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Abstract

A finite group G is said to be a PSOS-group if for every
subgroup H of G the cardinality of the set {K ≤ G | |K| = |H|}
divides |G|. In this note a first step in the study of PSOS-
groups is made.
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1 Introduction

Let G be a finite group and x ∈ G. Then the set of all elements of G having
the same order as x is called the order subset of G determined by x (see [3]).
We say that G is a group with perfect order subsets, or briefly a POS-group,
if the number of elements in each order subset of G is a divisor of |G|. Many
recent works, such as [2], [4], [6, 7], [9] and [14], deal with the structure of
POS-groups.

Now, let H be a subgroup of G. Inspired by the above notions, we call
the subgroup order subset of G determined by H the set of all subgroups of
G having the same order as H. We will say that G is a group with perfect
subgroup order subsets, or briefly a PSOS-group, if the number of elements in
each subgroup order subset of G is a divisor of |G|. The study of the class of
PSOS-groups is the main goal of our paper.

Most of our notation is standard and will usually not be repeated here.
Elementary concepts and results on group theory can be found in [5] and [11].
For subgroup lattice notions we refer the reader to [8], [10] and [12].
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2 Main results

First of all, we observe that any finite cyclic group is a PSOS-group. Our
study is facile for finite p-groups.

Theorem 1. A finite p-group is a PSOS-group if and only if it is cyclic.

Proof. Let G be a finite p-group of order pn. It is well-known that the number
of subgroups of order pm, m = 0, 1, ..., n, is congruent to 1 modulo p. If G is
a PSOS-group, then this number must be equal to 1. In other words, G has a
unique subgroup of order pm for every m = 0, 1, ..., n, i.e. it is cyclic.

We remark that there are also many examples of non-cyclic PSOS-groups,
such as S3, D10, Z2 × Z6, A4, A5, ... and so on. We easily infer that the class
of PSOS-groups is not closed under subgroups, homomorphic images, direct
products or extensions.

The following four propositions give the intersection between the class of
PSOS-groups and other important classes of finite groups.

Proposition 2. The dihedral group D2n is a PSOS-group if and only if n is
odd.

Proof. The subgroup structure of D2n = 〈x, y | xn = y2 = 1, yxy = x−1〉 is
well-known: for every divisor d or n, D2n possesses a subgroup isomorphic to
Zd, namely Hd

0 = 〈xn
d 〉, and n

d
subgroups isomorphic to D2d, namely Hd

i =
〈xn

d , xi−1y〉, i = 1, 2, ..., n
d

. If n is odd, then D2n is obviously a PSOS-group.
If n is even, then by taking d = 2 one obtains that D2n has n + 1 subgroups
of order 2, and therefore it is not a PSOS-group since n+ 1 - 2n.

A result which is similar to Proposition 2 also holds for generalized quater-
nion groups.

Proposition 3. The generalized quaternion group Q4n is a PSOS-group if and
only if n is odd.

Proof. Q4n = 〈x, y | x2n = 1, y2 = xn, yxy−1 = x−1〉 satisfies the following
properties: Z(Q4n) = 〈xn〉 ∼= Z2 and Q4n/Z(Q4n) ∼= D2n. Moreover, for every
subgroup H of Q4n we have either 〈xn〉 ⊆ H or H ⊆ 〈x〉. In other words,
the subgroups of Q4n either are contained in the lattice interval [Q4n/〈xn〉] or
are contained in 〈x〉 and not contain 〈xn〉. Clearly, Q4n is a PSOS-group if n
is odd. If n is even, then Q4n has n + 1 subgroups of order 4, namely 〈yxi〉,
i = 0, 1, ..., n − 1, and 〈xn

2 〉 . Because n + 1 - 4n it follows that Q4n is not a
PSOS-group.
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We recall next the notion of P -group, according to [8, 10, 12]. Let p be
a prime, n ≥ 2 be an integer and G be a group. We say that G belongs to
the class P (n, p) if it is either elementary abelian of order pn, or a semidirect
product of an elementary abelian normal subgroup H of order pn−1 by a group
of prime order q 6= p which induces a nontrivial power automorphism on H.
The group G is called a P-group if G ∈ P (n, p) for some prime p and some
n ≥ 2. The class P (n, 2) consists only of the elementary abelian group of order
2n. Also, for p > 2 the class P (n, p) contains the elementary abelian group
of order pn and, for every prime divisor q of p − 1, exactly one non-abelian
P -group with elements of order q. This is of order pn−1q and will be denoted
by Gn,p .

Proposition 4. The non-abelian group Gn,p is a PSOS-group if and only if
n = 2.

Proof. Obviously, G2,p has one subgroup of order 1, one subgroup of order p,
p subgroups of order q and one subgroup of order pq. So, it is a PSOS-group.

Let n ≥ 3 and suppose that Gn,p is a PSOS-group. Then the number of
subgroups of order pq in Gn,p divides pn−1q. On the other hand, it is easy to see

that this number is pn−2 pn−1−1
p−1

. It follows that pn−1−1
p−1

| pq, and consequently
pn−1−1
p−1

| q, a contradiction.

