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Abstract

In this paper we obtain sufficient conditions for univalence of
analytic functions defined by the linear operator RI7, : A — A,
RIZ, f(2) = (1= )R f(2) + ol (n,\1) f(2), 2 € U, where R"f(z) is the
Ruscheweyh derivative, I (n,\, 1) the multiplier transformation and
A, ={f € HU) : f(z) = 2+ ap 12"+ ..., 2 € U} is the class of
normalized analytic functions with A, = A.
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1 Introduction

Denote by U the unit disc of the complex plane, U = {z € C : |z| < 1} and
H(U) the space of holomorphic functions in U.

Let A, ={f € H{U) : f(2) =2+ a,12" +..., 2€ U} with Ay, =A
and S the subclass of functions that are univalent in U.

Definition 1.1. (Ruscheweyh [23]) For f € A, n € N, the operator R" is
defined by R" : A — A,

Rf(z) =
R'f(2) = zf'(2), ..
(n+ DR f(2) = z(R"f(2) +nR"f(z), z€U.
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Remark 1.2. If f € A, f(2) = 2+ > 72,027, then R"f(2) = z +

oo (n 1
> o %a]zj zeU.

Definition 1.3. For f € A, n € N, \|l > 0, the operator I (n,\,1) f(z) is
defined by the following infinite series

G- +1+1 ,
I(n, M) f +Z( e ) a;29 .
Remark 1.4. It follows from the above definition that

I(O7 A, l) f(Z) = f(Z),

I+ I(n+1L,ND)f(2)=10+1=NT (N F(2)+ M2 (n,\1) f(2),
ze U

Remark 1.5. Forl =0, A > 0, the operator DY = I (n, \,0) was introduced
and studied by Al-Oboudi [15], which is reduced to the Salagean differential
operator [24] for A = 1.

Definition 1.6. [7] Let a, A\, > 0, n € N. Denote by RI, ; the operator
given by RIY ;- A — A,

RIZ\ f(2) = (1 —a)R"f(2) +al (n,\1) f(2), z€ U.

Remark 1.7. If f € A, f(2) = 2+ 372, a;27, then

RIZf(2) = 24+ 32 {o (B22H) + (1 - 0) G L ajed, 2 € U
This operator was studied also in [13], [14].

Remark 1.8. For a = 0, RI) , ,f(2) = R™f(z), where z € U and for
=1, RI}, \,f(2) = I(m,)\,l)f( ), where z € U, which was studied in
[3], [4], /]0/ /9/ For 1 = 0, we obtain RIS, of (2) = RDY, f (2) which was
studied in [5], [6], [11], [12], [16], [17] and for | = 0 and A = 1, we obtain
RIY  of (2) = L7 f (2) which was studied in [1], [2], [8].

Our considerations are based on the following results.

Lemma 1.9. [18] Let f € A. If for all z € U
(1 _ |Z|2> Zf (Z) < 1’

(2)
then the function f is univalent in U.
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Lemma 1.10. [21] Let f € A. If for all z € U
21 (2)
12 (2)

then the function f is univalent in U.

Lemma 1.11. [25] Let pu be a real number, p > % and f € A. If for all
zelU ,

-l 1)

f(2)

then the function f is univalent in U.

Lemma 1.12. [20]If f (2) € S and

z > N
Z>:1+;bnz,

then

e}

> (-1 b <1

n=1

Lemma 1.13. [22] Let v € C, Re(v) >0 and f € A. If for all z € U

<1 . |Z|2Re(l/)>

Re (v)

2f" (2)
(2)

F(2) = (y /0 u () du) %

<1,

then the function

18 univalent in U.

2 The main result

Following the paper of M. Darus and R. Ibrahim [19], we establish the sufficient
conditions to obtain a univalence for analytic function involving the differential
operator RIJ, ;.

