Arithmetics in the set of beta-polynomials

M.Hbaib 1, Y.Laabidi 2

1 Department of Mathematics, Faculty of Science, Sfax University,
BP 1171, Sfax 3000, Tunisia
e-mail: mmmhbaib@gmail.com

2 Department of Mathematics, Faculty of Science, Sfax University,
BP 1171, Sfax 3000, Tunisia
e-mail: labidiyamna@yahoo.fr

Abstract

Let β be a formal series with $\text{deg}(\beta) \geq 2$, the aim of this paper is to prove that the maximal length of the finite β-fractional parts in the β-expansion of product of two beta-polynomials (a formal series that have not β-fractional part), denoted $L_\beta(\beta)$ is finite when β is Pisot or Salem series. Especially, we give its exact value if β have one conjugate with absolute value smaller than $\frac{1}{|\beta|}$ and if β is a Pisot series verifying $\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_0 = 0$ such that $\text{deg}(\beta) = m \geq 2$ and $\text{deg}(A_0) = s \geq \text{deg}(A_i)$ for $0 \leq i \leq d-2$.

Keywords: Formal power series, β-expansion, β-polynomials.

2010 Mathematics Subject Classification: 11R06, 37B50.

1 Introduction

The β-expansion of real numbers was introduced by A. Rényi [12]. Since its introduction in 1975, its properties arithmetic, diophantine and ergodic have been extensively studied by several authors.

Let $\beta > 1$ be a real number. The β-expansion of a real number $x \in [0,1)$ is defined by the sequence $(x_i)_{i \geq 1}$ with values in $\{0,1,...,\lfloor \beta \rfloor\}$ produced by the β-transformation $T_\beta : x \rightarrow \beta x \pmod{1}$ as follows:

$$\forall i \geq 1, \ x_i = \lfloor \beta T_{\beta}^{i-1}(x) \rfloor,$$
and thus $x = \sum_{i \geq 1} \frac{x_i}{\beta^i}$.
We write $d_\beta(x) = 0.x_1x_2...$

In [11], Parry showed that for any $x \in [0,1)$, $d_\beta(x)$ is the only transformation of x in base β which satisfies the following condition called the Parry condition:

$$\forall n \in \mathbb{N}^*, \ S^n((x_i)_{i \in \mathbb{N}^*}) < \text{lex} \ d_\beta(1)$$

where $S((x_i)_{i \in \mathbb{N}^*}) = (x_{i+1})_{i \in \mathbb{N}^*}$ and $d_\beta^n(1) = \begin{cases} d_\beta(1) & \text{if } d_\beta(1) \text{ is infinite} \\ (t_1...t_{m-1},t_m-1)^\infty & \text{if } d_\beta(1) = 0.t_1...t_m. \end{cases}$

Now let $x > 1$ be a positive real number, so there exist $k \in \mathbb{N}^*$ such that

$$\beta^{k-1} \leq x < \beta^k.$$ So $\frac{x}{\beta^k} \in [0,1)$ and let $d_\beta(\frac{x}{\beta^k}) = (x_i)_{i \geq 1}$ finely we get

$$d_\beta(x) = (x_{i+k+1})_{i \geq -k}.$$

Let $d_\beta(x) = (x_i)_{i \geq -n}$, so $x = \sum_{i=0}^{n} x_i \beta^i + \sum_{i>0} x_i \beta^{-i}$. The part with non-negative powers of β is called the β-integer part of x, denoted by $[x]_\beta$. The part with negative powers of β is called the β-fractional part of x, denoted by $\{x\}_\beta = x - [x]_\beta$, this allows a natural generalization of the definition of development of real number in base 10.

If there exists $n \in \mathbb{N}$ such that $|x| = \sum_{i=0}^{n} x_i \beta^i$, where $x_n \cdots x_0$ is the β-expansion of $|x|$, then x is called β-integer and the set of β-integers is denoted by \mathbb{Z}_β.

The set $\text{Fin}(\beta)$, introduced in [6], is defined by $\{\beta^{-k}\mathbb{Z}_\beta/k \in \mathbb{N}\}$. It allows to generalize the frame work of numeration to the case of a non-integer base β.

We know that \mathbb{Z}_β and $\text{Fin}(\beta)$ are not stable under usual operations like addition and multiplication.

In order to study arithmetics on β-integers, we interested on the β-expansion of the number obtained by addition or multiplication of two β-integers when the β-expansion of the sum or the product is finite.

The following notation $L_\oplus(\beta)$ and $L_\odot(\beta)$ are introduced in [8].

