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Taibah-University, Faculty of Science, Department of Mathematics,
Al Madinah Al Munawwarah, P.O. Box 30097, Zip Code 41477,

Kingdom of Saudi Arabia.
e-mail: iqbal501@hotmail.com and raissouli 10@hotmail.com

Abstract

In this paper, some iterative algorithms in the 2-inner product
space Rn are constructed and studied. Open problems are derived
as well.

Keywords: 2-Norm, 2-Inner Product, Duality, Iterative Algorithms, Point-
Wise Convergence

2010 Mathematics Subject Classification: 41A15, 41A65.

1 Introduction

The concepts of linear 2-normed spaces and 2-inner product spaces have
been extensively studied and developed in different subjects by many authors,
see [1, 2, 3] for instance and the related references cited therein.

In this section, we will recall some basic notions and results needed through-
out the paper. Let X be a linear space of dimension greater than 1 over the
field K = R or K = C. Let ‖., .‖ be a real-valued function on X×X satisfying
the following conditions:
(2n1) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(2n2) ‖x, y‖ = ‖y, x‖ for all x, y ∈ X,
(2n3) ‖λx, y‖ = |λ|‖x, y‖ for all λ ∈ K and all x, y ∈ X,
(2n4) ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, z ∈ X.
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Then ‖., .‖ is called a 2-norm on X and (X, ‖., .‖) is called a 2-normed space.
Some of the basic properties of the 2-norms are that they are non-negative and
‖x, y + αx‖ = ‖x, y‖ for every x, y ∈ X and α ∈ K.

Under the same assumptions over X, let (., .|.) be a K-valued function
defined on X ×X ×X satisfying the following conditions:
(2i1) (x, x|z) ≥ 0 for all x, z ∈ X, and,
(x, x|z) = 0 if and only if x and z are linearly dependent,
(2i2) (x, x|z) = (z, z|x) for all x, z ∈ X,
(2i3) (x, y|z) = (y, x|z) for all x, y, z ∈ X,
(2i4) (λx, y|z) = λ(x, y|z) for all λ ∈ K and all x, y, z ∈ X,
(2i5) (x1 + x2, y|z) = (x1, y|z) + (x2, y|z) for all x1, x2, y, z ∈ X.
Then (., .|.) is called a 2-inner product on X and (X, (., .|.)) is called a 2-inner
product space. Whenever a 2-inner product (., .|.) on X is given, we can define
an associate 2-norm on X defined by

∀x, z ∈ X ‖x, z‖ =
√

(x, x|z)

Some basic properties of the 2-inner product (., .|.) are recited in the fol-
lowing.
(i) For all x, y ∈ X, one has (x, y|y) = 0 and (x, y|0) = 0
(ii) The analogue of the standard Cauchy-Schwartz inequality holds, i.e. for
all x, y, z ∈ X,

|(x, y|z)| ≤
√

(x, x|z)
√

(y, y|z) = ‖x, z‖‖y, z‖ (1.1)

(iii) If (X, (.|.) is an inner product space, then we can define a 2-inner product
(., .|.) on X by setting

∀x, y, z ∈ X (x, y|z) = (x|y)‖z‖2 − (x|z)(y|z) (1.2)

Let Rn be the classical finite dimensional space with n ≥ 2. By analogy
with its familiar norms, Rn can be equipped with the following standard 2-
norms: For all x = (x1, x2, ..., xn) ∈ Rn and y = (y1, y2, ..., yn) ∈ Rn, we
get

‖x, y‖1 =
∑

1≤i<j≤n

|xiyj − xjyi|,

‖x, y‖2 =

( ∑
1≤i<j≤n

(xiyj − xjyi)2
)1/2

,

‖x, y‖∞ = max
1≤i<j≤n

|xiyj − xjyi|.

The above 2-norm ‖., .‖2 derives from the classical 2-inner product of Rn, so-
called the euclidian 2-norm (resp. 2-inner product) of Rn, defined as follows

(x, y|z) =
∑

1≤i<j≤n

(xizj − xjzi)(yizj − yjzi),
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for all x = (x1, x2, ..., xn) ∈ Rn, y = (y1, y2, ..., yn) ∈ Rn and z = (z1, z2, ..., zn) ∈
Rn.