Theorem 2.1. Let f € A. If for all z € U,

S o (LA=DH oy O oy <o

= [+1 n!(j—1)!
(1)

Then RI y, f (2) is univalent in U.
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Proof Let f € A. Assume that (1) is hold. Then for all z € U we have

2 Z( a,\zf())” 212 Z( auf(z))”
O s ey = D i oy

552, {o (B 1 (1 - ) B (- 1) g2

(U Y ey ey ey

255 {0 (H5) -0 SR G- Dlal
1=y {o (M) + (1 - ) St el

Thus, in view of Lemma 1.9, RI}Y, , f (2) is univalent in U.

(1+ |z|2)

<

Theorem 2.2. Let f € A. If for all z € U,

= L+A(G =1 +1\" (n+j—1)! 1
Z{O‘( 11 ) +(1—0)m}|%|§—7- (2)

Jj=2

Then RI y, f (2) is univalent in U.

Proof Let f € A. Assume that (2) is hold. It is sufficient to show that

2 (RIguf ()
2 <1,

(RI75.f ()

which is equivalent to show that
2 (Rf ()| _

2( IR (z))

We have (anuf )2/ _ (1"'2 2{ (M> +( (:'E D! }]aﬂ ) _
(Rlnxzf( )) (Z+Z 2{ (%11)“) (:LL‘U 11)'}a]zJ)

14352 {a (L+Ala+ll>+l) . )(:'U 11) }jajzi1
(o) 4 -0 S oo (S o) - S s’
< _ uEE, { (M) 00 G Y|
= 2(1-255, {o(FREE)  (1-a) BEELY 11)).'}|%| (Z2o{a(FAETH)  +(1-a) 2= Hay 7))
which is less than 1 if the assertion (2) is hold. Thus in view of Lemma 1.10,
RIZy, f (2) is univalent in U.
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Theorem 2.3. Let f € A. If for all z € U

Z] (G—1)+(2p—1)]-

{a(1+>\l(j;'__11)+l) +(1—o¢)%}|]|<2u 1, ,u>%. (3)

Then RIy y,f (2) is univalent in U.

Proof Let f € A. Then for all z € U we have

20y © (Rfauf(z))” 2 ( ,\zf(Z))
1—|2|™ — 41—l < (14 [z + 11—
( | | ) (R]a)\lf( )) i = ( +| | ) (Rja)\lf (Z)) ’ M|
2y {a LA 11)+z S N (n'+j:11)'! G —1)a;
S o (FREEH) + (- a) SEE G- 1) o

HAG-1D)+\" 1)!
1_Z] Q{O‘(%) +(1—-a) (:l—(;]1)}]|a3|

the last inequality is less that p if the assertion (3) is hold. thus, in view of
Lemma 1.11, R, f (z) is univalent in U.

As applications of Theorems 2.1, 2.2 and 2.3 we have the following result

Theorem 2.4. Let f € A. If for all z € U one of the inequalities (1-3)
holds, then

where

Proof Let f € A. Then, in view of Theorems 2.1, 2.2 or 2.3, RI, ,f (2)
is univalent in U. Hence, by Lemma 1.12 we obtain the result.

Theorem 2.5. Let f € A. If for all z € U,

Z] (= 1)+ Re(v)]-

(4)
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Then

G, (2) = (y /0 ! (RI, ,f ()’ du> ”

1s univalent in U.

Proof Let f € A. Then for all z € U, we have

<1 o |Z|2Re(u)>

2 (RIgaif (2))"| (1+|z|2R6(”)> 2 (RIgaf ()]

Re (v) Re (v)

(RIg5.f () (RIg,uf () |~
o SR (M) - ) S G- D ey

0 HAG=D+\" ntj-DU]
Re(v) 1 _ P {a <%> +(1—a) (n!—é;?—l))! }j |a;]

The last inequality is less than 1 if the assertion (4) is hold. Thus, in view of
Lemma 1.13, G, (2) is univalent.

3

Open Problem

Find other sufficient conditions for univalence of analytic functions defined by
this differential operator.
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