Definition 1.1

$$L_\oplus(\beta) = \min\{n \in \mathbb{N} \setminus \forall x,y \in \mathbb{Z}_\beta \text{ such that } x+y \in \text{Fin}(\beta) \Rightarrow \beta^n(x+y) \in \mathbb{Z}_\beta\}$$

$$L_\odot(\beta) = \min\{n \in \mathbb{N} \setminus \forall x,y \in \mathbb{Z}_\beta \text{ such that } xy \in \text{Fin}(\beta) \Rightarrow \beta^n(xy) \in \mathbb{Z}_\beta\}$$

Minimum of an empty set is defined to be $+\infty$.

We can see that $L_\oplus(\beta)$ and $L_\odot(\beta)$ represent respectively the maximal possible finite length of the β-fractional part which may appear when one adds or multiplies two β-integers, otherwise they designate the maximal finite shift after the comma for the sum or product of two β-integers.

The computation of these values gives an indication on the difficulty of performing arithmetics on \mathbb{Z}_β.

Let us explain now why we are interested in the case where $L_\oplus(\beta)$ and $L_\odot(\beta)$ are finite: Indeed, if the sum or the product of two β-integers belongs to $\text{Fin}(\beta)$, then the length of the β-fractional part of this sum or product is bounded by a constant which only
depends on \(\beta\).
If the set of the length sums or products of two \(\beta\)-integers is unbounded, then performing arithmetics in \(\mathbb{Z}_\beta\) will be very difficult if not impossible, since one can not compute in a finite time any operation on \(\beta\)-integers.
Let us mention that to our knowledge no example is known of a \(\beta\) such that \(L_\oplus(\beta)\) and \(L_\odot (\beta)\) are infinite, however it has been proven in [6] and [7] that \(L_\oplus (\beta)\) and \(L_\odot (\beta)\) are finite when \(\beta\) is Pisot (a real algebraic integer greater than 1 with all conjugates strictly inside the unit disk). The computation of these values is however not so easy, especially for \(L_\oplus (\beta)\). The case of quadratic Pisot numbers has been studied in [5] when \(\beta\) is a unit. The authors gave exact values for \(L_\oplus (\beta)\) and \(L_\odot (\beta)\), when \(\beta > 1\) is a solution either of equation \(x^2 = mx - 1, m \in \mathbb{N}, m \geq 3\) or of equation \(x = mx + 1, m \in \mathbb{N}\). In the first case \(L_\oplus (\beta) = L_\odot (\beta) = 1\), in the second case \(L_\oplus (\beta) = L_\odot (\beta) = 2\), and in [8] otherwise. However, when \(\beta\) is of higher degree, it is a difficult problem to compute the exact value of \(L_\oplus (\beta)\) or \(L_\odot (\beta)\), and even to compute upper and lower bounds for these two constants.
Several examples are Studied in [2], where a method is described in order to compute upper bounds for \(L_\oplus (\beta)\) and \(L_\odot (\beta)\) for Pisot numbers satisfying additional algebraic properties, for example, in the Tribonacci case, that is, when \(\beta\) is the positive root, of the polynomial \(x^3 - x^2 - x - 1\), we have \(L_\oplus (\beta) = 5\), let’s note that until now, we don’t know the value of \(L_\odot (\beta)\) in the case of the Tribonacci number, it is only proven in [2] that \(4 \leq L_\odot (\beta) \leq 5\).
The condition Pisot is not necessary to have \(L_\oplus (\beta)\) and \(L_\odot (\beta)\) are finite: L. S. Guimond, Z. Masáková and E. Pelantová in [8] prove that if \(\beta\) is an algebraic number such that at least one among its conjugates with modulus smaller than 1, so \(L_\oplus (\beta)\) and \(L_\odot (\beta)\) are finite.

In this paper, we define a similar concepts over the field of formal series. We begin in Section 1 by introducing the field of formal series and the \(\beta\)-expansion over this field. In Section 2, we will show that the condition Pisot is not necessary to have \(L_\oplus (\beta)\) are finite. Especially, we give a sufficient condition for the conjugates of \(\beta\) to obtain \(L_\odot (\beta) = 1\).
In Section 3, we prove the finiteness of \(L_\odot (\beta)\) when \(\beta\) is Pisot or Salem formal power series and we give its exact value in the case of Pisot with some additional conditions.

2 Preliminaries

Let \(\mathbb{F}_q\) be a finite field of \(q\) elements, \(\mathbb{F}_q[x]\) is the ring of polynomials with coefficient in \(\mathbb{F}_q\), \(\mathbb{F}_q(x)\) is the field of rational functions and \(\mathbb{F}_q(x, \beta)\) is the field of rational functions in base \(\beta\). Let \(\mathbb{F}_q((x^{-1}))\) be the field of formal power series of the form:

\[
f = \sum_{k=-\infty}^{l} f_k x^k, \quad f_k \in \mathbb{F}_q
\]
Theorem 2.1 [3] Let \(\beta \in \mathbb{F}_q((x^{-1})) \) be an algebraic integer over \(\mathbb{F}_q[x] \) and
\[
P(y) = y^n - A_{n-1}y^{n-1} - \cdots - A_0, \quad A_i \in \mathbb{F}_q[x],
\]
be its minimal polynomial. Then
(i) \(\beta \) is a Pisot element if and only if \(|A_{n-1}| > \max_{0 \leq j \leq n-2} |A_i| \).
(ii) \(\beta \) is a Salem element if and only if \(|A_{n-1}| = \max_{0 \leq j \leq n-2} |A_i| \).

