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Abstract

Let f : A → B be a ring homomorphism and J be an ideal
of B. In this paper, we give a characterization of valuation,
weak global dimension and semihereditary properties under a
certain ring-theoretic construction called the amalgamation of
A with B along J with respect to f (denoted by A ./f J), in-
troduced and studied by D’Anna, Finocchiaro and Fontana in
2009. Our aim is to generated new classes of commutative
rings satisfying theses properties.
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1 Introduction

All rings considered in this paper are commutative with identity elements and
all modules are unital. Kaplansky defined in [26], a valuation ring as a ring
in which any two elements, one divides the other. In 1932, Prüfer introduced
and studied in [32] integral domains in which every finitely generated ideal is
invertible. In 1936, Krull [28] named these rings after H. Prüfer and stated
equivalent conditions that make a domain Prüfer. Through the years, Prüfer
domains acquired a great many equivalent characterizations, each of which was
extended to rings with zero-divisors in different ways. In 1969, Osofsky proved
that the weak global dimension of an arithmetical ring is either ≤ 1 or infinite
[31]. In their recent paper devoted to Gaussian properties, Bazzoni and Glaz
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have proved that a Prüfer ring satisfies any of the other four Prüfer conditions if
and only if its total ring of quotients satisfies that same condition [5, Theorems
3.3 & 3.6 & 3.7 & 3.12]. In [2], the authors examined the transfer of the
Prüfer conditions and obtained further evidence for the validity of Bazzoni-
Glaz conjecture sustaining that ”the weak global dimension of a Gaussian
ring is 0, 1, or ∞” [5]. Recall that classical examples of non-semihereditary
arithmetical rings stem from Jensen’s 1966 result [24] as non-reduced principal
rings, e.g., Z/n2Z for any integer n ≥ 2. At this point, we recall the following
definition :

Definition 1.1 Let R be a commutative ring.

1. R is called a valuation ring if for all a, b ∈ R, a ∈ Rb or b ∈ Ra (see
[26]).

2. R is called a semihereditary ring if every finitely generated ideal of R is
projective (see [7]).

3. R is said to have weak global dimension ≤ 1 (denoted by wdim(R) ≤ 1)
if every finitely generated ideal of R is flat (see [18]).

4. R is called an arithmetical ring if the lattice formed by its ideals is dis-
tributive (see [16]).

5. R is called a Gaussian ring if for every f, g ∈ R[X], one has the content
ideal equation c(fg) = c(f)c(g) (see [33]).

6. R is called a Prüfer ring if every finitely generated regular ideal of R is
invertible (See [7, 22]).
In [19], it is proved that each one of the above conditions implies the
following next one :

Semihereditary ⇒ weak global dimension≤ 1 ⇒ Arithmetical ⇒
Gaussian ⇒ Prüfer.

Also examples are given to show that, in general, the implications cannot be
reversed. Moreover, an investigation is carried out to see which conditions may
be added to any of these properties in order to reverse the implications. Recall
that in the domain context, the above class of Prüfer-like rings collapse to the
notion of Prüfer domain. For more details on these notions, we refer to reader
to [4, 5, 7, 18, 19, 29, 22, 33].

In this paper, we study the transfer of valuation, weak global dimension
≤ 1 and semihereditary properties in amalgamation of rings, introduced and
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studied by D’Anna, Finocchiaro and Fontana in [10, 11] and defined as follows :

Let A and B be two rings with identity elements, J be an ideal of B and
let f : A → B be a ring homomorphism. In this setting, we consider the
following subring of A×B; A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J} called the
amalgamation of A and B along J with respect to f . This construction is a
generalization of amalgamated duplication of a ring along an ideal (introduced
and studied by D’Anna and Fontana in [12, 13, 14]). Moreover, other classical
constructions (such as the A+XB[X], A+XB[[X]], and the D+M construc-
tions) can be studied as particular cases of the amalgamation ([10, Examples
2.5 and 2.6]) and other classical constructions, such as the CPI extensions (in
the sense of Boisen and Sheldon [6]) are strictly related to it ([10, Example 2.7
and Remark 2.8]). See for instance [10, 11, 13, 14].
For a ring R, we denote by :
Spec(R) := {P ⊆ R : P is a prime ideal of R }.
Max(R) := {M ⊆ R : M is a maximal ideal of R }.
Nilp(R) := {a ∈ R : a is a nilpotent element of R } .
Rad(R) := the Jacobson radical of R.
V (J) := {P ∈ Spec(R) : P ⊇ J} for each ideal J of a ring R.
RS := S−1R is the localization of R by a multiplicative subset S.