Generally, if p ∈ [1,∞] is an extended real number and we set

‖x, y‖p =

( ∑
1≤i<j≤n

|xiyj − xjyi|p
)1/p

,

then ‖., .‖p is a 2-norm on Rn, called power 2-norm of Rn. This power 2-norm
includes some of the most standard 2-norms of Rn. Namely, ‖., .‖p gives ‖., .‖1
and ‖., .‖2 when we take p = 1 and p = 2 respectively, and ‖., .‖p extends also
‖., .‖∞ in the following sense

∀x, y ∈ Rn ‖x, y‖∞ = lim
p→∞
‖x, y‖p.

For p ∈ [1,∞], we denote by p∗ its conjugate defined by 1/p + 1/p∗ = 1 i.e.
p∗ = p/p − 1 with the convention, if p = 1 then p∗ = ∞ and if p = ∞ then
p∗ = 1. With this, the above power 2-norm ‖., .‖p of Rn satisfies the following
properties:
• An analogue of Hölder inequality holds, i.e. for all x, y, z ∈ Rn one has

|(x, y|z)| ≤ ‖x, z‖p‖y, z‖p∗ .

For p = 2, this inequality remains the Cauchy-Schwartz one.
• For all x, y ∈ Rn we have

‖x, y‖p ≤
1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞.

In particular, for all x, y ∈ Rn one has

2‖x, y‖2 ≤ ‖x, y‖1 + ‖x, y‖∞.

• The map p 7−→ ‖., .‖p is point-wisely monotone decreasing on [1,∞[, [4], in
the sense that, for all x, y ∈ Rn there holds

p ≥ q ≥ 1 =⇒ ‖x, y‖p ≤ ‖x, y‖q.

In particular, the following double inequality

‖x, y‖∞ ≤ ‖x, y‖2 ≤ ‖x, y‖1,

holds for all x, y ∈ Rn.
The remainder of this paper will be organized as follows: After this intro-

duction, Section 2 turns out of the duality notion of maps together with some
properties that will be needed in the sequel. Section 3 is focused to construct
an iterative algorithm converging, for the point-wise topology, to the euclidian
2-norm of Rn. In Section 4, we present a generalized algorithm, extending the
above one and we study its point-wise convergence. This section will be ended
by summarizing the above results in the aim to put some open problems.
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2 Duality in the 2-Inner Product Rn

We preserve the same notations as in the previous section. We precise here
some additional notions. Let b ∈ Rn with b 6= 0. The notation < b > refers
to the subspace of Rn generated by b i.e. < b >= {tb, t ∈ R}. With this, we
may state the following.

Definition 2.1 Let θ(., .) : Rn × Rn −→ [0,+∞] be a map satisfying the
condition (2n1) and let b ∈ Rn with b 6= 0.
• The b-dual of θ(., .) is the real-valued map θ∗b : Rn −→ [0,+∞] defined by

∀x ∈ Rn θ∗b (x) = sup
y/∈<b>

|(x, y|b)|
θ(y, b)

.

• The pseudo-dual of θ(., .) is the map θ∗(., .) : Rn × Rn −→ [0,+∞] defined
by

∀x, z ∈ Rn θ∗(x, z) = θ∗z(x) if z 6= 0 and θ∗(x, 0) = 0.

We explicitly notice that the above maps θ(., .), θ∗b (.) and θ∗(., .) can take the
value +∞, with the convention 1/ +∞ = 0 and 0/0 = +∞. It is easy to see
that θ∗b (x) = 0 if and only if x ∈< b >, that is, θ∗(., .) satisfies the condition
(2n1). If θ(., .) is a 2-norm of Rn with pseudo-dual θ∗(., .) also a 2-norm, we
say that θ(., .) is a regular 2-norm of Rn. As we shall see later, all the above
standard 2-norms of Rn are regular.

The elementary properties of the duality notion are summarized in the
following.