Let \(\beta \in \mathbb{F}_q((x^{-1})) \) with \(|\beta| > 1 \). A representation in base \(\beta \) (or \(\beta \)-representation) of a formal series \(f \in D(0, 1) \) is an infinite sequence \((x_i)_{i \geq 1}, \quad x_i \in \mathbb{F}_q[x], \) such that
\[
f = \sum_{i \geq 1} x_i \beta^i.
\]
A particular \(\beta \)-representation of \(f \) is called the \(\beta \)-expansion of \(f \) in base \(\beta \), noted \(d_\beta(f) \), which is obtained by using the \(\beta \)-transformation \(T_\beta \) in the unit disk which is given by \(T_\beta(f) = \beta f - |\beta| f \). Then \(d_\beta(f) = (a_i)_{i \geq 1} \) where \(a_i = [\beta T_\beta^{i-1}(f)] \), for better characterization of \(\beta \)-expansion, in [9], M.Hbaib and M.Mkaouar showed the following theorem.

Theorem 2.2 [9] An infinite sequence \((a_i)_{i \geq 1} \) is the \(\beta \)-expansion of \(f \in D(0, 1) \) if and only if \(|a_i| < |\beta| \) for all \(i \geq 1 \).
Now let \(f \in \mathbb{F}_q((x^{-1})) \) be an element with \(|f| \geq 1 \). Then there is a unique \(k \in \mathbb{N}^* \) such that \(|\beta|^{k-1} \leq |f| < |\beta|^k \), so \(\frac{f}{\beta^k} \) is an integer to the left. Therefore, if \(d_\beta(f) = 0.a_1a_2a_3... \) then \(d_\beta(\beta f) = a_1a_2a_3... \).

Let \(Fin(\beta) \) be the set of \(f \in \mathbb{F}_q((x^{-1})) \) which have a finite \(\beta \)-expansion, so the \(\beta \)-expansion of every \(f \in Fin(\beta) \) has this form:

\[
d_\beta(f) = a_k a_{k-1} \cdots a_1 a_0, a_{-1} a_{-2} \cdots a_m, \text{ where } m \in \mathbb{Z}.
\]

The part \(a_k a_{k-1} \cdots a_1 a_0 \) is called the \(\beta \)-polynomial part of \(f \) and the part \(a_{-1} a_{-2} \cdots a_m \) is called the \(\beta \)-fractional part of \(f \).

We define also \(deg_\beta(f) = k \) and \(ord_\beta(f) = m \).

If \(ord_\beta(f) \geq 0 \) then \(f \) is called \(\beta \)-polynomial and the set of \(\beta \)-polynomials is denoted by \((\mathbb{F}_q[x])_\beta\), who is the analogue of \(\mathbb{Z}_\beta \) in the real case.

We can define by an analogy with the real case the quantity \(L_\oplus(\beta) \) and \(L_\ominus(\beta) \) as follows:

\[
L_\oplus(\beta) = \min\{n \in \mathbb{N} \setminus \forall, g \in (\mathbb{F}_q[x])_\beta \text{ such that } f+g \in Fin(\beta) \Rightarrow \beta^n(f+g) \in (\mathbb{F}_q[x])_\beta\}
\]

\[
L_\ominus(\beta) = \min\{n \in \mathbb{N} \setminus \forall, g \in (\mathbb{F}_q[x])_\beta \text{ such that } f+g \in Fin(\beta) \Rightarrow \beta^n(f+g) \in (\mathbb{F}_q[x])_\beta\}.
\]

Minimum of an empty set is defined to be \(+\infty\).

Remark 2.3 Let us note that in the case of formal series the quantity \(L_\oplus(\beta) \) is not interesting, because we know that in contrast to the real case, if \(f, g \in \mathbb{F}_q((x^{-1})) \), we have \(d_\beta(f+g) = d_\beta(f)+d_\beta(g) \), so the sum of two \(\beta \)-polynomials is always a \(\beta \)-polynomial.

To calculate \(L_\ominus(\beta) \) for the families of basis \(\beta \), we excluded the case when \(deg(\beta) = 1 \), since in this trivial case, the product of two \(\beta \)-polynomials is a \(\beta \)-polynomial, so we have \(L_\ominus(\beta) = 0 \).

