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Abstract 

     During the last decades, no researches have conducted in order 

to prove some properties of the of the multivariate power series 

distribution, as results of the present study proved that any 

multivariate power series distribution is determined uniquely from 

the mean –function of any marginal random variable. Furthermore 

these results indicated also that any given function satisfying 

certain conditions construct a random vector with multivariate 

power series distribution which has a mean of the marginal random 

variable. A useful technique can be applied in model building when 

we have information about the mean- function.  
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1      Introduction 

Many authors deal with multivariate power series distributions and its theories.   

Korwar (1975), Dehiya and Korwar (1977), Katri (1978a, 1978b), 

Papageorgiou(1985), Kyriakoussis and Papageorgiou(1989) studied the 

generalization of characterization by conditional distributions and regression 
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function. Ghosh ,et.al., (1977) considered on his paper a characterization of 

positive and negative multinomial distributions and some properties of 

multivariate power series distributions. Rao and Janardan (1982) discussed a 

general approach to findings the moments of two classes of multivariate discrete 

distribution. Gupta and Das (2008) derived anew distribution called the quasi 

multivariate logarithmic series distribution (QMLSD) of order k from the 

multivariate able series distribution(MASDs) of order k. Simic (2009) calculated 

the moments of distributions as inflated parameter distribution has been discussed 

by Momeni (2011). Mahmoudi and Jafari (2012) obtained a new class of 

distribution contains several lifetime model by compound generalized exponential 

and power series distributions. Silva, et.al., (2013) introduced a new class of 

distributions which obtained by compounding the extended Weibull and power 

series distributions .However, the mentioned researchers have not discussed some 

properties of multivariate power series, such that the unique and the mean of 

marginal random variable. Therefore, the present study is an attempt to prove the 

followings: 

Firstly: Any multivariate power series distribution is determined uniquely from 

the mean-function of any marginal random variable. 

Secondly: Any given function satisfying certain conditions constructs   a random 

vector with multivariate power series distribution which has a mean of the 

marginal random variable. This paper is organized as follows, the first section is 

the introduction the second section is the methodology then the third section is an 

empirical example then the forth section is an open problem, then finally is the 

conclusion. 

2      Proposed Method 

1. Methodology  
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Using this limiting value we see that  1 1 2 2
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k k
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Because of these properties we say that  1 2
,  ,  ..., 

k
X X X  is a random vector with 

multivariate power series distribution in k -parameters.  

The function 
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f     called the defining function of the distribution of 
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Therefore,  1 2
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f    . Then,  
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Where   1 2 1 2
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Thus (i) is true, changing t by 
i

  we get 
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As before and without loss of generality we can assume in equation (5) that 

 1 1 1
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i i k
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, and hence equation (5) becomes  
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Since  1 2
,  , ..., 

k
f     has a Maclaurin expansion in  1 2

,  , ..., 
k

    with  non-

negative coefficients, then from equation (6) it follows that  
 1 2, , ..., 

e i k  
has a 

Maclaurin expansion with the same property. Therefore (ii) is true. This 

completes the proof of the theorem. 
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3      Demonstration Example 

In order to demonstrate the value of these theories, the following example is 

given. Example: Let   
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Therefore, there exists a random vector  1 2
,  ,  ..., 

k
X X X having multivariate 

power series distribution with:  
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as the mean of the marginal random variable 
i

X  the defining function of this 

random vector  1 2
,  ,  ..., 

k
X X X  is: 
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Without loss of generality we can assume A = 1, and hence equation (7) becomes  
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 This can be called the multivariate logarithmic distribution.  
 
 

4     Open Problem and Future Work  

 

As a future work in this area, the researchers can be focus in the following topics: 
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1- Characterization of polynomial distributions by condition distributions and 

restricted linear regression.  

2- The compound class of general gamma power series distributions.  

5     Conclusion 

 
In this study the authors has concluded the results that any multivariate power 

series distribution is determined uniquely from the mean –function of any 

marginal random variable. Furthermore these results indicated also that any given 

function satisfying certain conditions construct a random vector with multivariate 

power series distribution which has a mean of the marginal random variable. 
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