Proposition 2.1 With the above, the following assertions are met.
1. For all x ∈ Rn,

θ∗b (x) = sup

{
|(x, y|b)|
θ(y, b)

, θ(y, b) > 0

}
= sup

{
|(x, y|b)|
θ(y, b)

, 0 < θ(y, b) < +∞
}
.

2. For all x, z ∈ Rn,

θ∗(x, z) = sup{|(x, y|z)|; y ∈ Rn, θ(y, z) ≤ 1}.

3. For all x, y, z ∈ Rn,

|(x, y|z)| ≤ θ∗(x, z)θ(y, z). (2.1)

In particular, for all x, z ∈ Rn we have

‖x, z‖22 ≤ θ(x, z)θ∗(x, z).

4. For all θ(., .) satisfying (2n1) one has

θ∗∗(., .) := (θ∗)∗(., .) ≤ θ(., .).
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Proof. It is straightforward and we omit the details here.

The set of all (extended) real maps defined on Rn × Rn into [0,+∞] can
be equipped with a partial ordering, called point-wise order, defined by the
following way. For θ1(., .) and θ2(., .), we write θ1(., .) ≤ θ2(., .) if and only if
θ1(x, y) ≤ θ2(x, y) for all x, y ∈ Rn, where we extend the classical order of R
to R∪ {+∞} by setting t ≤ +∞ for all t ∈ R∪ {+∞}. With this it is easy to
see that, if θ1(., .) and θ2(., .) are two maps satisfying the condition (2n1) with
θ1(., .) ≤ θ2(., .) then θ∗1(., .) ≥ θ∗2(., .).

Proposition 2.2 The Euclidian 2-norm ‖., .‖2 of Rn is regular and self-dual,
that is,

∀x, z ∈ Rn ‖x, z‖∗2 = ‖x, z‖2.

Further, ‖., .‖2 is the unique self-dual 2-norm of Rn.

Proof. If x and z are linearly dependent then ‖x, z‖∗2 = ‖x, z‖2 = 0. Assume
that below x and z are linearly independent. By definition with Cauchy-
Schwartz inequality we obtain

‖x, z‖∗2 := sup

{
|(x, y|z)|
‖y, z‖2

; y ∈ Rn, ‖y, z‖2 > 0

}
≤ ‖x, z‖2. (2.2)

Moreover, in (2.2) the upper bound ‖x, z‖2 is attained by the ”sup” for y =
x

‖x, z‖2
. It follows that ‖., .‖2 is a regular and self-dual 2-norm of Rn.

Now, let θ(., .) be a self-dual 2-norm of Rn, we will prove that θ(., .) = ‖., .‖2.
Indeed, according to inequality (2.1), with the fact that θ∗(x, z) = θ(x, z) for
all x, z ∈ Rn, we deduce that

∀x, z ∈ Rn θ(x, z) ≥ ‖x, z‖2,

which, by taking the pseudo-dual, implies that

∀x, z ∈ Rn θ∗(x, z) = θ(x, z) ≤ ‖x, z‖∗2 = ‖x, z‖2.

The desired result follows so completes the proof.

Proposition 2.3 For all p ∈ [1,∞], the power 2-norm ‖., .‖p of Rn is regular
with the relationship

‖., .‖∗p = ‖., .‖p∗ .

In particular, ‖., .‖1 and ‖., .‖∞ are regular and mutually dual. Again ‖., .‖2 is
regular and self-dual.
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Proof. Analogously to the proof of Proposition 2.2 we can assume that x
and z are linearly independent. It is well known that the Hölder inequality is
the best possible, that is,

sup

{
|(x, y|z)|
‖y, z‖p

; y ∈ Rn, ‖y, z‖p > 0

}
= ‖x, z‖p∗ . (2.3)

We then deduce that ‖., .‖∗p = ‖., .‖p∗ and so ‖., .‖∗p is a 2-norm then ‖., .‖p
is regular. Taking p = 1, p = +∞ and p = 2 we obtain the rest of the
proposition. The proof is so complete.