Finally, we determine the positive integers n for which the symmetric group
Sn and the alternating group An are PSOS-groups (we wishes to thank Pro-
fessor Derek Holt for this suggestions on MathOverflow – see [13]).

Proposition 5. Sn is a PSOS-group if and only if n ≤ 3, while An is a
PSOS-group if and only if n ≤ 5.

Proof. We already have seen that Sn and An are PSOS-groups for n ≤ 3 and
n ≤ 5, respectively.

Assume first that n ≥ 4. Then Sn contains an elementary abelian 2-
subgroup 〈(1, 2), (3, 4), ...〉 of order 2[n

2
], and this has more than 2[n

4
][n+2

4
] sub-

groups of order 2[n
4
]. For n ≥ 82 we have

2[n
4
][n+2

4
] > n!

and therefore the number of subgroups of order 2[n
4
] in Sn cannot be a divisor

of n! . On the other hand, the number an of subgroups of order 2 in Sn satisfies

a1 = 0, a2 = 1 and an+1 = an + nan−1 + n, ∀n ≥ 2

(see the sequence A000085) and we can easily check by computer that an - n!
for all 4 ≤ n ≤ 81. Hence Sn is not a PSOS-group for n ≥ 4.
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Assume now that n ≥ 4. Then An contains an elementary abelian 2-
subgroup of order 2[n

2
]−1, and this has more than 2[n

4
][n−2

4
] subgroups of order

2[n−2
4

]. For n ≥ 86 we have

2[n
4
][n−2

4
] >

n!

2
,

which implies that the number of subgroups of order 2[n−2
4

] in An is not a divisor
of n!

2
, i.e. An is not a PSOS-group. By using a computer algebra program the

same conclusion is also obtained for 6 ≤ n ≤ 85 (e.g. the number of subgroups
of order 4 in A6 is 75 and 75 - 360 = |A6|). Hence An is not a PSOS-group for
n ≥ 6.

As we have observed above, the class of PSOS-groups is not closed under
subgroups. It therefore makes sense to study finite groups whose all subgroups
are PSOS-groups.

Theorem 6. All subgroups of a finite group G are PSOS-groups if and only if
G is a ZM-group.

Proof. If all subgroup of G are PSOS-groups, then so are the Sylow subgroups
of G. By Theorem 1 we infer that they are cyclic, and thus G is a ZM-group.

Conversely, suppose that G is a ZM-group. Then it is of type

ZM(m,n, r) = 〈a, b | am = bn = 1, b−1ab = ar〉 ,

where the triple (m,n, r) satisfies the conditions

(m,n) = (m, r − 1) = 1 and rn ≡ 1 (mod m).

The subgroups of ZM(m,n, r) have been completely described in [1]. Set

L =

{
(m1, n1, s) ∈ N3 | m1|m, n1|n, s < m1, m1|s

rn − 1

rn1 − 1

}
.

Then there is a bijection between L and the subgroup lattice L(ZM(m,n, r))
of ZM(m,n, r), namely the function that maps a triple (m1, n1, s) ∈ L into the
subgroup H(m1,n1,s) defined by

H(m1,n1,s) =

n
n1⋃
k=1

α(n1, s)
k〈am1〉 = 〈am1 , α(n1, s)〉,

where α(x, y) = bxay, for all 0 ≤ x < n and 0 ≤ y < m. Remark that
|H(m1,n1,s)| = mn

m1n1
, for any s satisfying (m1, n1, s) ∈ L, and that there are

gcd(m1,
rn−1
rn1−1

) such triples. Consequently, for everym1|m and n1|n, ZM(m,n, r)

possesses gcd(m1,
rn−1
rn1−1

) subgroups of order mn
m1n1

, showing that it is a PSOS-
group. Since all subgroups of a ZM-group are ZM-groups, it follows that all
subgroups of G are also PSOS-groups, as desired.
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Next, let G be a finite group of order n. For every prime p dividing n we
denote np(G) = |{H ≤ G | |H| = p}|. Then, by using the subgroup structure
of a direct product of two groups (see (4.19) of [11], I), we infer that

np(G×G) = 2np(G) + (p− 1)np(G)2.

This equality shows that if p is odd, then np(G × G) is even. So, we have
proved the following theorem.

Theorem 7. If G is a finite group of odd order, then G × G is not a PSOS-
group. More generally, if G1 and G2 are two finite groups of odd orders such
that gcd(|G1|, |G2|) 6= 1, then G1 ×G2 is not a PSOS-group.

We remark that the above formula is also useful in the case when n is even.
For example, we have

n2(S3 × S3) = 2n2(s3) + n2(S3)
2 = 2 · 3 + 9 = 15,

that does not divide 36 = |S3×S3|. In this way, S3×S3 is not a PSOS-group.

Inspired by these results, we came up with the following conjecture, which
we have verified by computer for many groups of small order.

Conjecture 8. For every finite group G, the direct product G × G is not a
PSOS-group.

3 Open Problem

Determine the intersection between the class of PSOS-groups and other re-
markable classes of finite groups. For example, which are the finite abelian
PSOS-groups?
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