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Abstract

We consider a mathematical model which describes the quasi-
static transmission problem in thermo-viscoplasticity. We de-
rive a weak formulation of the system of motion equation and
energy equation. We prove the existence and uniqueness of
the solution and some properties of the solution.
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1 Introduction

The thermo-viscoplastic constitutive laws has been studied by mathematicians,
physicists and engineers in order to model the effect of temperature in the
behaviour of some real bodies like metals, magmas, polymers and so on, see for
examples and details [6], [12] and [13]. Examples and mechanical interpretation
of viscoplasticity and thermo-viscoplasticity can be found in [3], [5], [7] and
[16].

The aim of this paper is to study the quasi-static transmission problem
between two thermo-viscoplastic bodies. For this, we consider a rate-type
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constitutive equation of the form

%:A(e @—‘:)) +G(o,c(u),0),

in which u, o represent, respectively, the displacement field and the stress field,
0 represents the absolute temperature, A is a real tensor describing the purely
viscous property of the material and G is a nonlinear constitutive function
which describes the thermo-plastic behaviour of the material. Situations of
such problem are very common in industry, geology and everyday life such
as superposition of tectonic plates and development of multi-layer bodies like
composite materials.

Transmission problems in mechanics of continuum media, in particular for
elastic and thermoelastic models, are the topic of numerous papers [1], [11]
and [15].

2 Preliminaries

We consider a mathematical problem modelling the quasi-static transmis-
sion problem between two thermo-viscoplastic bodies. To this end, let us
consider a bounded domain  C R" (n =2,3) with a Lipschitz boundary
0f) . The domain is partitioned into two parts 2; and 25 separated with a
Lipschitz hypersurface I'y. We denote by I'y and I'; the boundaries

Fl = 891 N 0f) and FQ = 892 N 89,

and we suppose that I'; and I's are measurable domains with meas (I'y) > 0.
We denote by S,, the space of symmetric tensors on R". We define the inner
product and the Euclidean norm on R™ and S,,, respectively, by

u-v=uv, vu, veR" and -7 =047 Vo, TES,,
1 1
lul = (u-u)? YVaeR" and |o|=(0-0)2 Vo €S,.
Here and below, the indices ¢ and j run from 1 to n and Einstein’s conven-

tion is used.
For p = 1,2 we shall use the notations

L? ()" = {o = {0} € L* ()" | 0y = 05},
H,={u= {0} € L*(Q,)" | e (u) € L*(Q,)7""},
H,={o € L*(Q,))"" | Div(o) € L* ()"},
V={(vi,vy) € H X Hy | vi — vy =0o0nTgand vo =0 on 'y},

W = {(Cp@) eH' (Ql) x H' (92) ’ (1 —C2=0o0n Fo}-
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Figure 1: Transmission Domain

Here € : H, — L*(Q,)"" and Div : H, — L*(2,)" are, respectively,
the deformatlon and the divergence operators defined by

)= (o (), e (W)= 3 sy + i) and Div (o) = (o335).

The spaces H,, H,, V and W are real Hilbert spaces endowed with the
canonical inner products given by

(W, V), = (W, V)20 )0 + (€ (u )7€(V))L2(Q yuxn s
(o, T)Hp = (o, T)L2(QP)ZX" + (Div (o), Div (t ))L2
(g, uz), (v1,v2))y = (wr,w2) y, + (Vi v2)

((C1a§2)’(§1752)) (CvaZ)Hl (1) ( 1’52)}[1(92) :

The associated norms on the spaces H,, H,, V and W are denoted by
-, 1-ll3, » NIl and [[[l,y , respectively. Since the boundaries 92 and I',
respectively, are Lipschitz continuous, the unit outward normal vector fields
n and ng are defined a.e on 02 and I'y, respectively, where ng is supposed to
be oriented to the exterior of {2; and to the interior of 25, see figure 1.