Proposition 2.4 Let θ1(., .) : Rn ×Rn −→ [0,+∞] and θ2(., .) : Rn ×Rn −→
[0,+∞] be two maps satisfying the condition (2n1) and let p ∈]1,∞[. Then
there holds (

1

p
θ1(., .) +

1

p∗
θ2(., .)

)∗
≤ 1

p
θ∗1(., .) +

1

p∗
θ∗2(., .). (2.4)

Proof. By definition, for all x, z ∈ Rn with z 6= 0 we have(
1

p
θ1(., .) +

1

p∗
θ2(., .)

)∗
(x, z)

= sup

{
|(x, y|z)|

1
p
θ1(y, z) + 1

p∗
θ2(y, z)

; y ∈ Rn, 0 < θ1(y, z) < +∞, 0 < θ2(y, z) < +∞

}
.

(2.5)

By convexity of the real-mapping t 7−→ 1/t, t ∈]0,+∞[, one has

|(x, y|z)|
1
p
θ1(y, z) + 1

p∗
θ2(y, z)

≤ 1

p

|(x, y|z)|
θ1(y, z)

+
1

p∗
|(x, y|z)|
θ2(y, z)

. (2.6)

Combining (2.5) and (2.6), the desired result follows by the subadditivity of
the ”sup” with an elementary manipulation, thus completes the proof.

We end this section by introducing some notions needed later. Let (θk(., .))k
be a sequence of real maps defined on Rn×Rn. We say that (θk(., .))k converges
point-wisely to a map θ(., .) if for all x, y ∈ Rn, θk(x, y) converges (in R) to
θ(x, y). The map θ(., .) will be called the point-wise limit of the sequence
(θk(., .))k.

We say that (θk(., .))k is point-wisely monotone decreasing if and only if

θk+1(x, y) ≤ θk(x, y) (2.7)

for all k ≥ 0 and all x, y ∈ Rn. The following result, needed in the sequel, may
be stated.
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Proposition 2.5 Let (θk(., .))k be a sequence of maps defined from Rn × Rn

into [0,+∞] such that:
(i) (θk(., .))k converges point-wisely to a map θ(., .) satisfying the condition
(2n1),
(ii) For all k ≥ 0, the map θk(., .) satisfies the condition (2n1),
(iii) (θk(., .))k is point-wise monotone decreasing.
Then

(
(θk)∗(., .)

)
k

is increasingly convergent point-wisely to θ∗(., .).

Proof. Since the sequence (θk(., .))k satisfies (ii) and (iii) then, for all
x, z ∈ Rn with z 6= 0, we have successively

θ∗(x, z) = sup
θ(y,z)>0

|(x, y|z)|
θ(y, z)

= sup
θ(y,z)>0

|(x, y|z)|
infk≥0 θk(y, z)

or again

θ∗(x, z) = sup
θ(y,z)>0

sup
k≥0

|(x, y|z)|
θk(y, z)

= sup
k≥0

sup
θ(y,z)>0

|(x, y|z)|
θk(y, z)

.

It is easy to verify that θ(y, z) > 0 if and only if θk(y, z) > 0 for each k ≥ 0.
So we deduce that

θ∗(x, z) = sup
k≥0

sup
θk(y,z)>0

|(x, y|z)|
θk(y, z)

= sup
k≥0

(θk)∗(x, z).

The fact that (θk(., .)) is point-wisely decreasing implies that
(
(θk)∗(., .)

)
k

is
point-wise incresing, the desired result follows and the proof is complete.

Remark 2.1 We left the reader to verify throughout a counter-example that
the conclusion of the above proposition does not hold if the sequence (θk(., .))k
is point-wise monotone increasing.

3 Algorithm Converging to the 2-Norm ‖., .‖2

of Rn

For all x, y ∈ Rn, let us define the following recursive process

Λ0(x, y) = ‖x, y‖1, Λk+1(x, y) =
1

2
Λk(x, y) +

1

2

(
Λk
)∗

(x, y), k ≥ 0. (3.1)

Theorem 3.1 With the above, the sequence (Λk)k converges point-wisely to
the euclidian 2-norm of Rn, i.e.

