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Abstract

In this paper, we study the existence and uniqueness of so-
lutions for boundary value problems of fractional differential
equations using Caputo approach. The obtained results are
proved using the Banach contraction principle and Scheafer
fixed point theorem. We also provide some examples to illus-
trate the possible application of the established results.
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1 Introduction

Fractional calculus has attracted much interest in the last few decades. This
theory has many applications in control theory, edge detection, electrochem-
istry, electromagnetic, visco-elasticity, dynamics, rheology, and fluid mechanics
[7, 10, 11, 12, 19, 20]. The interested reader is referred to the references of
Podlubny [15], Kilbas [6], Samko and al [18] for further information and appli-
cations. Other recent works on this theory can be founded in [14, 13, 18, 17].
Moreover, the investigation for the existence solutions of fractional differential
equations have been developed very quickly, see for instance [1, 3, 4, 5].
In this paper we are concerned with the existence and uniqueness of solutions
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for the following problem:

Dαx(t) = f(t, x(t)), t ∈ [0, 1],
a1x (0) + b1x (1) = c1,
a2D

βx (0) + b2D
βx (1) = c2,

a3D
γx (0) + b3D

γx (1) = c3,

, (1)

where Dα, Dβ, Dγ denote the Caputo’s fractional derivatives with 2 < α < 3,
0 < β < 1, 1 < γ < 2, the real constants a1, a2, a3, b1, b2, b3, c1, c2, c3 satisfy
a1 + b1 6= 0, b2 6= 0, b3 6= 0 and f is a function that will be specified later.

2 Preliminaries

In this section, we give the necessary notation and basic definitions which will
be used in this paper.
Definition 2.1: The Riemann-Liouville fractional integral operator of order
α ≥ 0, for a continuous function f on [0,∞[ is defined as

Jαf(t) = 1
Γ(α)

∫ t
0
(t− τ)α−1f(τ)dτ ; α > 0, t > 0,

J0f(t) = f(t),
(2)

where Γ(α) :=
∫∞

0
e−uuα−1du.

Definition 2.2: The fractional derivative of f ∈ Cn([0,∞[) in the Caputo’s
sense is defined as

Dαf(t) =

{
1

Γ(n−α)

∫ t
0
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(3)

Details on Caputo’s derivative can be found in [15].
Let us now introduce C (J,R) the Banach space of all continuous functions
from J into R with the norm ‖ x ‖= supt∈J |x (t) |.
We give the following two lemmas [18]:

Lemma 2.1 For α > 0, the general solution of the fractional differential
Dαx = 0 is given by

x(t) = c0 + c1t+ c2t
2 + ...cn−1t

n−1, (4)

where ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.

Lemma 2.2 Let α > 0, then

JαDαx(t) = x(t) + c0 + c1t+ c2t
2 + ...cn−1t

n−1, (5)

for some ci ∈ R, i = 0, 1, 2, ...n− 1, n = [α] + 1.
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We prove the following result:

Lemma 2.3 Let 2 < α < 3. A solution of the problem (1) is given by:

x (t) = Jαf(t, x(t))− b1

a1 + b1


1∫

0

(1− τ)α−1

Γ (α)
f (τ, x (τ)) dτ

−Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2


− β

2− β

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

Γ (3− γ)


− c1

a1 + b1

−

Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2

 (6)

−Γ (3− γ)

(2− β)

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 t

−

Γ (3− γ)

2

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 t2.

Proof We use lemmas 2.1 and 2.2 for 2 < α < 3. We can write:

x (t) = Jαf (t, x (t))− k0 − k1t− k2t
2.

By the conditions of (1), we obtain

k0 =
b1

a1 + b1


1∫

0

(1− τ)α−1

Γ (α)
f (τ, x (τ)) dτ

− Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2


− β

2− β

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

Γ (3− γ)

− c1

a1 + b1

,
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k1 = Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2


− Γ (3− γ)

(2− β)

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 ,

k2 =
Γ (3− γ)

2

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 .
Lemma 2.3 is thus proved.

To prove our results, we need to define the operator Ψ : C ([0, 1] ,R) −→
C ([0, 1] ,R) as follows:

Ψx (t) = Jαf (t, x)− b1

a1 + b1


1∫

0

(1− τ)α−1

Γ (α)
f (τ, x (τ)) dτ

−Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2


− β

2− β

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

Γ (3− γ)


− c1

a1 + b1

−

Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (τ, x (τ)) dτ − c2

b2

 (7)

−Γ (3− γ)

2− β

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 t

−

Γ (3− γ)

2

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (τ, x (τ)) dτ − c3

b3

 t2.