Moreover, since meas (I's) > 0, Korn’s inequality holds and thus, there
exists a positive constant Cy depending only on €2, I'; such that

(e (v1) af'?(Vz))||L2(Ql)gx"xL2(Q2):X" > Cy ||<V1’V2)||H1><H2 V(vi,va) €V.

Let introduce the space Hr, = (H% (r,u FO)) p = 1,2 and denoting by
v : H, — Hr, the trace map.
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If o € 'H, the Cauchy stress tensor ov exists, such that ov € Hlip and for
which the following Green formula holds

(o, ¢ (v))LQ(Qp):m + (Div (o), V)29, = (au,fyv)H,prHFp Vv € H,.

In addition, if o is sufficiently regular (say C'), then

(075(V))L2(Qp)gxn + (Div (C’),V)Lz(np)” = /r o-n-vdy

+(—1)p+1/cr-n0-vdfyOVv € H, p=12
o

where dy and dv, denote, respectively, the surface element on I', and T'.

The physical setting is the following. Two thermo-viscoplastic bodies oc-
cupy, respectively, the domains 2; and €2;. We assume that the second body
is clamped on I’y x (0,7"), (T > 0) and therefore the displacement field van-
ishes there. Surface tractions of density g act on I'y x (0,7") . On the interface
[o x (0,T) we impose transmission boundary conditions between the two bod-
ies. Volume forces of density f, is applied in €, x (0,7"), p = 1, 2. In addition,
we admit possible external heat source applied in Q, x (0,7"), given by the
function r,, p =1, 2.

The mechanical problem may be formulated as follows.

Problem (P). For p = 1,2, find the displacement field u, : 2, x (0,7) —
R™, the stress field o, : ©, x (0,7) — S,, and the temperature 0, : Q, X
(0,7') — R such that

s —a, ((22)) 46, (002 (w).6,) in O x (0.7), (2.1)
ot ot
Div(oy,)+£,=01in Q, x (0,7), (2.2)
06
8—; —div (k,V0,) = ¢, (0, e (u, (1)), 0,) + 1, in Q, x (0,T), (2.3)
u —uy=0o0nTyx(0,7), (2.4)
Ul'no—Ug'HOZOOHF()X(O,T), (25)
91 — 92 =0on FO X (O,T) R (26)
06 a0
kla—nlo—kza—nz =0onTyx (0,7), (2.7)
op-n=gonl;x(0,7T), (2.8)
u, =0on Ty x (0,7), (2.9)
06,
— =0onTy x(0,7), (2.10)

on
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% =0onTIyx(0,7), (2.11)
u, (0) = uy, 0,(0) = oy and 6, (0) = b, in Q,. (2.12)

This problem represents a quasi-static transmission problem between two
thermo-viscoplastic bodies. Equation (2.1) is the thermo-viscoplastic consti-
tutive law where A, is a real tensor describing the purely viscous property of
the material and G, is a nonlinear constitutive function which describes the
plastic behaviour of the material. (2.2) represents the quasi-static equilibrium
equation. Equation (2.3) represents the energy conservation where ¢, is a non-
linear constitutive function which describes the heat generated by the work of
internal forces.

(2.4), (2.5), (2.6) and (2.7) are the transmission conditions on the interface
Iy x (0,7) for the displacement field, the stress field and the temperature.
Equalities (2.8) and (2.9) are the displacement-traction boundary conditions,
respectively. (2.10) and (2.11) represent homogeneous Neumann boundary
conditions for the temperatures. Finally the functions u,y, o, and 0, in
(2.12) represent the initial data.

In the study of the mechanical problem (P) we consider, for p = 1,2, the
following hypotheses :

A, Q, xS, — S, is asymmetric and positively definite bounded
tensor, i.e.:

(a) Ap,pn € L () Vi g k,h=1,n.

(b) A,(x)o-T=0-A,(x)T VYo,7€S,, ae. in,.
(c) There exists an o > 0 such that

Ay (r)o -0 > ay, lo|* ¥v €S,, ae. inQ,.

