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Abstract

The goal of this article is to study elliptic curves over the
ring Fq[ε], with Fq a finite field of order q and with the relation
ε5 = 0. The motivation for this work came from search for
new groups with intractable (DLP) discrete logarithm prob-
lem is therefore of great importance. The observation groups
where the discrete logarithm problem (DLP) is believed to be
intractable have proved to be inestimable building blocks for
cryptographic applications.
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1 Introduction

Let p be an odd prime number and n be an integer such that n ≥ 1. Consider
the quotient ring An = Fq[X]/(Xn), where Fq is the finite field of characteristic
p and q elements. Then the ring An may be identified to the ring Fq[ε] where
εn = 0. In other word [1, 2, 3]

An =

{
n−1∑
i=0

aiε
i| (ai)0≤i≤n−1 ∈ F n

q

}
.

The following result is easy to prove:

Lemma 1.1 Let X =
∑n−1
i=0 xiε

i and Y =
∑n−1
i=0 yiε

i be two elements of An.
Then

XY =
n−1∑
i=0

ziε
i where zj =

j∑
i=0

xiyj−i.
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Remark 1.2 Let Y =
∑n−1
i=0 yiε

i be the inverse of the element X =
∑n−1
i=0 xiε

i.
Then {

y0 = x−10

yj = −x−10

∑j−1
i=0 yixj−i, ∀j > 0

We consider the canonical projection π defined by:

π : An −→ Fq∑n−1
i=0 xiε

i 7−→ x0

Lemma 1.3 π is a morphism of rings.

Proof 1 Let X =
∑n−1
i=0 xiε

i and Y =
∑n−1
i=0 yiε

i, then

X + Y =
n−1∑
i=0

(xi + yi)ε
i

XY =
n−1∑
i=0

ziε
i where zj =

j∑
i=0

xiyj−i.

We have:

π(X + Y ) = x0 + y0 = π(X) + π(Y )

π(XY ) = z0 = x0y0 = π(X)π(Y ).

So, π is a morphism of rings.

2 Elliptic Curve Over A

In this section we suppose n = 5. An elliptic curve over ring A = A5 is curve
that is given by such Weierstrass equation:

(?) : Y 2Z = X3 + aXZ2 + bZ3

where a, b ∈ A and 4a3 + 27b2 is invertible in A. We denote by Ea,b the
elliptic curve over A. The set Ea,b together with a special point O -called the
point infinity-, a commutative binary operation denoted by +. It is well known
that the binary operation + endows the set Ea,b with an abelian group with O
as identity element.



50 A. Chillali

3 The main results

Lemma 3.1 The mapping

πa,b : Ea,b −→ Eπ(a),π(b)
[X : Y : Z] 7−→ [π(X) : π(Y ) : π(Z)]

is a surjective homomorphism of groups.

Proof 2 Consider [X1 : Y 1 : Z1] and [X2 : Y 2 : Z2] in Ea,b.
We have

πa,b([X1 : Y 1 : Z1]+[X2 : Y 2 : Z2]) = πa,b([X1 : Y 1 : Z1])+πa,b([X2 : Y 2 : Z2]).

So, πa,b is a homomorphism of groups.
Let [x0 : y0 : z0] in Eπ(a),π(b), then

a = a0 + a1ε+ a2ε
2 + a3ε

3 + a4ε
4

b = b0 + b1ε+ b2ε
2 + b3ε

3 + b4ε
4

X = x0 + x1ε+ x2ε
2 + x3ε

3 + x4ε
4

Y = y0 + y1ε+ y2ε
2 + y3ε

3 + y4ε
4

Z = z0 + z1ε+ z2ε
2 + z3ε

3 + z4ε
4

If [X : Y : Z] in Ea,b, then

Y 2Z = X3 + aXZ2 + bZ3.

In order to simplify this last expression, we have

(1) : f0 + f1ε+ f2ε
2 + f3ε

3 + f4ε
4 = 0

where
f0 = −y20z0 + b0z

3
0 + a0x0z

2
0 + x30

f1 = (z20a0 + 3x20)x1 − 2y0z0y1 + (−y20 + 3b0z
2
0 + 2a0x0z0)z1 + b1z

3
0 + z20a1x0

f2 = (z20a0 + 3x20)x2− 2z0y0y2 + (−y20 + 3b0z
2
0 + 2a0x0z0)z2 + z20a1x1− 2y0y1z1−

z0y
2
1 +3x21x0+3b0z

2
1z0+3b1z

2
0z1+b2z

3
0 +a0x0z

2
1 +2z0z1a0x1+2z0z1a1x0+z20a2x0.