∀x, y ∈ Rn ‖x, y‖2 = lim
k→∞

Λk(x, y).
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Moreover, the following estimation inequality holds

∀k ≥ 0, ∀x, y ∈ Rn 0 ≤ Λk(x, y)− ‖x, y‖2 ≤
1

2k
(‖x, y‖1 − ‖x, y‖∞) .

Proof. If x and y are linearly dependent then the desired result is immediate.
Assume that x and y are linearly independent. By (2.1) with (3.1), we have

Λk+1(x, y) ≥ 1

2
Λk(x, y) +

1

2

|(x, x|y|
Λk(x, y)

. (3.2)

By the increase monotonicity and concavity of the real-map t 7−→ ln t, t ∈
]0,+∞[, inequality (3.2) implies that

ln Λk+1(x, y) ≥ 1

2
ln Λk(x, y) +

1

2

(
ln |(x, x|y)| − ln Λk(x, y)

)
,

or again, after a simple reduction

ln Λk+1(x, y) ≥ 1

2
ln |(x, x|y)| = ln ‖x, y‖2.

This, with the fact that ‖x, y‖2 ≤ ‖x, y‖1 := Λ0(x, y), yields

Λk(x, y) ≥ ‖x, y‖2,

for all k ≥ 0. Since ‖., .‖2 is self-dual, the above inequality implies the following
one

(Λk)∗(x, y) ≤ ‖x, y‖2,

for all k ≥ 0. Now, we have

0 ≤ Λk+1(x, y)−‖x, y‖2 =
1

2

(
Λk(x, y)− ‖x, y‖2

)
+

1

2

(
(Λk)∗(x, y)− ‖x, y‖2

)
≤ 1

2

(
Λk(x, y)− ‖x, y‖2

)
,

from which, by mathematical induction on k ≥ 0, we deduce that

0 ≤ Λk(x, y)− ‖x, y‖2 ≤
1

2k
(‖x, y‖1 − ‖x, y‖2) ,

for all k ≥ 0 and all x, y ∈ Rn. The desired result follows from the fact that
‖x, y‖∞ ≤ ‖x, y‖2, so completes the proof.

Remark 3.1 Using Proposition 2.4 with Proposition 2.1,3., another different
proof for showing the above theorem is possible. For analogue idea, see the
proof of Theorem 4.2 below. We left the details here.
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Remark 3.2 With the above, let us set, for all x, y ∈ Rn

Ek(x, y) = Λk(x, y)− ‖x, y‖2,

called the error estimation for the point-wise convergence of (Λk)k to ‖., .‖2.
Following the above proof, it is proved that

0 ≤ Ek+1(x, y) ≤ 1

2
Ek(x, y) ≤ ... ≤ 1

2k
E0(x, y).

That is to say that (Λk)k converges point-wisely to ‖., .‖2 with a geometric
speed.

4 Generalized Iterative Algorithm

As already pointed out, this section investigates a converging algorithm
extending the above one. Let p ∈ [1,∞] be as in the above and define the
sequence (Υk

p(., .))k by the following iterate process

Υk+1
p (x, y) =

1

p
Υk
p(x, y) +

1

p∗
(
Υk
p∗

)∗
(x, y), k ≥ 0; Υ0

p(x, y) = ‖x, y‖1 (4.1)

It is easy to see that, for all p ∈ [1,∞] and k ≥ 0, the map Υk
p(., .) is defined

from Rn × Rn into [0,+∞[. Further Υk
p(., .) satisfies the condition (2n1) and

so the above algorithm is recursively well defined. Let us remark that

Υ1
p(x, y) =

1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞

and, Υk
1(x, y) = ‖x, y‖1, Υk

∞(x, y) = ‖x, y‖∞ for all k ≥ 0. Below, we can then
assume that 1 < p < ∞. Clearly, for p = 2, algorithm (4.1) coincides with
(3.1).

Proposition 4.1 For all 1 < p <∞, the following assertions are met:
1. For every k ≥ 0 and all x, y ∈ Rn,

(
Υk
p∗

)∗
(x, y) ≤ Υk

p(x, y).
2. The sequence (Υk

p(., .))k is point-wisely monotonic decreasing.