2 Formulation problems

In this paper, we examine the transfer of valuation, weak global dimension ≤ 1
and semihereditary properties in amalgamated algebra along an ideal.

3 Main results

Our first result is a characterization of valuation property in amalgamated
algebra along an ideal.

Proposition 3.1 Let (A,B) be a pair of rings, f : A → B be a ring homo-
morphism and J be a non-zero ideal of B. Then A ./f J is a valuation ring if
and only if f is injective, f(A) + J is a valuation ring and f(A) ∩ J = (0).

Proof. Assume that A ./f J is a valuation ring. We claim that f is injec-
tive. Deny. There exists some 0 6= α ∈ Ker(f). Using the fact J 6= (0),
there exists 0 6= x ∈ J . Clearly, (0, x) and (α, 0) are elements of A ./f J .
Since A ./f J is a valuation ring, then (0, x) ∈ A ./f J(α, 0) or (α, 0) ∈
A ./f J(0, x). So, (0, x) = (a, f(a) + i)(α, 0) or (α, 0) = (b, f(b) + k)(0, x) for
some (a, f(a) + i), (b, f(b) + k) ∈ A ./f J . It follows that x = 0 or α = 0,



4 Moutu Abdou Salam Moutui

which is a contradiction. Hence, f is injective, as desired. Now, we show that
f(A) + J is a valuation ring. Let f(a) + i and f(b) + j ∈ f(A) + J , we show
that f(a) + i ∈ f(A) +J(f(b) + j) or (f(b) + j) ∈ f(A) +J(f(a) + i). We have
(a, f(a) + i) and (b, f(b) + j) ∈ A ./f J . Since A ./f J is a valuation ring,
then (a, f(a) + i) ∈ A ./f J(b, f(b) + j) or (b, f(b) + j) ∈ A ./f J(a, f(a) + i).
And so (a, f(a) + i) = (b, f(b) + j)(c, f(c) + k) or (b, f(b) + j) = (c′, f(c′) +
k′)(a, f(a) + i) for some (c, f(c) + k), (c′, f(c′) + k′) ∈ A ./f J . Therefore,
f(a) + i = (f(b) + j)(f(c) + k) or (f(b) + j) = (f(c′) + k′)(f(a) + i) for some
f(c) + k, f(c′) + k′ ∈ f(A) + J . Hence, f(a) + i ∈ f(A) + J(f(b) + j) or
(f(b) + j) ∈ f(A) +J(f(a) + i). Thus, f(A) +J is a valuation ring, as desired.
Next, we claim that f(A) ∩ J = (0). Suppose that f(A) ∩ J 6= (0) and let
0 6= f(a) ∈ J . It is clear that (a, 0) and (0, f(a)) are elements of A ./f J which
is a valuation ring. So, (a, 0) ∈ A ./f J(0, f(a)) or (0, f(a)) ∈ A ./f J(a, 0).
With similar arguments as previously, it follows that a = 0 or f(a) = 0, which
is a contradiction since f(a) 6= 0. Hence, f(A) ∩ J = (0). Conversely, assume
that f is injective, f(A) + J is a valuation ring and f(A) ∩ J = (0). By [10,
Proposition 5.1 (3)], the natural projection p : A ./f J → f(A) + J is a ring
isomorphism. Thus, the conclusion is now straightforward.

Remark 3.2 If J = 0, then by [10, Proposition 5.1 (3)], A ./f J ' A, and so
A ./f J is a valuation ring if and only if so is A.

Proposition 3.1 gives new examples of non-valuation rings. The next corol-
lary shows how to construct such rings.

Corollary 3.3 Let A be a ring and I be a non-zero ideal of A. Then A ./ I
is never a valuation ring.

