
Int. J. Open Problems Compt. Math., Vol. 6, No. 3, September, 2013
ISSN 1998-6262; Copyright c©ICSRS Publication, 2013
www.i-csrs.org

Arithmetics in the set of beta-polynomials

M.Hbaib 1, Y.Laabidi 2

1 Department of Mathematics, Faculty of Science, Sfax University,
BP 1171, Sfax 3000, Tunisia

e-mail: mmmhbaib@gmail.com

2 Department of Mathematics, Faculty of Science, Sfax University,
BP 1171, Sfax 3000, Tunisia
e-mail: labidiyamna@yahoo.fr

Abstract

Let β be a formal series with deg(β) ≥ 2, the aim of this paper is
to prove that the maximal length of the finite β-fractional parts in the
β-expansion of product of two beta-polynomials (a formal series that
have not β-fractional part), denoted L�(β) is finite when β is Pisot or
Salem series. Especially, we give its exact value if β have one conjugate

with absolute value smaller than
1

| β |
and if β is a Pisot series verifying

βd + Ad−1β
d−1 + · · · + A0 = 0 such that deg(β) = m ≥ 2 and deg(A0) = s ≥

deg(Ai) ∀0 ≤ i ≤ d− 2.
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1 Introduction

The β-expansion of real numbers was introduced by A. Rényi [12]. Since its introduction
in 1975, its properties arithmetic, diophantine and ergodic have been extensively studied
by several authors.

Let β > 1 be a real number. The β-expansion of a real number x ∈ [0, 1) is defined
by the sequence (xi)i≥1 with values in {0, 1, ..., [β]} produced by the β-transformation
Tβ : x −→ βx (mod 1) as follows :

∀ i ≥ 1, xi = [βT i−1β (x)], and thus x =
∑
i≥1

xi
βi
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We write dβ(x) = 0.x1x2....
In [11], Parry showed that for any x ∈ [0, 1), dβ(x) is the only transformation of x in
base β which satisfies the following condition called the Parry condition:

∀n ∈ IN∗, Sn((xi)i∈IN∗)) <lex d
∗
β(1)

where S((xi)i∈IN∗)) = (xi+1)i∈IN∗ and d∗β(1) =

{
dβ(1) if dβ(1) is infini
(t1...tm−1, tm − 1)∞ if dβ(1) = 0.t1...tm.

Now let x > 1 be a positive real number, so there exist k ∈ IN∗ such that

βk−1 ≤ x < βk. So x
βk ∈ [0, 1) and let dβ(

x

βk
) = (xi)i≥1 finely we get

dβ(x) = (xi+k+1)i≥−k.

Let dβ(x) = (xi)i≥−n, so x =
n∑
i=0

x−iβ
i +
∑
i>0

xiβ
−i. The part with non-negatives powers

of β is called the β-integer part of x, denoted by [x]β. The part with negatives powers of
β is called the β-fractional part of x, denoted by {x}β = x− [x]β, this allows a natural
generalization of the definition of development of real number in base 10.

If there exists n ∈ IN such that |x| =
n∑
i=0

xiβ
i, where xn · · · x0 is the β-expansion of |x|,

then x is called β-integer and the set of β-integers is denoted by Zβ.
The set Fin(β), introduced in [6], is defined by {β−kZβ/k ∈ IN}. It allows to generalize
the frame work of numeration to the case of a non-integer base β.
We know that Zβ and Fin(β) are not stable under usual operations like addition and
multiplication.
In order to study arithmetics on β-integers, we interested on the β-expansion of the
number obtained by addition or multiplication of two β-integers when the β-expansion
of the sum or the product is finite.
The following notation L⊕(β) and L�(β) are introduced in [8].

Definition 1.1

L⊕(β) = min{n ∈ IN \ ∀x, y ∈ Zβ such that x+ y ∈ Fin(β)⇒ βn(x+ y) ∈ Zβ}

L�(β) = min{n ∈ IN \ ∀x, y ∈ Zβ such that xy ∈ Fin(β)⇒ βn(xy) ∈ Zβ}

Minimum of an empty set is defined to be +∞.