(1)⇔ f0 = 0, f1 = 0, f2 = 0, f3 = 0 and f4 = 0

f0 = 0⇔ [x0 : y0 : z0] ∈ Eπ(a),π(b)
Coefficients z20a0 + 3x20, 2z0y0 and −y20 + 3b0z

2
0 + 2a0x0z0 are partial derivative

of a function F (X, Y, Z) = Y 2Z −X3 − aXZ2 − bZ3 at the point (x0, y0, z0),
can not be all three null.
We can then at last conclude that [x1 : y1 : z1], [x2 : y2 : z2], [x3 : y3 : z3] and
[x4 : y4 : z4].
Finally, πa,b is a surjective homomorphism of groups.
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Lemma 3.2 The mapping

θ : F 4
q −→ Ea,b

(l, k, h, s) 7−→ [lε+ kε2 + hε3 + sε4 : 1 : l3ε3 + 3l2kε4]

is a injective homomorphism of groups.

Proof 3 Evidently, θ is injective.
Every [lε+ kε2 + hε3 + sε4 : 1 : l3ε3 + 3l2kε4] satisfies the equation of (?).
We have:
[lε+kε2+hε3+sε4 : 1 : l3ε3+3l2kε4]+[l

′
ε+k′ε2+h′ε3+s′ε4 : 1 : l

′3ε3+3l′2k′ε4] =
[(l+ l

′
)ε+ (k+k′)ε2 + (h+h′)ε3 + (s+ s′)ε4 : 1 : (l+ l

′
)3ε3 + 3(l+ l′)2(k+k′)ε4]

Finally

θ((l, k, h, s) + (l′, k′, h′, s′)) = θ(l, k, h, s) + θ(l′, k′, h′, s′),

and we concluded θ is injective homomorphism of groups.

Definition 3.3 We definite G by G = Ker(πa,b).

Corollary 3.4 The set G = θ(F 4
q ).

Proof 4 Let

[lε+ kε2 + hε3 + sε4 : 1 : l3ε3 + 3l2kε4] ∈ θ(F 4
q ),

then
πa,b([lε+ kε2 + hε3 + sε4 : 1 : l3ε3 + 3l2kε4]) = [0 : 1 : 0],

we concluded

[lε+ kε2 + hε3 + sε4 : 1 : l3ε3 + 3l2kε4] ∈ G.

Let
P = [X : Y : Z] ∈ G,

then
πa,b(P ) = [0 : 1 : 0].

We set
X = x1ε+ x2ε

2 + x3ε
3 + x4ε

4,

Y = 1 + y1ε+ y2ε
2 + y3ε

3 + y4ε
4,

Z = z1ε+ z2ε
2 + z3ε

3 + z4ε
4,

and
Y −1 = 1 + s1ε+ s2ε

2 + s3ε
3 + s4ε

4.
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So,

P = [Y −1X : 1 : Y −1Z]
= [x1ε+ x′2ε

2 + x′3ε
3 + x′4ε

4 : 1 : z1ε+ z′2ε
2 + z′3ε

3 + z′4ε
4].

We have

P ∈ Ea,b,

thus

z1 = 0, z′2 = 0, z′3 = x31 and z′4 = 3x21x
′
2.

So,

P ∈ θ(F 4
q ).

Finally,

G = θ(F 4
q ).

We deduce easily the following corollaries.

Corollary 3.5 The group G is an elementary abelian p-group, called group
at infinity of Ea,b.

Corollary 3.6 The sequence

0→ G
j→ Ea,b

πa,b→ Eπ(a),π(b) → 0

be a short exact sequence defining the group extension Ea,b of Eπ(a),π(b) by G.

4 Open Problem

In this section you should present an open problems.

• The cyclic subgroups of these curves.

• The attack on the discrete logarithm.

• Other crypto systems, more particular signature systems can be built
From these curves and the study of these could allow to get stronger.

• Generic Groups.

• Study elliptic curves over the ring Fq[ε], with Fq a finite field of order q
and with the relation εn = 0; n > 5.
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