3 Main Results

The following conditions are crucial to prove our results:
(H1) : The function f : [0, 1]× R→ R satisfies:
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|f (t, u)− f (t, u)| ≤ k (t) |u− u| ; t ∈ [0, 1] , u, u ∈ R,
where k a continuous function on [0, 1].

(H2) : The function f is continuous on [0, 1]× R.

(H3) : There exists a positive constant N such that |f (t, u)| ≤ N for any
t ∈ [0, 1] and u ∈ R.

Our first result is given by:

Theorem 3.1 Suppose that (H1) holds. If

‖k‖
[(

1

Γ (α + 1)
+

Γ (2− β)

Γ (α− β + 1)

)(
|b1|

|a1 + b1|
+ 1

)
+

(2− β)−1

Γ (α− γ + 1)

(
|b1| β
|a1 + b1|

+
4− β

2
Γ (3− γ)

)]
< 1, (8)

then the problem (1) has a unique solution in C ([0, 1] ,R) .

Proof: To prove this theorem, we need to prove that the operator Ψ has a
fixed point on C ([0, 1] ,R) .

Let x, x ∈ C ([0, 1] ,R) . Then for any t ∈ [0, 1] , we have

|Ψx (t)−Ψx (t)| ≤
t∫

0

(t− τ)α−1

Γ (α)
|f (τ, x (τ))− f (τ, x (τ))| dτ

+
|b1|

|a1 + b1|

1∫
0

(1− τ)α−1

Γ (α)
|f (τ, x (τ))− f (τ, x (τ))| dτ

+Γ (2− β)

(
|b1|

|a1 + b1|
+ 1

) 1∫
0

(1− τ)α−β−1

Γ (α− β)
|f (τ, x (τ))− f (τ, x (τ))| dτ (9)

+
β

2− β
|b1|

|a1 + b1|

1∫
0

(1− τ)α−γ−1

Γ (α− γ)
|f (τ, x (τ))− f (τ, x (τ))| dτ

+

(
4− β
4− 2β

Γ (3− γ)

) 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
|f (τ, x (t))− f (t, x (τ))| dτ.

Thanks to (H1) , we obtain
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‖Ψx−Ψx‖ ≤ ‖k‖
[(

1

Γ (α + 1)
+

Γ (2− β)

Γ (α− β + 1)

)(
|b1|

|a1 + b1|
+ 1

)
+

(2− β)−1

Γ (α− γ + 1)

(
|b1| β
|a1 + b1|

+
4− β

2
Γ (3− γ)

)]
‖x− x‖ . (10)

Using the condition (8) , we conclude that Ψ is a contraction mapping. Hence,
by Banach fixed point theorem, there exists a unique fixed point in C ([0, 1] ,R) ,
which is a solution of the problem (1) .

Corollary 3.2 Suppose that f is an L-lipschitzian function. If

L

[(
1

Γ (α + 1)
+

Γ (2− β)

Γ (α− β + 1)

)(
|b1|

|a1 + b1|
+ 1

)
+

(2− β)−1

Γ (α− γ + 1)

(
|b1| β
|a1 + b1|

+
4− β

2
Γ (3− γ)

)]
< 1, (11)

then the problem (1) has a unique solution on [0, 1].

Now, we discuss the existence of solution using Schaefer fixed point theo-
rem. We have:

Theorem 3.3 Suppose that (H2) and (H3) are satisfied. Then the problem
(1) has at least one solution in C ([0, 1] ,R) .

Proof: We prove that Ψ has a fixed point on C ([0, 1] ,R) in the following
steps:

Step1: Ψ is continuous on C ([0, 1] ,R) :
Let (xn)n be a sequence such that xn −→ x in C ([0, 1] ,R). For each t ∈ [0, 1] ,
we calculate |Ψxn(t)−Ψx(t)| . We have
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|Ψxn (t)−Ψx (t)| ≤
t∫

0

(t− τ)α−1

Γ (α)
|f (τ, xn (τ))− f (τ, x (τ))| dτ

+
|b1|

|a1 + b1|

1∫
0

(1− τ)α−1

Γ (α)
|f (τ, xn (τ))− f (τ, x (τ))| dτ

+Γ (2− β)

(
|b1|

|a1 + b1|
+ 1

) 1∫
0

(1− τ)α−β−1

Γ (α− β)
|f (τ, xn (τ))− f (τ, x (τ))| dτ

(12)

+
β

2− β
|b1|

|a1 + b1|

1∫
0

(1− τ)α−γ−1

Γ (α− γ)
|f (τ, xn (τ))− f (τ, x (τ))| dτ

+

(
4− β
4− 2β

Γ (3− γ)

) 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
|f (τ, xn (t))− f (τ, x (τ))| dτ.