We can see that L⊕(β) and L�(β) represent respectively the maximal possible finite
length of the β-fractional part which may appear when one adds or multiplies two β-
integers, otherwise they designate the maximal finite shift after the comma for the sum
or product of two β-integers.
The computation of these values gives an indication on the difficulty of performing arith-
metics on Zβ.
Let us explain now why we are interested in the case where L⊕(β) and L�(β) are finite:
Indeed, if the sum or the product of two β-integers belongs to Fin(β), then the length
of the β-fractional part of this sum or product is bounded by a constant which only
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depends on β.
If the set of the length sums or products of two β-integers is unbounded, then performing
arithmetics in Zβ will be very difficult if not impossible, since one can not compute in a
finite time any operation on β-integers.
Let us mention that to our knowledge no example is known of a β such that L⊕(β) and
L�(β) are infinite, however it has been proven in [6] and [7] that L⊕(β) and L�(β) are
finite when β is Pisot (a real algebraic integer greater than 1 with all conjugates strictly
inside the unit disk). The computation of these values is however not so easy, especially
for L⊕(β). The case of quadratic Pisot numbers has been studied in [5] when β is a
unit. The authors gave exact values for L⊕(β) and L�(β), when β > 1 is a solution
either of equation x2 = mx − 1,m ∈ IN,m ≥ 3 or of equation x = mx + 1,m ∈ IN. In
the first case L⊕(β) = L�(β) = 1, in the second case L⊕(β) = L�(β) = 2, and in [8]
otherwise. However, when β is of higher degree, it is a difficult problem to compute the
exact value of L⊕(β) or L�(β), and even to compute upper and lower bounds for these
two constants.
Several examples are Studied in [2], where a method is described in order to compute
upper bounds for L⊕(β) and L�(β) for Pisot numbers satisfying additional algebraic
properties, for example, in the Tribonacci case, that is, when β is the positive root, of
the polynomial x3 − x2 − x− 1, we have L⊕(β) = 5, let’s note that until now, we don’t
know the value of L�(β) in the case of the Tribonacci number, it is only proven in [2]
that 4 ≤ L�(β) ≤ 5.
The condition Pisot is not necessary to have L⊕(β) and L⊗(β) are finite: L. S. Guimond,
Z. Masáková and E. Pelantová in [8] prove that if β is an algebraic number such that at
least one among its conjugates with modulus smaller than 1, so L⊕(β) and L�(β) are
finite.

In this paper, we define a similar concepts over the field of formal series. We begin
in Section 1 by introducing the field of formal series and the β-expansion over this field.
In Section 2, we will show that the condition Pisot is not necessary to have L⊗(β)
are finite. Especially, we give a sufficient condition for the conjugates of β to obtain
L�(β) = 1.
In Section 3, we prove the finiteness of L�(β) when β is Pisot or Salem formal power
series and we give its exact value in the case of Pisot with some additional conditions.

2 Preliminaries

Let IFq be a finite field of q elements, IFq[x] is the ring of polynomials with coefficient in
IFq, IFq(x) is the field of rational functions and IFq(x, β) is the field of rational functions
in base β. Let IFq((x

−1)) be the field of formal power series of the form :

f =
l∑

k=−∞

fkx
k, fk ∈ IFq
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where

l = degf =

{
max{k : fk 6= 0} if f 6= 0;
−∞ if f = 0.

Define the absolute value by

|f | =
{
qdeg f if f 6= 0;
0 if f = 0.

Since |.| is not archimedean, |.| fulfills the strict triangle inequality

|f + g| ≤ max (|f |, |g|) and |f + g| = max (|f |, |g|) if |f | 6= |g|.

Let f ∈ IFq((x
−1)), define the integer (polynomial) part [f ] =

l∑
k=0

fkx
k where the empty

sum, as usual, is defined to be zero. So [f ] ∈ IFq[x] and f − [f ] = {f} ∈ D(0, 1) .
An element β ∈ IFq((x

−1)) is called algebraic integer of degree d if it verify βd +
Ad−1β

d−1 + · · ·+ A1β + A0 = 0 and is called unit series if A0 ∈ IF∗q .
β is Pisot (resp Salem) element if it is an algebraic integer over IFq[x], |β| > 1 and
|βj| < 1 for all Galois conjugates βj (resp |βj| ≤ 1 and there exist at least one conjugate
βk such that |βk| = 1).
In [3], Bateman and Duquette had characterized the Pisot and Salem element in IFq((x

−1)).