Proof.
1. For k = 0 it is trivial. By Proposition 2.4 with Proposition 2.1,3., we

obtain for all x, y ∈ Rn,(
Υk+1
p∗

)∗
(x, y) ≤ 1

p∗
(
Υk
p∗

)∗
(x, y) +

1

p
Υk
p(x, y) = Υk+1

p (x, y), (4.2)

which gives the desired inequality.
2. Substituting the above inequality in (4.1), we immediately deduce the
point-wise decreasing monotonicity of the sequence (Υk

p(., .))k. The proof is
thus complete.



58 Iqbal H. Jebril and Mustapha Räıssouli

Theorem 4.2 The sequence (Υk
p(., .))k converges point-wisely to a map Υp(., .)

satisfying the condition (2n1). Furthermore, the following estimation

0 ≤ Υk
p(x, y)−Υp(x, y) ≤ 1

pk
(‖x, y‖1 − ‖x, y‖∞) (4.3)

holds for all k ≥ 0 and all x, y ∈ Rn.

Proof. According to Proposition 4.1, we have

‖x, y‖∞ ≤ ... ≤
(
Υk−1
p∗

)∗
(x, y) ≤

(
Υk
p∗

)∗
(x, y)

≤ Υk
p(x, y) ≤ Υk−1

p (x, y) ≤ ... ≤ ‖x, y‖1, (4.4)

for all k ≥ 0 and all x, y ∈ Rn. It follows that, for all x, y ∈ Rn, the real
sequences

(
Υk
p(x, y)

)
k

is monotone decreasing and lower bounded, so it is con-

vergent in R. Proposition 2.5, with (4.4), tells us that
(
Υk
p(., .)

)
k

converges
point-wisely to a map denoted by Υp(., .) and satisfying condition (2n1). To
prove the estimation (4.3), we first remark that,(

Υk
p∗

)∗
(x, y) ≤ Υp(x, y) ≤ Υk

p(x, y),

which with the fact that

Υk+1
p (x, y)−Υp(x, y) =

1

p

(
Υk
p(x, y)−Υp(x, y)

)
+

1

p∗

((
Υk
p∗

)∗
(x, y)−Υp(x, y)

)
,

yields the following double inequality

0 ≤ Υk+1
p (x, y)−Υp(x, y) ≤ 1

p

(
Υk
p(x, y)−Υp(x, y)

)
,

for all k ≥ 0 and all x, y ∈ Rn. The desired result follows by a mathematical
induction with a simple manipulation. The proof of the theorem is complete.

Corollary 4.3 For every 1 < p <∞ and all x, y ∈ Rn, the following proper-
ties hold

(i) Υp(x, y) ≤ 1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞.

(ii) (Υp)
∗ (x, y) = Υp∗(x, y). In particular, one has Υ2(x, y) = ‖x, y‖2.

Proof.
(i) By the point-wise decrease monotonicity of

(
Υk
p(., .)

)
k

we have

Υk
p(x, y) ≤ Υ1

p(x, y) =
1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞.
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Letting k →∞ in this latter inequality we obtain the desired result.
(ii) Since

(
Υk
p(., .)

)
k

converges point-wisely to Υp(., .) for every 1 < p <∞ then(
Υk
p∗(., .)

)
k

converges point-wisely to Υp∗(., .). Algorithm (4.1), with Proposi-
tion 2.5, yields when k → ∞ the first relation of (ii). In particular, if p = 2
then p∗ = 2 and so (Υ2(., .))

∗ = Υ2(., .). Since ‖., .‖2 is the unique self-dual
2-norm of Rn, the second relation of (ii) is so obtained, thus concludes the
proof.

Proposition 4.4 For 1 < p < ∞, the map p 7−→ Υp(., .) is point-wisely
monotone decreasing. That is, for all x, y ∈ Rn we have

p ≥ q > 1 =⇒ Υp(x, y) ≤ Υq(x, y).

