 85% 85% 85% 85% 85%

Our approach

E(OC) 0.0017856 0.0018189 0.0013916 0.0014443 0.0012811
Analytical

E(OC) 0.0015624 0.0018010 0.0013866 0.0017427 0.0012553

the new budget allocation for each system. Moreover, from Table 12 we also
can see that, the values of P (CS) for our selection approach are high and very
closed to its analytical values for each ∆. The highest values of P (CS) for
our approach occurs when ∆ = 20 with the P (CS) = 84% compared to other
values of ∆. We also notice the E(OC) for our approach are very small and
are so closed with the analytical values of E(OC). However, we note here the
P (CS) and E(OC) are not affected by ∆.

Clearly, the appropriate increment in simulation samples, regarding to the
results in Table 12, is when ∆ = 20. For this value of ∆, we get the mini-
mum elapsed time where T = 15088.73, and used the least simulation samples∑g

i=1 Ti where
∑g

i=1 Ti = 15972. In the same time for this ∆ = 20, the P (CS)
of our selection approach is highest as recorded as 84% which is approximately
the same value for the analytical P (CS). On the other hand, if we consider the
E(OC) as a measure of selection quality of our approach, we ended up with
two best options for ∆ values. The first one is ∆ = 80 since this value will give
the smallest difference in the E(OC) between the analytical and our approach.
Another option is when ∆ = 200 since it has the minimum E(OC). However,
we cannot take these values of ∆ as the best values for all exterminates in
context of E(OC) since the performance of Almomani and Abdul Rahman [1]
selection approach is very closed together for all values of ∆.

Figure 7 shows the relation between the E(OC) of our approach and the
analytical, when this experiment was repeated for 100 replications, for each
value of ∆. Here we take the differences between the ȳb and ȳi∗ as absolute
values. We can see clearly that for all values of ∆, the values of the E(OC) for
our approach are very small and are mostly closed to the analytical values in
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most replications. Moreover, the number of replications that Almomani and
Abdul Rahman [1] selection approach failed to select as the best system are
approximately the same for each value of ∆. Figure 8 shows the E(OC) of our
approach for all values of ∆. It is clear that for all values of ∆, the E(OC) of
our approach approximately the same.

Figure 7: Relationship between our approach E(OC) and analytical E(OC) for
all values of ∆ when n = 3000, g = 200, k = 20, t0 = 20,m% = 1%, B = 10000
over 100 replications
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Figure 8: The E(OC) values of our approach for all ∆ values when n =
3000, g = 200, k = 20, t0 = 20,m% = 1%, B = 10000 over 100 replications

From Example 2 we can conclude the following: first, when we increase the
∆, it will follow with an increase in the elapsed time values, and an increasing
in the simulation sample

∑g
i=1 Ti although they are small. Secondly, there is

no clear evidence to show the effects of ∆ on the
∑

i∈I Ni and P (CS). Finally,
there is also no substantial effect of ∆ on the expected opportunity cost E(OC)
of a potentially incorrect selection.

6.2.3 Example 3

Now using the same queuing systems, parameter settings and assumptions
as in Example 1, we want to study the effect of the total budget B on the
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selection approach. We consider nine different values of total budget B, such as
10000, 15000, 25000, 40000, 50000, 80000, 100000, 150000 and 250000. Suppose
we want to select one of the best (1%) systems, then our target is the systems
from 2971 to 3000. Furthermore, the analytical probability of the correct

selection can be calculated as P (CS) ≥ 1−
((

1− 1
100

)200
+ 0.005 + 0.005

)
≥

0.85.

Figure 9 shows the relation between the total budget B and the P (CS) for
a 100 replication. Clearly, it shows that when we increase the total budget B
the P (CS) will increase, and it reaches to the maximum value of 1, when the
total budget, B are 150000 and more. Figure 10 shows the relation between the
total budget B and the E(OC) for a 100 replication. Unfortunately, we find
an odd situation here, for example when B = 50000 it increases the E(OC),
while the value should be less than the value when B = 40000. As a future
work we will try to improve the efficiency of the selection approach in context
of the expected opportunity cost E(OC) of a potentially incorrect selection,
in order to draw a parallel conclusion that the values of E(OC) should be
decreased when we increase the value of B.
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Figure 9: Relationship between the total budget B and the P (CS) when
n = 3000, g = 200, k = 20, t0 = 50,∆ = 50,m% = 1% over 100 replications