Theorem 2.1 [3] Let β ∈ IFq((x
−1)) be an algebraic integer over IFq[x] and

P (y) = yn − An−1yn−1 − · · · − A0, Ai ∈ IFq[x],

be its minimal polynomial. Then
(i) β is a Pisot element if and only if |An−1| > max

0≤j≤n−2
|Ai|.

(ii) β is a Salem element if and only if |An−1| = max
0≤j≤n−2

|Ai|.

Let β ∈ IFq((x
−1)) with |β| > 1. A representation in base β (or β-representation) of

a formal series f ∈ D(0, 1) is an infinite sequence (xi)i≥1, xi ∈ IFq[x], such that

f =
∑
i≥1

xi
βi
.

A particular β-representation of f is called the β-expansion of f in base β, noted dβ(f),
which is obtained by using the β-transformation Tβ in the unit disk which is given
by Tβ(f) = βf − [βf ]. Then dβ(f) = (ai)i≥1 where ai = [βT i−1β (f)], for better charac-
terization of β-expansion, in [9], M.Hbaib and M.Mkaouar showed the following theorem.

Theorem 2.2 [9] An infinite sequence (ai)i≥1 is the β-expansion of f ∈ D(0, 1) if and
only if |ai| < |β| for all i ≥ 1.
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Now let f ∈ IFq((x
−1)) be an element with |f | ≥ 1. Then there is a unique k ∈ IN∗

such that |β|k−1 ≤ |f | < |β|k, so | f
βk
| < 1 and we can represent f by shifting dβ(

f

βk
) by

k digits to the left. Therefore, if dβ(f) = 0.a1a2a3... then dβ(βf) = a1.a2a3....
Let Fin(β) be the set of f in IFq((x

−1)) which have a finite β-expansion, so the β-
expansion of every f ∈ Fin(β) has this form:

dβ(f) = akak−1 · · · a1a0.a−1a−2 · · · am, where m ∈ Z.

The part akak−1 · · · a1a0 is called the β-polynomial part of f and the part a−1a−2 · · · am
is called the β-fractional part of f .
We define also degβ(f) = k and ordβ(f) = m.
If ordβ(f) ≥ 0 then f is called β-polynomial and the set of β-polynomials is denoted by
(IFq[x])β, who is the analogue of Zβ in the real case.

We can define by an analogy with the real case the quantity L⊕(β) and L�(β) as
follows:

L⊕(β) = min{n ∈ IN \ ∀f, g ∈ (IFq[x])β such that f+g ∈ Fin(β)⇒ βn(f+g) ∈ (IFq[x])β}

L�(β) = min{n ∈ IN \ ∀f, g ∈ (IFq[x])β such that fg ∈ Fin(β)⇒ βn(fg) ∈ (IFq[x])β}.

Minimum of an empty set is defined to be +∞.

Remark 2.3 Let us note that in the case of formal series the quantity L⊕(β) is not
interesting, because we know that in contrast to the real case, if f , g ∈ IFq((x

−1)), we
have dβ(f+g) = dβ(f)+dβ(g), so the sum of two β-polynomials is always a β-polynomial.

To calculate L�(β) for the families of basis β, we excluded the case when deg(β) = 1,
since in this trivial case, the product of two β-polynomials is a β-polynomial, so we have
L�(β) = 0.

Let β ∈ IFq((x
−1)) with |β| > 1 be an algebraic on IFq[x] and let β2, . . . , βn be the

conjugates of β. We associate for every f =
n∑
i=0

aiβ
i, the j-th conjugate which is defined

by fj =
n∑
i=0

aiβ
i
j.

3 Main results

3.1 Sufficient conditions for finiteness of L�(β)

In the following theorem, we will prove that L�(β) is finite when β is an algebraic integer.
This result does not have an analogue to the real case.