(2.13)
((G,:Q, xS, xS, xR — S, has the following properties:
(a) There exists an Lg, > 0 such that
|gp (377 01,71, 51) - gp (.I', 02, T2, €2)| S
Lg, (loyr — o + |71 — T2 +[§; — &) (2.14)

Voi,02,T1,T2 € Sy, VE,& € Rae. x €,

(b) The mapping v — G, (z, 0, T,§) is Lebesgue measurable
on Q, Vo, 7 €S, V¢ €R.

| (c) The mapping * — G, (2,0,0,0) € L? (Q,)""".

S
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(¢, xS, xS, x R — R has the following properties :
(a) There exists an L, > 0 such that
}(Pp (xvo-hThgl) —¥p ($702a727€2)| <
Ly, (loyw — o] + |11 — 7o +[§1 — &)

Voi1,0,T1, T2 €Sy, V§,,{, € R ae. x€Q,. (2.15)
(b) The mapping x — ©p (x,0,7,§) is Lebesgue measurable
on ), Vo,7€8S,, V§cR.
{ (c) The mapping z — ¢, (2,0,0,0) € L*(Q,).
£, € Whe(0,T;L*(Q,)"), g € Wb (0,T; L? (Ty)), (2.16)
r, € L?(0,T; L? (Q,)) . '
(ulo,UQo) € V, (0'10,0'20) € Hl X Hl, (910,020) € W (217)
kp € L (), ky(z) > k) >0 ae. on €, (2.18)

We also admits the hypothesis of continuity

(010, € (ulo))L2(Ql)Zm + (020, € (u20))L2(Q2)Z><" = (f1(0) ,ulo)Lz(Ql)n +
(fg (0) ,u20)L2(92)n + / g (0) . ulod’}/. (219)
1N}

Moreover, we remark that hypothesis (2.13) implies the existence of a pos-
itive constant m 4 such that

Using the above notations and Green’s formula, we can easily derive the
following variational formulation of the mechanical problem (P).
Problem (PV). For p = 1,2, find the displacement field u, : ©, x (0,7) —

R”, the stress field o, : Q, x (0,7) — S,, and the temperature 6, : €, X
(0,7') — R such that

= (= (52)) 400 0.2, 0.6, ) ae. € 0.7), 221

(@1 (0. () sgyen + (02(0) 2 () e = [ €0 wady+

ry
(F1 (8) s Vi) oy + (B2 (8) s V2) 2 iqpyn ¥ (V1,V2) €V,
ace. t € (0,T), (2.22)

00, 005
(E@l) o + < TR S > o + (k1V01 (1), V&) 20y
+ (k2 V0, (t)avfé)m(g = (1 (o1 (1) e (w (8),01 (1) €)1,y +

(2 (02 (t) e (u2 (1)), 02 (1)), 52)L2(92 + (7"1 (t), 51)L2 @) T (r2 (t) ’52)1;2(92)
V(&) €W, ae t€(0,7), (2.23)
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u, (0) = uy, 0,(0) =0y and 6, (0) = b, in Q,. (2.24)

3 Main results

We establish in this section an existence and uniqueness theorem to the prob-
lem (PV) and we prove some properties of the solution concerning the regu-
larity and stability of the solution.

3.1 Existence and Uniqueness

Theorem 1 Under the assumptions (2.13)-(2.20), there exists a unique solu-
tion {(uy,2), (o1,02), (01,02)} to problem (PV). Moreover, the solution has
the regularity

(ug,up) € L>(0,75V), (3.1)
@ul 8112 0o .
(W’ W) eL (O,T, Hy % H2)7 (32)
(o1,03) € W (0,T;Hy x Hy), (3.3)
(61,65) € L* (0, T; W) N L= (0,T; L* () x L* (a)), (3.4)
00, 00,
(a—tl, E) S L2 (O,T, L2 (Ql) X L2 (Qg)) . (35)

The proof will be carried up by two steps. Based on classical arguments
of functional analysis concerning variational problems and Banach fixed point
theorem.