Proof. It is easy to see that A ./ I = A ./f J where A = B, f is the identity
map of A and J = I. Suppose that A ./ I is a valuation ring. By Proposition
3.1, f(A) + J = A + I = A is a valuation ring and f(A) ∩ J = A ∩ I = (0).
So, I = 0 since I is an ideal of A, which is a contradiction. Hence, A ./ I is
never a valuation ring.

Now, we construct new examples of valuation rings.

Example 3.4 Let A := K be a field and let B := K[[X]] be the ring of
formal power series in an indeterminate X and with coefficient in K. Consider
f : A ↪→ B be an injective ring homomorphism and J := XK[[X]] be the
maximal ideal of B. Then A ./f J is a valuation ring.
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Proof. It is clear that f(A) + J = K + XK[[X]] = K[[X]] which is a valua-
tion domain. Since f(A) ∩ J = K ∩XK[[X]] = (0), then by Proposition 3.1,
A ./f J is a valuation ring.

We recall that for a ring A and an A−module E. The trivial ring extension
of A by E (also called idealization of E over A) is the ring R := A ∝ E whose
underlying group is A×E with multiplication given by (a, e)(a′, e′) = (aa′, ae′+
ea′). Trivial ring extensions have been studied extensively. Considerable work,
part of is summarized in Glaz’s book [21] and Huckaba’s book [23], has been
concerned with trivial ring extension.

Example 3.5 Let A be a valuation domain, E be a non-torsion A−module
with E ' qf(A) and let B := A ∝ E be the trivial ring extension of A by E.
Consider

f : A ↪→ B
a ↪→ f(a) = (a, 0)

be an injective ring homomorphism and J := 0 ∝ E be a proper ideal of B.
Then A ./f J is a valuation ring.

Proof. We have f(A) ∩ J = (A ∝ 0) ∩ (0 ∝ E) = (0) and f(A) + J = A ∝
0 + 0 ∝ E = A ∝ E which is a valuation ring by [25, Theorem 2.1]. Hence, by
application to Proposition 3.1, we obtain A ./f J is a valuation ring.

The following Theorem develops a result on the transfer of the weak global
dimension ≤ 1 to amalgamation of rings A ./f J .

Theorem 3.6 Let (A,B) be a pair of rings, f : A → B be a ring homomor-
phism and J be a non-zero ideal of B. Then :
wdim(A ./f J) ≤ 1, if and only if the following statements hold :
(a) wdim(A) ≤ 1 and J ∩Nilp(B) = (0).
(b) ∀m ∈ Max(A) / m 6⊇ f−1(J), Am is a valuation domain.
(c) ∀m ∈ Max(A) / m ⊇ f−1(J), fm is injective, fm(Am) + JS is a valuation
domain and fm(Am) ∩ JS = (0) with :
fm : Am → BS

fm(a
s
) = f(a)

f(s)
be a ring homomorphism and S := f(A\m)+J be a multiplicative

subset of B.
(d) BQ is a valuation domain ∀Q ∈Max(B)\V (J).

The proof of this Theorem involves the following Lemmas.

Lemma 3.7 [4, Theorem 4.8]
Let R be a ring. The following conditions are equivalent :
(1) wdim(R) ≤ 1.
(2) R is an arithmetical reduced ring.
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It is proved in [24] that R is an arithmetical ring if and only if each localization
Rm at a maximal ideal m is a valuation ring. Also, we will frequent use that
a local gaussian reduced ring is a valuation domain.

Lemma 3.8 ([11, Proposition 2.6]). Let f : A→ B be a ring homomorphism
and J be an ideal of B. For all P ∈ Spec(A), and Q ∈ Spec(B), consider

the set P ′f := P ./f J := {(p, f(p) + i)/p ∈ P, i ∈ J} and the set Q
f

:=
{(a, f(a) + j)/a ∈ A, j ∈ J and f(a) + j ∈ Q }. Then :

(1) The prime ideals of A ./f J are of the type P ′f or Q
f
, for all P ∈ Spec(A)

and Q ∈ Spec(B)\V (J).

(2) The maximal ideals of A ./f J are of the type M ′f or Q
f
, for all M ∈

Max(A) and Q ∈Max(B)\V (J).