Theorem 3.1 Let β ∈ IFq((x
−1)), with | β |> 1 be an algebraic integer on IFq[x]. Then

L�(β) is finite.
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Proof Let f = asβ
s + as−1β

s−1 + ... + a0 and g = bmβ
m + bm−1β

m−1 + ... + b0, where
| ai |<| β | for all 0 ≤ i ≤ s and | bj |<| β | for all 0 ≤ j ≤ m, such that fg ∈ Fin(β).
Therefore, we can write

fg = cnβ
n+cn−1β

n−1+...+c0+c−1β
−1+c−2β

−2+...+c−kβ
−k, with | cj |<| β | for all −k ≤ j ≤ n.

we denote by hj = c−1β
−1
j + c−2β

−2
j + ... + c−kβ

−k
j for all 1 ≤ j ≤ d, where β1 = β and

βj, 2 ≤ j ≤ d are the Galois conjugates of β and d is the algebraic degree of β. Then

hj =
d−1∑
i=0

αiβ
−i
j where αi ∈ IFq[x] for all 0 ≤ i ≤ d− 1.

We have | h |=| h1 |< 1, if | βj |≥ 1 then | hj |=| c−1β−1j + c−2β
−2
j + ...+ c−kβ

−k
j |≤| β |,

and if | βj |< 1 then | hj |=| (asβsj + as−1β
s−1
j + ...+ a0).(bmβ

m
j + bm−1β

m−1
j + ...+ b0)−

(cnβ
n
j + cn−1β

n−1
j + ...+ c0) |≤| β |2.

Since the matrix M = (β−kj )1≤j≤d;0≤k≤d−1 is non singular, we give that α0
...

αd−1

 = M−1

 h1
...
hd

 .

This implies that | αi |< C(β), where C(β) is a constant depend only on β, therefore
the number of elements (αi)0≤i≤d−1 is finite. So L�(β) is finite. �

3.2 Computation of L�(β)

We propose the following quantitative study over this family of algebraic formal series

β, that have at least one of its conjugates, say βj, in absolute value smaller than
1

| β |
.

Theorem 3.2 Let β ∈ IFq((x
−1)) be an algebraic on IFq[x] with deg(β) ≥ 2, which have

a conjugate, say βj verifying |βj| ≤
1

| β |
. Then L�(β) ∈ {0, 1}.

Proof.

Let f =
s∑
i=0

aiβ
i and g =

r∑
i=0

biβ
i where |ai| < |β| and |bi| < |β|, such that fg ∈ Fin(β).

Let fj =
s∑
i=0

aiβ
i
j and gj =

r∑
i=0

biβ
i
j. Since |βj| ≤

1

| β |
, we have |fj| < |β| and |gj| < |β|.

So
|fjgj| < |β|2

We assume that dβ(fg) = ch...c0.c−1...c−m where c−m 6= 0, so we have

|fjgj| = |
h∑

i=−m

ciβ
i
j| = |c−mβ−mj | ≥ |β|m.

Therefore m < 2. �
As application of the above theorem, we have treat some specific cases.
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Corollary 3.3 Let β be a quadratic Pisot unit with deg(β) ≥ 2. Then L�(β) = 1.

Proof.
In this case β verify β2 +A1β +A0 = 0 where A0 ∈ IF∗q, so the unique conjugate of β is

βj such that |βj| =
1

| β |
.

By Theorem 3.2, we obtain L�(β) ∈ {0, 1}. Let now A1 = cdx
d + ... + c0 where d =

deg(β) ≥ 2 and cd 6= 0, we have x, cd.x
d−1 ∈ (IFq[x])β and

cdx
d = −β − (cd−1x

d−1 + ...+ c0)− A0

β
. So, L�(β) = 1. �

Corollary 3.4 Let β be a cubic Salem unit with deg(β) ≥ 2. Then L�(β) ∈ {0, 1}.

Proof.
In this case β verify β3 + A2β

2 + A1β + A0 = 0, where |A1| = |A2| = |β| and A0 ∈ IF∗q.

So β have two conjugates β2 and β3 such that |β2| =
1

|β|
et |β3| = 1.