Proof. First step. Take an arbitrary

(77177727)\17)\2> € X (36)

where

X = L2 ()77 " x L* ()77 x L? () x L* (),
and let Z, , p=1,2 be the function
t
Z,, (t) = / N, (8)ds 4+ op — € (uy) . (3.7)
0
Now, we consider the following auxiliary problem.
Problem (PV . ). For p = 1,2 find the displacement field u, )X 0, 7) —

R", the stress field o, : €, ¥ (0,T) — S, and the temperature 6, : €2, x
(0,7) — R such that

o, () = A, <€ (unp (t))) +Z, (t) ae te(0,T), (3.8)
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(0'771 (t) € (Vl))Lz(Ql)?Xn + (0',72 (t) = (VQ))LQ(QQ)an = /1" g (t) ) Vld’y

+ (fl (t) ,VI)LQ(Ql)TL + (fg (t) ,VQ)LQ(QZ)TL \4 (Vl, Vg) S V, ae. t e (0, T) s (39)

8(9,\ 09}\
— —2 k1VO,y, (t 200 \n
( ot 751)L2(Q1) ! < ot éz) L2(Q) HEYOD V) iay
+ (k2VOx, (1), V&) 12(gyyn = (A1 () + 11 (8) . §1) 2,y + (A2 (1) + 72 (1) 1 €2) 120y
V(£1,&) €W, ae te (0,T), (3.10)
u, (0) =uy, o, (0) =0, and 0,, (0) = 0, in Q. (3.11)
Lemma 1. For all (ny,75, A1, A2) € X, there exists a unique solution
{(unl’ unz) ) (0-771’0-772) ) ((9)\1,(9)\2)} )

to the auxiliary problem (PV,,,) and satisfying the regularity (3.1)-(3.5).
The proof of this lemma is based on classical arguments of functional analy-
sis concerning parabolic and elliptic equations, see for more details [2], [4] and

).

Second step. Let us consider the operator
A:L>®(0,T;X) — L>(0,T; X),
defined by
Ay (8) 5 (1), A1 (), A2 (1) = (Gu (o, () € (my, (1)) .05, (1))

g2 (0-772 (t> € (ung (t)) 70/\2 <t>) » P1 (0-171 (t) € (um (t)) 78)\1 (t)) ’
©q (an2 (t),e (u772 (t)) L0, (t))) : (3.12)

Lemma 2. The operator A has a fixed point (1], 75, A], A3) € L= (0,7; X) .
Proof. Let t € (0,T) and consider

(7717 M2, )‘17 )\2) ’ (N17N2751752) € L* (Oa T; X) :
The use of (2.13) and (2.14) permits us to find for a.e. t € (0,7
A (2 (8) 302 () s A (2) 5 Ag (1) = A () 12 (8), 81 (1), B2 (D)l
<2 (Lgl + Lg, + Ly, + L%) [Hum (t) — uy, <t)HH1 + Hunz (t) — uy, (t)HHQ
oy, _ Oy, Oy, _ Oy

" ' ot ot a ot |,
t{lon, (8) = 0, O] pogymen + 00, (1) = Ty (D] L2y

+ |65, () — 63, (t)HLQ(QI) + |05, (t) — 05, (t)||L2(QQ)] . (3.13)

-
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Taking into account equations (3.8) and (3.9), we deduce by exploiting the
function (ny, 174, A1, A2) and (uq, io, 51, 55) and choosing

(v,,v,) = (un1 —u,,,u,, — uMQ)
as test function that
(As (2 (wy, (1)) = A (e (ws, (1)) 12 (W, (1)) = & (W, (1)) 12y yen
(e i, 1)) A 2 3y ) 2 i, 6) = = (s 9)
=—(Z,,(t) = Z,, ()& (uy, (t)) — € (u,, (t)))LZ(Q Jxn
— (2, @) = Z,, ()& (uy, (1)) — € (u, (¢ ))LQ(Q -