By (H2), we obtain

|Ψxn −Ψx| −→ 0, n −→∞. (13)

Step2: Ψ maps bounded sets into bounded sets of C ([0, 1] ,R) :
For any v > 0, we consider Bv = {x ∈ C ([0, 1] ,R) , ‖x‖ ≤ v} .
Using (H3) , we can write:

‖Ψx‖ ≤ |c1|
|a1 + b1|

+

(
|b1|

|a1 + b1|
+ 1

)(
N

Γ (α + 1)

)
+Γ (2− β)

(
|b1|

|a1 + b1|
+ 1

)(
N

Γ (α− β + 1)
+
|c2|
|b2|

)
(14)

+
β

2− β
|b1|

|a1 + b1|
+

4− β
4− 2β

Γ (3− γ) ,

and consequently,

‖Ψx‖ <∞. (15)

Step3: Ψ maps bounded sets into equi-continuous sets of C ([0, 1] ,R) :
Let t1, t2 ∈ [0, 1] ; t1 < t2 and let x ∈ C ([0, 1] ,R) . Then, we have
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|Ψx (t2)−Ψx (t1)| ≤ (t2 − t1)α
2N

Γ (α + 1)
+ (tα2 − tα1 )

N

Γ (α + 1)

+
(
t22 − t21

)Γ (3− γ)

2

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (t, x (t)) dτ − c3

b3


+ (t2 − t1)

Γ (2− β)

 1∫
0

(1− τ)α−β−1

Γ (α− β)
f (t, x (t)) dτ − c2

b2

 (16)

−Γ (3− γ)

(2− β)

 1∫
0

(1− τ)α−γ−1

Γ (α− γ)
f (t, x (t)) dτ − c3

b3

 .

As t1 → t2, the right-hand side of the above inequality tends to zero. Then,
as a consequence of Steps 1, 2, 3 together with the Arzela-Ascoli theorem, we
can conclude that Ψ is completely continuous.

Step4: Now, we prove the boundeness of the set

Ω = {x ∈ C ([0, 1] ,R) , x = λΨx, 0 < λ < 1} . (17)

Let x ∈ Ω, then x = λΨx for some 0 < λ < 1. Using (14) , we get:

‖x‖ = λ ‖Ψx‖ .

Therefore,

‖x‖ ≤ λ

[
|c1|

|a1 + b1|
+

(
|b1|

|a1 + b1|
+ 1

)(
N

Γ (α + 1)

)]
+λΓ (2− β)

(
|b1|

|a1 + b1|
+ 1

)(
N

Γ (α− β + 1)
+
|c2|
|b2|

)
(18)

+
λβ

2− β
|b1|

|a1 + b1|
+
λ (4− β)

4− 2β
Γ (3− γ) .

Thus,

‖x‖ <∞.

Finally, by Schaefer fixed point theorem, we deduce that Φ has a fixed point,
which is a solution of the problem (1) .
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4 Examples

Example 4.1 Consider the problem:

D
5
2x (t) =

1

t4 + 3

(
sinx

25
+ ln

(
t2 + 1

))
, t ∈ [0, 1] ,

3x (0) + x (1) =
3

4
, (19)

1

2
D

1
2x (0) +

5

2
D

1
2x (1) = 2,

4D
3
2x (0) +

3

2
D

3
2x (1) =

4

5
.

We have α = 5
2
, β = 1

2
, γ = 3

2
, a1 = 3, a2 = 1

2
, a3 = 4, b1 = 1, b2 = 5

2
,

b3 = 3
2
, c1 = 3

4
, c2 = 2, c3 = 4

5
, f (t, x) = 1

t4+3

(
sinx
25

+ ln(t2 + 1)
)
.

We have also

|f (t, x)− f (t, y) | ≤ 1

75
|x− y| , t ∈ [0, 1], x, y ∈ R,

and

‖k‖
[(

1

Γ (α + 1)
+

Γ (2− β)

Γ (α− β + 1)

)(
|b1|

|a1 + b1|
+ 1

)
+

(2− β)−1

Γ (α− γ + 1)

(
|b1| β
|a1 + b1|

+
4− β

2
Γ (3− γ)

)]
≈ 1

75
(0, 925 + 1, 112) = 0, 02713 < 1.

Thus, by Theorem 3.1, the problem (19) has a unique solution on [0,1].

Example 4.2 Consider the following boundary value problem

D
7
3x (t) =

cos (tx (t))

et + 1
, t ∈ [0, 1] ,

x (0) + 2x (1) = 0, (20)

3D
4
5x (0) +

1

2
D

4
5x (1) = 1,

−D
4
3x (0) +

5

2
D

4
3x (1) =

4

7
.