By Theorem 3.2, we obtain L�(β) ∈ {0, 1}. �

Corollary 3.5 Let β be a Salem unit with deg(β) ≥ 2 verifying:

βd + Ad−1β
d + . . .+ A1β + A0 = 0, (3.1)

where A0 ∈ IF∗q and | A1 |=| Ad−1 |. Then L�(β) ∈ {0, 1}.

Proof.
Let β = β1 be a Salem unit verifying (3.1). Then

| A0 |=|
∏

1≤i≤d

βi |= 1 where β2, . . . , βd its conjugates

| Ad−1 |=|
d∑
i=1

βi |=| A1 |=|
∑

1≤i1<...<id−1≤d

βi1 . . . βid−1
|

If there exist βi and βj (i 6= j) such that |βi| < 1 and |βj| < 1, then we obtain in this
case | A1 |<| β | which contradicts the hypothesis that

| β |=| Ad−1 |=| A1 | .

we conclude that β have a unique conjugate βj such that | βj |< 1 and the other

conjugates of equal absolute value 1. So | βj |=
1

| β |
and by Theorem 3.2, we obtain

L�(β) ∈ {0, 1}. �
The following theorem, allows us to calculate L�(β) for some Pisot series.

Theorem 3.6 let β be a Pisot series satisfying

βd + Ad−1β
d−1 + · · ·+ A0 = 0



8 M.Hbaib and Y.Laabidii

such that deg(β) = m ≥ 2 and deg(A0) = s ≥ deg(Ai), for all 0 ≤ i ≤ d − 2. Then for
any n ≥ m the beta-expansion of xn is given by:

dβ(xn) = anλ(n) · · · an0 .an−1 · · · an−µ(n).

Where λ and µ are two increasing sequences defined by:

µ(n) = −ordβ(xn) = (d−1)[
n− s
m− s

] and deg(an−µ(n)) = s+(n− s) = sup
0≤k≤d−2

deg(an−µ(n)+k)

where (n− s) is the rest of the Euclidean division of (n− s) by (m− s).

To prove the above theorem, we will need the following lemma:

Lemma 3.7 Let β be a Pisot series. Then ordβ(xn+1) ≤ ordβ(xn) for all n ∈ IN∗ .

Proof.
Let P (y) = yd+Ad−1y

d−1+· · ·+A0 be the minimal polynomial of β and c be the dominant
coefficient of Ad−1, Let m =deg(β), for n < m− 1 we have ordβ(xn+1) = ordβ(xn) = 0.
Let now n ≥ m we suppose that

dβ(xn) = anλ(n) · · · an0 .an−1 · · · an−µ(n) with an−µ(n) 6= 0.

We will show by induction on n that µ(n + 1) ≥ µ(n) and deg(an−µ(n)) ≥ s, where
s =degA0.
So we have

xm = −c−1β − c−1(Ad−1 − cxm)− · · · − c−1A0β
−(d−1).

this implies

dβ(xm) = amλ(m)a
m
0 .a

m
−1 · · · am−µ(m)

where


amλ(m) = −c−1
...
am−µ(m) = −c−1A0

and λ(m) = 1, µ(m) = d− 1

Let now

An = {0 ≤ i ≤ d− 1 such that deg(an−µ(n)+i) = m− 1}

IfAn = ∅, then an+1
−µ(n+1) = xan−µ(n) and µ(n+1) = µ(n) and deg(an−µ(n+1)) = 1+deg(an−µ(n)).

If An 6= ∅, taking kn = minAn and γ be the dominant coefficient of an−µ(n)+kn .

• If kn = d− 1, then an+1
−µ(n+1) = −c−1.γ.A0 + x.an−µ(n) and µ(n+ 1) = µ(n).

• If kn < d− 1, then an+1
−µ(n+1) = −c−1γA0 and µ(n+ 1) = µ(n) + d− 1− kn.

Lemma 3.8 Let β be a Pisot series, such that m =deg(β) ≥ 2.
Then L�(β) = −ordβ(x2m−2).
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Proof.
Let f = anβ

n + an−1β
n−1 + · · ·+ a0 and g = bmβ

m + bm−1β
m−1 + · · ·+ b0 in IFq[x]β such

that f.g ∈ Fin(β), since

f.g =
n+m∑
k=0

(
k∑
p=0

bpak−p)β
k.