Lemma 3.9 [15, Proposition 1.49]
Let (A,B) be a pair of rings, f : A → B be a ring homomorphism and J be
an ideal of B. Then :
(1) For every prime ideal Q of B not containing J , the ring (A ./f J)Q̄f is
canonically isomorphic to BQ.
(2) Let P be a prime ideal of A. Consider the multiplicative subset S := SP :=
S(P,f,J) := f(A\P ) + J of B, set BS := S−1B and JS := S−1J . Let fP : AP →
BS be the ring homomorphism induced by f. Then, the ring (A ./f J)P ′f is
isomorphic to AP ./fP JS. In particular, for every prime ideal P of A not
containing f−1(J), (A ./f J)P ′f is isomorphic to AP .

Proof of Theorem 3.6 Suppose that wdim(A ./f J) ≤ 1.
(a) By Lemma 3.7, A ./f J is an arithmetical reduced ring. So, A is an arith-
metical ring since the arithmetical property is stable under factor rings (here

A ∼= A./fJ
{0}×{J} , from [10, Proposition 5.1 (3)]). By [10, Proposition 5.4], A is a re-

duced ring and J∩Nilp(B) = (0). Hence, wdim(A) ≤ 1 and J∩Nilp(B) = (0),
as desired.
(b) Let m ∈ Max(A) / m 6⊇ f−1(J). Then, by (2) of Lemma 3.9, (A ./f

J)m′f
∼= Am. In fact of view A ./f J is an arithmetical ring, it follows that

(A ./f J)m′f is an arithmetical local reduced ring, which is a valuation domain,
making Am a valuation domain.
(c) Let m ∈ Max(A) / m ⊇ f−1(J). By (2) of Lemma 3.9, (A ./f J)m′f

∼=
Am ./fm JS with :
fm : Am → BS

fm(a
s
) = f(a)

f(s)
be a ring homomorphism. Using the fact J 6= (0), there is some

0 6= x ∈ J and so x
1
∈ JS = S−1J . Consequently, JS 6= (0). By assumption,

A ./f J is an arithmetical reduced ring. So, (A ./f J)m′f
∼= Am ./fm JS is

a valuation domain. By Proposition 3.1, fm is injective, fm(Am) + JS is a
valuation ring and f(Am)∩JS = (0). From [10, Proposition 5.2], fm(Am) +JS
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is a valuation domain since Am ./fm JS is a domain.
(d) By (1) of Lemma 3.9, ∀Q ∈ Max(B)\V (J), (A ./f J)Q̄f is canonically
isomorphic to BQ which is a valuation domain since (A ./f J)Q̄f is a valuation
domain.
Conversely, assume that (a), (b), (c) and (d) hold. We claim that wdim(A ./f

J) ≤ 1. By Lemma 3.7, we only need to prove that A ./f J is an arith-
metical reduced ring. Indeed, let Q ∈ Max(B)\V (J). By (1) of Lemma 3.9,
(A ./f J)Q̄f

∼= BQ. So, (A ./f J)Q̄f is a valuation domain since BQ is a valua-
tion domain. Let m ∈Max(A). We envisage two cases :
Case 1: m 6⊇ f−1(J). Then by (2) of Lemma 3.9, (A ./f J)m′f

∼= Am. Using
the fact Am is a valuation domain, it follows that (A ./f J)m′f is a valuation
domain.
Case 2: Assume that m ⊇ f−1(J). Then, by (2) of Lemma 3.9, (A ./f J)m′f

∼=
Am ./fm JS. Since fm is injective, fm(Am) + JS is a valuation domain and
f(Am)∩JS = (0), then by Proposition 3.1 and [10, Proposition 5.2], we obtain
Am ./fm JS is a valuation domain, making (A ./f J)m′f a valuation domain.
Hence, A ./f J is an arithmetical ring. Since wdim(A) ≤ 1, then A is a re-
duced ring and by assumption, J ∩ Nilp(B) = (0). So, by [10, Proposition
5.4], A ./f J is a reduced ring. Finally, wdim(A ./f J) ≤ 1, as desired.

The following corollary is a consequence of Theorem 3.6 and is [8, Theorem
4.1(1)].

Corollary 3.10 Let A be a ring and I be an nonzero ideal of A. Then,
wdim(A ./ I) ≤ 1 if and only if wdim(A) ≤ 1, for all m ∈ Max(A) ⊇ I,
Am is a valuation domain and Im = 0.