Figure 11 shows the relation between the total budget B and the elapsed
(execution) time. Obviously it shows that the increase in the total budget will
increase the elapsed time. However, this will create a problem in simulation
studies, because we want to achieve our goal of selecting the best system
with a minimum elapsed time and at the same time a maximized the P (CS).
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Figure 10: Relationship between the total budget B and the E(OC) when
n = 3000, g = 200, k = 20, t0 = 50,∆ = 50,m% = 1% over 100 replications

Figure 12 and Figure 13 show the relation between total budget B with the
simulation samples

∑g
i=1 Ti and

∑
i∈I Ni respectively, for a 100 replication. It

is clear that, by increasing the total budget B, it will increase the number of
simulation samples

∑g
i=1 Ti and

∑
i∈I Ni.

This example shows the effects of the total budget B on the Almomani and
Abdul Rahman [1] selection approach in context of the probability of correct
selection, elapsed (execution) time and the simulation samples. Of course,
when we increase the total budget B, it will increase the P (CS), but at the
same time, it will cause an increase in elapsed time and a number of simulation
samples. However, we find an odd situation in this study regarding the effects
of the total budget B on the E(OC) where it should be the E(OC)→ 0 when
B →∞ which is does not hold in this study.

7 Open Problem

This research can be used to solve real world problems such as the traffic
problem, Buffer Allocation Problem, inventory system and a close networks.
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Figure 11: Relationship between the total budget B and the elapsed time
(millisecond) when n = 3000, g = 200, k = 20, t0 = 50,∆ = 50,m% = 1% over
100 replications
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n = 3000, g = 200, k = 20, t0 = 50,∆ = 50,m% = 1% over 100 replications

8 Concluding Remarks

In this paper, we study the performance of the selection approach as pro-
posed by Almomani and Abdul Rahman [1]. Our discussions are based on
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Figure 13: Relationship between the total budget B and the
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i∈I Ni when
n = 3000, g = 200, k = 20, t0 = 50,∆ = 50,m% = 1% over 100 replications

various simulation parameters. They are initial sample size t0, increment in
simulation samples ∆, total budget B and elapsed (execution) time T . We
apply the selection approach on the M/M/1 queuing systems with the param-
eters setting as discussed previously. From the numerical results we find that,
the first simulation parameter that affected the selection approach is the initial
sample size t0. When we change the initial sample size t0 we need to use the
minimum total budget B for each value of t0. As initial sample size t0 increase,
the elapsed time T and the simulation samples Ti will increase. Meanwhile, to
achieve the best performance in context of E(OC) in our case study, we need
a large value of t0. However, no clear relationship between t0 with each the
simulation samples Ni, and P (CS) respectively. Finally, since we find that the
selection approach is sensitive to the initial sample size t0, as a future work
we will try to add a “zero-th stage” of sampling in order to determine an ad-
equate choice of the initial sample size t0. In our case study on the increment
in simulation samples ∆, we find that it will affect the elapsed time T and
simulation samples Ti. On the other hand, there are no substantial effect on
the simulation samples Ni, P (CS) and E(OC). However, we should be careful
in determining the increment values in simulation samples ∆, since if it is too
small then it will require us to repeat the Simulation Budget Allocation
step in the algorithm for many times whereas by choosing a large value of ∆
will waste our computation time. Meanwhile, our study on the total budget,
B, find that the simulation samples Ni, simulation samples Ti, elapsed time T
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and P (CS) are increased when we increase the total budget B. Note that the
value of total budget B is very important in selection approach, since we want
to select the best system with high P (CS) and at the same time with a small
number of simulation sample in short elapsed time. On the other hand, in our
case study on the effect of the total budget B and the E(OC), we find an odd
situation. We know that when the total budget B increases the E(OC) should
be decreased, but our example shows the other way around. Thus in our future
work we will look further into this situation. Finally, we also note that the Al-
momani and Abdul Rahman [1] selection approach, selects the best simulated
system in a short time with a different parameter settings. Of course, selecting
the best system from a huge number of alternative with a minimum elapsed
time T still a challenge in the selection problems. As a future work we would
like to improve the Almomani and Abdul Rahman [1] selection approach so
that it will be able to select the best system with a shorter elapsed time T .
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