We have −ordβ(f.g) ≤ max{−ordβ(bpak−p); 0 ≤ p ≤ k ≤ n + m}, using the above
lemma we get L�(β) ≤ −ordβ(x2m−2). Or f = xm−1 ∈ IFq[x]β
and −ordβ(f 2) = −ordβ(x2m−2), so L�(β) = −ordβ(x2m−2). �
Proof of Theorem 3.6.
We will show the result by induction on n ≥ m.
For n = m, we have

xm = −c−1β − (Ad−1 − cxm)− · · · − c−1A0β
−(d−1)

where c is the dominant coefficient of Ad−1, so

−ordβ(xm) = d− 1 = µ(m) and deg(am−µ(m)) = deg(−c−1A0) = s = s+ (m− s).

So the result is true for n = m.
Assume that µ(n) = −ordβ(xn) = (d− 1)[ n−s

m−s ] and deg(an−µ(n)) = s+ (n− s). We have

xn = anλ(n)β
λ(n) + · · ·+ an0 + an−1β

−1 + · · ·+ an−µ(n)β
µ(n).

Therefore

xn+1 = xanλ(n)β
λ(n) + · · ·+ xan0 + xan−1β

−1 + · · ·+ xan−µ(n)β
µ(n).

We distinguish two cases:
Case 1: deg(an−µ(n)) = m− 1, in this case we have (n− s) = m− s− 1,

so (n − s) = [ n−s
m−s ](m − s) + m − s − 1, this implies (n + 1 − s) = ([ n−s

m−s ] + 1)(m − s),
hence [n+1−s

m−s ] = [ n−s
m−s ] + 1 and (n+ 1− s) = 0. Also we have

µ(n+ 1) = −ordβ(xn+1) = −ordβ(xn) + d− 1

= (d− 1)[
n− s
m− s

] + (d− 1)

= (d− 1)([
n− s
m− s

] + 1)

= (d− 1)[
n+ 1− s
m− s

]

and an+1
−µ(n+1) = −c−1.γ.A0 where γ is the dominant coefficient of an−µ(n),

so deg(an+1
−µ(n+1)) = s = s+ (n+ 1− s)

Case 2: deg(an−µ(n)) < m− 1, in this case we have

µ(n+ 1) = −ordβ(xn+1) = −ordβ(xn) = µ(n)
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and

an+1
−µ(n+1) =

{
xan−µ(n) if deg(an−µ(n)+d−1) < m− 1,

−c−1.δ.A0 + xan−µ(n) if deg(an−µ(n)+d−1) = m− 1.

where δ is the dominant coefficient of an−µ(n)+d−1.

Therefore deg(an+1
−µ(n+1)) = 1+ deg(an−µ(n)) = 1 + s+ (n− s) = s+ (n+ 1− s). �

Corollary 3.9 let β be a Pisot series satisfying

βd + Ad−1β
d−1 + · · ·+ A0 = 0

such that deg(β) = m ≥ 2 and deg(A0) = s ≥ deg(Ai) ∀0 ≤ i ≤ d − 2. Then
L�(β) = (d− 1)([m−2

m−s ] + 1).

Corollary 3.10 Let β be a Pisot series verifying β2+A1β+A0 = 0 such that deg(β) = m
and deg(A0) = s. Then

L�(β) = [
m− 2

m− s
] + 1

4 Open Problem

Study other finiteness conditions and explicitly calculate L�(β) for other families of
algebraic formal power series.
Is it possible to find conditions on β in order that L�(β) = 0, meaning the set (IFq[x])β
is stable under multiplication?
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[9] M. Hbaib, M. Mkaouar, Sur le bêta-dveloppement de 1 dans le corps des sries
formelles, International Journal of Number Theory., 2 (2006), 365–377.

[10] S. Ito, H. Rao, Purely periodic β-expansions with Pisot unit base, Proccedings of
the AMS, 133 (2005), 953–964.

[11] W.Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11
(1960), 401–416.
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