Theorem 3.6, generate new families of examples of Gaussian rings with weak
global dimension >1. Recall that that a local ring is Gaussian if ”for any
two elements a, b in the ring, we have < a, b >2=< a2 > or < b2 >; more-
over, if ab = 0 and, say, < a, b >2=< a2 >, then b2 = 0” (see [5, Theorem 2.2 ]).

Example 3.11 Let (A,m) be a local Gaussian ring, f : A→ B be a ring ho-
momorphism and J be a non-zero ideal of B such that J ⊆ Rad(B). Assume
that J2 = 0, and f(a)J = f(a)2J for all a ∈ m. Then :
(1) A ./f J is Gaussian.
(2) wdim(A ./f J) > 1.

Proof. (1) Our aim is to show that A ./f J is Gaussian.
By [15, Proposition 1.36 (6)],(A ./f J,m ./f J) is local. Let (a, f(a) + i) and
(b, f(b) + j) ∈ A ./f J . Then a and b ∈ A. We may assume that a, b ∈ m and
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< a, b >2=< a2 >. Therefore, b2 = a2x and ab = a2y for some x, y ∈ A. More-
over ab = 0 implies that b2 = 0. By assumption, there exist j1, i1, j2, i2, i3 ∈ J
such that 2f(b)j = f(a)2f(x)j1, 2f(a)if(x) = f(a)2i1, f(a)j = f(a)2j2,
f(b)i = f(a)2f(x)i2 and 2f(a)if(y) = f(a)2i3. In view of the fact J2 = 0,
one can easily check that (b, f(b) + j)2 = (a, f(a) + i)2(x, f(x) + f(x)j1 − i1)
and (a, f(a) + i)(b, f(b) + j) = (a, f(a) + i)2(y, f(y) + f(x)i2 + j2 − i3). More-
over, assume that (a, f(a) + i)(b, f(b) + j) = (0, 0). Hence, ab = 0 and so
b2 = 0. Using the fact J2 = 0 and f(a)J = f(a)2J for all a ∈ m, it follows
that (b, f(b) + j)2 = (0, 0). Finally, A ./f J is Gaussian.
(2) By Theorem 3.6, wdim(A ./f J) > 1 since J ⊂ Nilp(B).

Now, we construct a new example of Prüfer ring with weak global dimension>
1.

Example 3.12 Let (A1,m1) be a non-reduced local ring such that m2
1 = 0

(for instance (A1,m1) := (Z/4Z, 2Z/4Z)), E be a non-zero A1

m1
−vector space.

Consider (A,m) := (A1 ∝ E,m1 ∝ E) be the trivial ring extension of A1 by
E. Let B := A1, f : A→ B be a surjective ring homomorphism and J := m1

be a proper ideal of B. Then :
(1) A ./f J is a Prüfer ring.
(2) wdim(A ./f J) > 1.

Proof. (1) We claim that A ./f J is a total ring of quotients. Indeed, since f
is surjective, then J ⊂ f(A). By [2, Theorem 3.1 (1)], A is a local total ring of
quotient. Using the fact J = Rad(B), by application to [15, Proposition 1.74],
we obtain A ./f J is a total ring of quotients. Hence, A ./f J is a Prüfer ring.
(2) By Theorem 3.6, wdim(A ./f J) > 1 since J ∩Nilp(B) = m1 = J 6= (0).

Recall that by [4, Theorem 3.3], a ring R is semihereditary if and only if it
is coherent and has weak global dimension at most 1. By application to the
characterization of semihereditary property above, we establish the transfer of
semihereditary property to A ./f J .

Theorem 3.13 Let (A,B) be a pair of rings, f : A→ B be a ring homomor-
phism and J be a nonzero ideal of B. Assume that J and f−1(J) are finitely
generated ideals of f(A) + J and A. Then :
A ./f J is semihereditary if and only if the following statements hold :
(a) A is semihereditary and J ∩Nilp(B) = (0).
(b) f(A) + J is coherent.
(c) ∀m ∈ Max(A) / m 6⊇ f−1(J), Am is a valuation domain.
(d) ∀m ∈ Max(A) / m ⊇ f−1(J), fm is injective, fm(Am) + JS is a valuation
domain and fm(Am) ∩ JS = (0) with :
fm : Am → BS
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fm(a
s
) = f(a)

f(s)
be a ring homomorphism and S := f(A\m)+J be a multiplicative

subset of B.
(e) BQ is a valuation domain ∀Q ∈Max(B)\V (J).