Which implies, keeping in mind Korn’s inequality, (2.13) and (3.7) that for
a.e. t € (0,7)

[y, (8) = w, ()] 5, + [, (@) = wp, (][, <

1 t
Cg min (OzAl, aA2>/O (Hnl <S) — (S)HL?(QI)ZX?L
+ H772 (3) — Mg (8)|’L2(Q2)?Xn> ds. (314)

Therefore, equation (3.8) gives for a.e. t € (0,7"), using (2.20), (3.7) and
(3.14)

HO’nl (t) — 0'#1 (t)HLQ(Ql)?X” + H0'772 (t) - 0#2 <t>HL2(Q2)Z><n S

max(mA1 m, ) ) t
CZmin (aa, aay) /0 (Hm (5) = 11 ()] 2 gy yren

13 (5) = 112 () gy ) s (3.15)

Furthermore, we know that the bilinear form

WxW — R,
((01,02) , (€1,€5)) ¥ (kaV01, VE) o, yn + (B2V 01, VEy) 120, m
is not W—elliptic, to this aim, we introduce the following function f =e ¢

Vée H (Q,),p=1,2.
By using this function in (3.10), it follows that for a.e. ¢t € (0,7)

90, 90,, .
(7;51) + <Wa£2> + (klveM ( ) v£1) 2(0,)"
L2(1) L2(Q2)

+(/<:2véh (t),V§2>L2(Q) + (@Al() 51) (%2() 52)

2 L2 (1) L2 Qz)

(A () () :fl)L?(Ql) +e (Mo (t) + 2 (1) 752)L2(Qz) V(£1,€) €W,
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and

905, 005, .
(W’@) * (7’52) + (1905, (0.9
L2(1) L2(Q2)

+ (/f2v‘§62 (), V§2> L + (951 (t) 751)L2(Ql) + (éﬂz (t) 752)L2(Q2) —

e (B () + 11 (1), &1) 20y e (Ba (1) + 72 (1) 1 §2) 1200y ¥ (6156) €W

These yield, by subtracting the two equations, setting

(€1,65) = (%1 — 05,05, — 962)

as test function and integrating over the interval time (0, t)

2 2

3 0 -85, )

11~ _
L2(Ql) + 5 He)‘Q (t) - 952 <t>

+min (1, £, k) /Ot (Héh (s) = 85 ()

L2(Q2)
2

~ ~ 2
) + HH)\Z (S) - 962 (S) H1(92)> ds

H(

< [ (06 = 8y + 1226) = 52 Ol
x <H9A1 (s) — 05, (s)

: + H(%Q (s) — 05, (s) L2(92)> ds a.e. t € (0,7).

L2(

Hence, we obtain after some manipulations

5 (103 ()= 05, 1)y + 103 (1) = B, )] 0)
< /Ot (11030 () = 05, ()| sy + 103 (5) = 0, (] ) 5

26 [ (I ) = 51 sy + 19 5) = B2 Ol
% (116 (5) = 05, ()] oy + 1022 (5) = 05, (5)]| 2 ) ds 2 £ € (0,7).
We deduce via Gronwall’s lemma,

He/\l (t) - 951 (t)”Lz(Ql) + He)\z (t) - 9/32 <t)HL2(Qz) =

263T/0 (H)q (s) = B1 ()]l 2y + 1A2 (s) = B (8)||L2(Q2)) ds
a.e. t € (0,7). (3.16)



Quasi-static transmission problem 39

We conclude from (3.13)-(3.16) that there exists a constant C' > 0 such
that

||A nl(t () () )\2())_A<:U’1(t)7:“’2(75)761(75)762(75))“)(
C/O [Hm 111 (8) | 2y + 1172 (5) = g (8) | p2aymen

A (s) = Br ()l o)) + 1A2(5) = B2 ()]l 120y | ds ae- 1€ (0,T),

This implies that

||A (7717 Mgy A1, /\2) —A (M17M2,51»52)||Loo(0,T;X)
< CT (= 1m0 — Hay M = By Ao = B2) | oo o 1x) - (3.17)

Applying A an other time, by recurrence on n, we obtain the following
formula, see [?]