Proof. By a mathematical induction on k ≥ 1, we wish to establish that,
for all x, y ∈ Rn, we have Υk

p(x, y) ≤ Υk
q(x, y) whenever p ≥ q. For k = 1, it

is immediate from the decrease monotonicity of p 7−→ 1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞,

since ‖x, y‖∞ ≤ ‖x, y‖1. Now, assume that for p and q such that p ≥ q we
have Υk

p(x, y) ≤ Υk
q(x, y) for all x, y ∈ Rn. One has

Υk+1
p (x, y) =

1

p
Υk
p(x, y) +

1

p∗
(
Υk
p∗

)∗
(x, y) ≤ 1

p
Υk
q(x, y) +

1

p∗
(
Υk
q∗

)∗
(x, y).

(4.5)
According to Proposition 4.1, we have

(
Υk
q∗

)∗
(x, y) ≤ Υk

q(x, y) which, with
Proposition 2.4 and Proposition 2.1,3., yields

Υk+1
p (x, y) ≤ 1

q
Υk
q(x, y) +

1

q∗
(
Υk
q∗

)∗
(x, y) = Υk+1

q (x, y).

Summarizing, for k ≥ 0 and p ≥ q we have Υk
p(x, y) ≤ Υk

q(x, y) for all x, y ∈ Rn.
Letting k →∞ in this latter inequality we deduce the desired result.

A Hölder type inequality satisfied by the map Υp(., .) is recited in the
following.

Proposition 4.5 Let 1 ≤ p ≤ ∞ and x, y, z ∈ Rn then one has

|(x, y|z)| ≤ Υp(x, z)Υp∗(y, z). (4.6)

Proof. If y and z are linearly dependent then the first side of (4.6) is equal
to 0 and then the desired inequality is obvious. Assume that below y and z
are linearly independent. If p = 1 or p = ∞ then the inequality is obviously
satisfied. Assume that 1 < p <∞. Algorithm (4.1), with the definition of the
dual, gives

Υk+1
p (x, z) =

1

p
Υk
p(x, z) +

1

p∗
(
Υk
p∗

)∗
(x, z) ≥ 1

p
Υk
p(x, z) +

1

p∗
|(x, y|z)|
Υk
p∗(y, z)

.
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By Young’s inequality we deduce that

Υk+1
p (x, z) ≥

(
Υk
p(x, z)

)1/p |(x, y|z)|1/p∗(
Υk
p∗(y, z)

)1/p∗ .
This, when k →∞ and after a simple reduction, yields the desired result. The
proof is complete.

Following the above study, Υp(., .) satisfies the condition (2n1). It is easy
to see that the conditions (2n3) and (2n4) are also satisfied for Υp(., .), but
(2n2) is not obvious. We are in position to put the following open problem.

Problem 1. Prove or disprove that, for all p ∈]1,∞[, Υp(., .) is a 2-norm
of Rn.

Further, as we have seen, the map Υp(., .) enjoys similar properties as that
of ‖., .‖p. Itemizing, the following assertions have been obtained:
(i) p 7−→ ‖., .‖p and p 7−→ Υp(., .) are both point-wise monotone decreasing,

(ii) ‖x, y‖1 = Υ1(x, y), ‖x, y‖2 = Υ2(x, y) and ‖x, y‖∞ = Υ∞(x, y), for all
x, y ∈ Rn.

(iii) ‖., .‖∗p = ‖., .‖p∗ and Υ∗p(., .) = Υp∗(., .) for all 1 ≤ p ≤ ∞,

(iv) ‖x, y‖p ≤
1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞ and Υp(x, y) ≤ 1

p
‖x, y‖1 +

1

p∗
‖x, y‖∞,

for 1 ≤ p ≤ ∞ and all x, y ∈ Rn,

(v) |(x, y|z)| ≤ ‖x, z‖p‖y, z‖p∗ and |(x, y|z)| ≤ Υp(x, z)Υp∗(y, z), for all 1 ≤
p ≤ ∞ and all x, y, z ∈ Rn.

After this, it is natural to arise the following.

Problem 2. Prove or disprove that ‖., .‖p and Υp(., .) are algebraically
different.
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