It is clear that: α = 7
3
, β = 4

5
, γ = 4

3
, a1 = 1, a2 = 3, a3 = −1, b1 = 2,

b2 = 1
2
, b3 = 5

2
, c1 = 0, c2 = 1, c3 = 4

7
, and f (t, x) = cos(tx)

et+1
.
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The hypotheses (H1) and (H2) are satisfied. Consequently, by Theorem 3.3,
the problem (20) has at least a solution on [0,1].

5 Open Problems

We propose the following open problems:
Open Problem 1: Using Caputo approach for fractional differential operator
of order α, under what conditions do Theorems 3.1 and Theorem 3.3 hold for
n < α < n+ 1, n ∈ N∗?
Open Problem 2: Is it possible to generalize the above main results for (1),
where the fractional derivatives are taken in the sense of Riemann-Liouville
and n < α < n+ 1, n ∈ N?

References

[1] K. Assaleh, W.M. Ahmed: Modeling of speech signals using fractional
calculus . 9th International Symposium on Signal Processing and Its Ap-
plications. 12 (15), (2007), pp.1-4.

[2] M.A. Bengrine, Z. Dahmani: Boundary vale problems for fractional dif-
ferential equations. International Journal of Open Problems Computer
Science and Mathematics. 3 (1), (2012), pp. 2074-2827.

[3] K. Diethelm, N.J. Ford: Analysis of fractional differential equations. Jour-
nal of Mathematics Analysis and Applications. 265 (2), (2002), pp. 229-
248.

[4] A.L. Gabriele, D. Merlini, T.F. Nonnenmacher, E.R. Weibel: Fractals in
biology and medecine. Birkhauser Verlag, (2005).

[5] A. Kaur, P.S. Takhar, D.M. Smith, J.E. Mann, M.M. Brashears: Frac-
tional differential equations based modeling of microbial survival and
growth curves: Model development and experimental validation. Journal
of Food Science. 73 (8), (2008), pp. 403-414.

[6] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo: The theory and application of
fractional differential equation. North-Holand Mathematics Studies. Else-
vier, (2006).

[7] V.V. Kulish, J. L. Lage: Application of fractional calculus to fluid
mecanics. Journal of Fluids Engineering. 124 (3), (2002), pp. 803-807.



Fractional Boundary Value Problems 11

[8] V. Lakshmikantham, A.S. Vatsala: Basic theory of fractional differential
equations. Nonlinear Analysis Theory, Methods. 69 (8), (2008), pp. 2677-
2682.

[9] X. Liu, Y. Liu: Fractional differential equations with fractional non-
separated boundary conditions. Electronic Journal of Diffential Equations.
25, (2013), pp. 1-13.

[10] R.L. Magin: Fractional calculus in bioengineering. Critical Reviews in
Biomedical Engineering. 32 (1), (2004), pp. 1-104.

[11] T.S. Margulies: Wave propagation in viscoelastic horns a fractional calcu-
lus rheology model. Acoustical Society of Americ Journal. 114 (4), (2003),
pp. 2424-2442.

[12] B. Mathieu, P. Melchior, A. Oustaloup, Ch. Ceyral: Fractional differenti-
ation for edge detection. Fractional Signal Processiong and Applications.
83 (11), (2003), pp. 2285-2480.

[13] K.S. Miler, B. Ross: An introdution to the fractional calculus and frac-
tional differential equations. J. Wiley, New York, (1993).

[14] K.B. Oldham, J. Spanier: The fractional calculus. Academic Press, (1974).

[15] I. Podlubny: Fractional differential equations. Mathematics in science and
Engineering. Academic press, New York (1998).

[16] I. Podlubny, I. Petras, B.M. Vinagre, P.O. Leray, L. Dorcak: Analogue
realizations of fractional order controllers. Nonlinear Dynamics. 29 (1-4),
(2002), pp. 281-296.

[17] J. Sabatier, O.P. agrawal, J.A.T. Manchado: Advances in fractional calcu-
lus: Theorical developments and applications in physics andengineering.
Dordrecht, Springer, (2007).

[18] S.G. Samko, A.A. Kilbas, O.I. Marichev: Fractional integrals andderiva-
tives: Theory and applications. Yverdon,Gordon and Breach, (1993).

[19] E. Soczkiewicz: Application of fractional calculus in the theory of vis-
coelasticity. Molecular and Quantum Acoustics. 23, (2002), pp. 397-404.

[20] J.I. Suarez, B.M. Vinagre, A.J. Calderon, C.A. Monje, Y.Q. Chen: Us-
ing fractional calculus for lateral and longitudinal controle of autonomous
vehicles. Lecture Notes in Computer Science. Springer (2809), (2004).



12 L. Tabharit, Z. Dahmani

[21] S. Zhang: Positive solutions for boundary-value problems of nonlinear
fractionaldiffrential equations. Electronic Journal of Differential Equation.
36 (1-12), (2006), pp. 37-44.