IA™ (11, m9, A1, A2) — A" (g, pho, By, ﬁz)HLoo(o,T;X)

C’”T”
||( — K1, Ty — Mo, /\1 - 61, )\2 - BQ)HLOO(O,T;X) . (318)

We know that the real sequence (C:Lf)n converges to 0. So, for n suffi-

ciently large € !T" < 1. It means that a large power n of the operator A is a
contraction on L*> (0,7"; X). Hence, Banach fixed point theorem proves that
A™ admits a fixed point (n7, 75, A1, A3) € L* (0,75 X).

Applying A, we can easily find

A" (A (7,5, AL, A3)) = A (01,13, AL, Ag) -
Hence, the uniqueness of fixed point leads to
A (1,13, AT, Ag) = (01, m5, AT, Ag) -

Which permits us to conclude the proof of Lemma 2.
We can then prove the existence of solution of problem (PV). To this aim,

we have
gl (a'n*f (t> € (un (t)) 79)\’{ (t)) - Tf{ (t) )

: (1)) )) =1 (t)
P2 \Ons (t) € (Ups (t)) "9>\§ (t)) - )‘; (t) )

and equation (3.8) can be written

an;(t):Ap<8<un;(t)>>+Z (t), p=1,2ae te(0,7T).
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By derivation with respect to time variable ¢ and using (3.7), we find for
a.e. t € (0,7)

ag;ﬁo = A, (g <a;:;)> + 3G, (a,,; (t),e (un; (t)) O (t)>  p=1,2

This achieves the proof. R

3.2 Regularity of the Solution
Theorem 2 Let the assumptions (2.13)-(2.20) hold. Then

(u,uy) € C°(0,T; Hy x Hy), (3.19)
(o1,03) € C°(0,T;Hy x Hy), (3.20)
(61,62) € C°(0,T5 L% () x L* () , (3.21)

In addition, if we assume that

f,eC' (0,T;L*(Q,)"), p=1,2. (3.22)

Then
(w1, up) € CH(0,T; Hy x Hy), (3.23)
(0’1, 0'2) € Cl (0, T, Hl X Hg) . (324)

Proof. To this end, we use the theorem of intermediary derivates, see [9].
The regularity (3.1)-(3.5) gives, in particular

(u17u2)7 %7% ELOO (07T7H1 XHQ),,
ot ot
(o1,09), %, % € L™ (0,T;H; x Ha),
ot ’ ot
00, 00
(01,02), (8_751’ 8_752) € L (0,T; L (1) x L* (2)) -

Consequently, the theorem of intermediary derivates asserts that, after a
possible modification on a set of measure zero, we obtain

(uh 1_12) S CO (O7Ta Hl X HQ) )
(0’1,0’2) € CO (O,T,Hl X HQ),
(61,02) € C° (0, T L% () x L* () .
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Moreover, equation (2.2) implies, using hypothesis (3.22)
Div(o,) € C' (0,T;L*(,)"), p=1,2.

Y

This gives that
(01,02) € C* (0,75 Hy X Ha).

Thus, we find using equation (2.21)

0
A (5 (%>> + Gy (0pe(uy),0,) €C°(0,TH,), p=1,2. (3.25)
On the other hand, hypothesis (2.14) implies that for p = 1,2

1G5 (@5, () . p)lleo 0,112, ym) < 1G5 (0,0, 0]z e
+Lg, (105l coze) + Mollcoprsany + Wllco, 7. 12y ) - (3:26)

By (3.25) and (3.26) we obtain

(A1 (5 (%)) , Ay (5 (%))) € C’(0,T; L% ()" x L* (Q9)17") .