Proof. Assume that A ./f J is semihereditary. By [4, Theorem 3.3], A ./f J is
coherent and wdim(A ./f J) ≤ 1. From [27, Theorem 2.2], A and f(A)+J are
coherent. So, (b) hold. By application to Theorem 3.6, it follows that (a), (c),
(d) and (e) hold. Conversely, assume that (a), (b), (c), (d) and (e) hold. Com-
bining Theorem 3.6 and [27, Theorem 2.2], it follows that wdim(A ./f J) ≤ 1
and A ./f J is coherent. Hence, A ./f J is semihereditary, as desired.

The following corollary is a consequence of Theorem 3.13 and is [8, Theorem
4.1(2)].

Corollary 3.14 Let A be a ring and I be a nonzero finitely generated ideal of
A. Then, A ./ I is semihereditary if and only if A is semihereditary, for all
m ∈Max(A) ⊇ I, Am is a valuation domain and Im = 0 .

4 Conclusion

These are the main results of the paper.

Proposition 4.1 Let (A,B) be a pair of rings, f : A → B be a ring homo-
morphism and J be a non-zero ideal of B. Then A ./f J is a valuation ring if
and only if f is injective, f(A) + J is a valuation ring and f(A) ∩ J = (0).

Theorem 4.2 Let (A,B) be a pair of rings, f : A → B be a ring homomor-
phism and J be a non-zero ideal of B. Then :
wdim(A ./f J) ≤ 1, if and only if the following statements hold :
(a) wdim(A) ≤ 1 and J ∩Nilp(B) = (0).
(b) ∀m ∈ Max(A) / m 6⊇ f−1(J), Am is a valuation domain.
(c) ∀m ∈ Max(A) / m ⊇ f−1(J), fm is injective, fm(Am) + JS is a valuation
domain and fm(Am) ∩ JS = (0) with :
fm : Am → BS

fm(a
s
) = f(a)

f(s)
be a ring homomorphism and S := f(A\m)+J be a multiplicative

subset of B.
(d) BQ is a valuation domain ∀Q ∈Max(B)\V (J).

Theorem 4.3 Let (A,B) be a pair of rings, f : A → B be a ring homomor-
phism and J be a nonzero ideal of B. Assume that J and f−1(J) are finitely
generated ideals of f(A) + J and A. Then :
A ./f J is semihereditary if and only if the following statements hold :
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(a) A is semihereditary and J ∩Nilp(B) = (0).
(b) f(A) + J is coherent.
(c) ∀m ∈ Max(A) / m 6⊇ f−1(J), Am is a valuation domain.
(d) ∀m ∈ Max(A) / m ⊇ f−1(J), fm is injective, fm(Am) + JS is a valuation
domain and fm(Am) ∩ JS = (0) with :
fm : Am → BS

fm(a
s
) = f(a)

f(s)
be a ring homomorphism and S := f(A\m)+J be a multiplicative

subset of B.
(e) BQ is a valuation domain ∀Q ∈Max(B)\V (J).

5 Open Problem

Question 1. Let (A,B) be a pair of commutative rings, f : A → B be a ring
homomorphism and J be a nonzero ideal of B such that f−1(J) and J are not
necessarily finitely generated ideals of f(A) + J and A. Is Theorem 3.13 true
?

Question 2. Let (A,B) be a pair of non commutative rings, f : A→ B be
a ring homomorphism and J be a nonzero ideal of B. Is wdim(A) ≤ 1 if and
only if wdim(A ./f J) ≤ 1, in general ?

ACKNOWLEDGEMENTS. The authors thank the referee for his/her
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Prüfer conditions, J. of Pure Appl. Algebra 214 (2010) 53-60.

[3] C. Bakkari, N. Mahdou and H. Mouanis, Prüfer-like Conditions in Sub-
rings Retract and Applications, Comm. Algebra 37 (1) (2009) 47-55.
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