Which leads to

8u1 8112 0 .
(E, E) eC (O,T,Hl X Hg) .

This permits us to conclude the proof. W

3.3 Stability of the Solution

Theorem 3 Let (2.13)-(2.16), (2.18) and (2.20) hold and let {u’, o? 0!}

be the solution of problem (PV) for the data uy, oy, 6, p, i =1, 2, such

that (2.17) and (2.19) hold. Then, there exists C > 0 such that
[uf — uiHcO(o,T;Hl) +[Jug — u%HCO(O,T;Hg) +]lot - U%HCO(O,T;Hl)
Hag o U%HCO(D,T;HQ) + HQ% - H%HCO(O,T;L?(Ql)) + H@g B Q%HCO(O,T;LQ(QQ))

2 1 2 1 2 1 2 1
< C{Huw =y, + ([ = uzo|, + (%0 = o], + 050 — @20l

+1|63 — eiUHHl(Ql) + 63 — 050”1{1(92)} (3.27)
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Proof. If {u o, 9’} is the solution of problem (PV) for the data ul,, oy,

9;0, p,i=1,2 then

8;} =A < <a;i>) + G, (o} (t) e (0} (1)) .0, (1)) ae. t€(0,T), (3.28)

(03 (1) 12 (V1)) paqymen + (0 (1) 12 (V2)) 1 gen :/F g (t) - vidy+
1

(fl (t) 7V1)L2(Q]_)n + (f2 (t) 7V2)L2(92)n V (\"17 V2) G V,
ae. te(0,7), (3.29)

+ (kQVQQ( ), Vfg)Lz ()" (<P1 ( ( )€ (u (t)) 1 (t )) gl)m(nl) +
(‘Pz (0'22 (t) 75( 5 (t )) 05 (t )) ’€2>L2(Qg) (r1 (), €1) 2 (1) +(r2 () ’52)L2(Q2)
V(£,&) €W, ae te (0,T), (3.30)
u; (0) = upo, o, (0) = a';o and 9;( )= 910 in Q,. (3.31)

Substituting i = 1,2 in the equation (3.29), subtracting the two obtained

equations, deriving the result with respect to the time variable ¢ and choosing
ou? Oul Oui Ou}

(vi,va) = ( 81]7;1 - (;;1, 31;2 — ;;) as test function, we obtain, using (3.28),

Korn’s inequality, (2.13) and (2.14)

o 2ut)  foud o
H

ot ot ot ot
+ Hu% (t) - 11% (t)HHg + HU% (t) - O'i (t)H]}(Ql)an + HO’% (t> - 0-% <t>HL2(Q2):Xn
+]|03 () - 01 (1)

2 max (LglaLg2)) {Hu% HH1

i 2 .
H C'O min (aA17 A,

o, + 1163 (1) = 03 (t)HLQ(QQ)} ae te(0,T). (3.32)

Now, substituting ¢ = 1,2 in the equation (3.30), subtracting the two

obtained equations and choosmg (£1,&,) = (92 01,05 — 95) as test function,
it follows, using (3.15), Gronwall’s lemma and some manipulations

167 (8 = 1 )] 2y + 1165 (1) = 2 (D)]] 2, <

V2T max(Ley Ly ) (HH%O - HioHLz(Ql) i H%OHLZ(QQJ
t

srmax (L, L) et [l (5) =l (5)], + 2 5) = w ()],

0
+ HU% (8) - U% (S)HLZ(Ql):X” + HU% (8) - 0'% (8)HL2(92)2><71} ds

ae. te(0,T). (3.33)
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Furthermore, the inequality

[ (t) = ug (@], + [[ud (8) —wy ()], < [Jufy —wio],, + [[udy — 3],

/ ou? Oouj Ju; duy
+!O5;@5;®H 1520 - 8t<>Hz)ds
ae. te(0,T), (3.34)

combined with (3.32), gives via Gronwall’s lemma

[ut (&) = b )], + ] (1) = ws O], <

o7 max(Lg1 ,Lg2)
c? min(a_A ;o ) (
e 0 1 2

2 1 2 1
o — ulUHHl +[[ugo — ‘120HH2)

t

max(Lg1 ,Lg2 )
2l L) ) [ (o )= o 0
1 S

C2 min (a4, aa,
0
+ Ha’% (s) — o3 (s HL2 (Qq)"X" + ”02 —0; (S>HL2(91)

+ ||9§ (s)

HLQ(QQ)} ds ae. t € (0,T). (3.35)

Integrating, the relation (3.28) over the interval time (0, ¢) , subtracting the
two obtained equations for p, i = 1, 2, we find via (2.14), (2.20) and Gronwall’s
lemma

gmwﬁ%gQp%_ﬂﬂmmwpr%_ﬁﬂm%wg
+ max (m.AnmAz) 6TmaX(Lgl’Lg2> (”u%O - uiUHHl + Hug() - u%OHH2>

+mwmAmemﬂ%%Jmﬁw—@@MJW@@—®@MJ

max (L, | L, ) ™ (ot /“wﬂg_qwmm+wy@_®@mm

+ 163 () = 01 (5)]] 12y + 1162 () _9;(3)||L2(92)}ds ae. te(0,7). (3.36)
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Hence, (3.33), (3.34), (3.35) and (3.36) imply the existence of a constant
C > 0 such that for a.e. t € (0,7)

[ (1) = ud ()], + [[u3 () = wb ), + 0% (@) = &} O] o g y0e
+]103 (6) = 3 O] gayen + 11676 = 6 Oll 2y + 165 1) = 63 () oy <
€ { s = wio 1, +[1uo = woll , + [l = bl 0, o0

o3 = 20/l 2y + 1670 = Oroll 2y + 1620 = 020l 120
(Q2)5 (Q1) (Q2)

t

40 [t () = b 6), + 3 0) = b 9], + + 9 (5) = T ()] g e
0

|03 (1) = o3 ()] aqgpyoen + 163 (5) = 01 (5| oy + 1163 (1) = 03 ()] o s

Then, the Gronwall lemma asserts the existence of an other positive con-
stant, still denoted by C' > 0 such that

02 (1) = ud ()], + [[u3 (1) = wd (B)], + |0 (1) = 03 ()] g e
103 (6) = 3 ()] o gy + 163 (0) = 6 (0] oy + 162 (8) = 6 (8)] oy <
C{ s — o], + ([0 = koL, + 730 = o] oo
1o = ol 2y + 1650 = Ololl 2y + 1930 = O ll ey | € t€ (0.T).
Moreover, we know that Div (o) = Div (o2) , p = 1,2. Consequently
198 = 0 ooy + 198 = W cogoirary 193 = ooz
o3 = 3| eoo zireny *+ 165 = O3lleoo iz + 165 = 03llcoo sz
< {luty = wloll, + 0o — uboll, + oo = oL, + 730 — ool
11630 = Okoll gy + 11630 = B30l e }

Which achieves the proof. W

4 Open Problem

The case when the dissipative function ¢, in the energy equations is not neces-
sary Lipschitzian (for example, the viscose dissipation, which can be written as
the product of the stress tensor and the plastic part of the rate of deformation
tensor) remains unsolved and need several mathematical techniques, like the
L' data theory.
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Moreover, it is of interest to investigate setting with taking into account the
phenomena of contact with or without friction on the transmission interface.
Mathematically, these are likely to turn out to be vey hard problems. There
is the possibility of thermal instability.

We notice that the processes of dynamic evolution for these rate-type con-
stitutive laws have been never treated. New mathematical tools need to be
developed for this task. Since variational methods are incapable to solve these
problems, we must use numerical techniques to approximate and simulate such
models.

We also notice that the transmission between two different models (like
transmission between elastic and plastic or viscoelastic and viscoplastic bodies)
is an open problem.
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