Let \(\beta \in \mathbb{F}_q((x^{-1})) \) with \(|\beta| > 1 \) be an algebraic on \(\mathbb{F}_q[x] \) and let \(\beta_2, \ldots, \beta_n \) be the conjugates of \(\beta \). We associate for every \(f = \sum_{i=0}^{n} a_i \beta^i \), the j-th conjugate which is defined by \(f_j = \sum_{i=0}^{n} a_i \beta_j^i \).

3 Main results

3.1 Sufficient conditions for finiteness of \(L_\ominus(\beta) \)

In the following theorem, we will prove that \(L_\ominus(\beta) \) is finite when \(\beta \) is an algebraic integer. This result does not have an analogue to the real case.

Theorem 3.1 Let \(\beta \in \mathbb{F}_q((x^{-1})) \), with \(|\beta| > 1 \) be an algebraic integer on \(\mathbb{F}_q[x] \). Then \(L_\ominus(\beta) \) is finite.
Therefore, we can write

\[f = a_s \beta^s + a_{s-1} \beta^{s-1} + \ldots + a_0 \quad \text{and} \quad g = b_m \beta^m + b_{m-1} \beta^{m-1} + \ldots + b_0, \]

where \(|a_i| < |\beta| \) for all \(0 \leq i \leq s \) and \(|b_j| < |\beta| \) for all \(0 \leq j \leq m \), such that \(fg \in \text{Fin}(\beta) \).

Therefore, we can write

\[fg = c_n \beta^n + c_{n-1} \beta^{n-1} + \ldots + c_0 + c_{-1} \beta^{-1} + \ldots + c_{-k} \beta^{-k}, \]

with \(|c_j| < |\beta| \) for all \(-k \leq j \leq n \). We denote by \(h_j = c_{-1} \beta_j^{-1} + c_{-2} \beta_j^{-2} + \ldots + c_{-k} \beta_j^{-k} \) for all \(1 \leq j \leq d \), where \(\beta_1 = \beta \) and \(\beta_j, 2 \leq j \leq d \) are the Galois conjugates of \(\beta \) and \(d \) is the algebraic degree of \(\beta \).

Then

\[h_j = \sum_{i=0}^{d-1} \alpha_i \beta_j^{-i} \text{ where } \alpha_i \in \mathbb{F}_q[x] \text{ for all } 0 \leq i \leq d - 1. \]

We have |\(h \) | = |\(h_1 \) | < 1, if |\(\beta_j \) | ≥ 1 then |\(h_j \) | = |\(c_{-1} \beta_j^{-1} + c_{-2} \beta_j^{-2} + \ldots + c_{-k} \beta_j^{-k} \) | ≤ |\(\beta \) |, and if |\(\beta_j \) | < 1 then |\(h_j \) | = |\((a_s \beta_j^s + a_{s-1} \beta_j^{s-1} + \ldots + a_0)(b_m \beta_j^m + b_{m-1} \beta_j^{m-1} + \ldots + b_0) - (c_n \beta_j^n + c_{n-1} \beta_j^{n-1} + \ldots + c_0) \) | ≤ |\(\beta \) |^2.

Since the matrix \(M = (\beta_j^{-k})_{1 \leq j \leq d, 0 \leq k \leq d - 1} \) is non singular, we give that

\[
\begin{pmatrix}
0
\vdots
\alpha_{d-1}
\end{pmatrix} = M^{-1}
\begin{pmatrix}
h_0
\vdots
h_d
\end{pmatrix}.
\]

This implies that |\(\alpha_i \) | < \(C(\beta) \), where \(C(\beta) \) is a constant depend only on \(\beta \), therefore the number of elements \((\alpha_i)_{0 \leq i \leq d-1} \) is finite. So \(L_\beta(\beta) \) is finite. □

3.2 Computation of \(L_\beta(\beta) \)

We propose the following quantitative study over this family of algebraic formal series \(\beta \), that have at least one of its conjugates, say \(\beta_j \), in absolute value smaller than \(\frac{1}{|\beta|} \).

Theorem 3.2 Let \(\beta \in \mathbb{F}_q((x^{-1})) \) be an algebraic on \(\mathbb{F}_q[x] \) with \(\deg(\beta) \geq 2 \), which have a conjugate, say \(\beta_j \) verifying \(|\beta_j| \leq \frac{1}{|\beta|} \). Then \(L_\beta(\beta) \in \{0, 1\} \).

Proof.

Let \(f = \sum_{i=0}^{s} a_i \beta^i \) and \(g = \sum_{i=0}^{r} b_i \beta^i \) where \(|a_i| < |\beta| \) and \(|b_i| < |\beta| \), such that \(fg \in \text{Fin}(\beta) \).

Let \(f_j = \sum_{i=0}^{s} a_i \beta_j^i \) and \(g_j = \sum_{i=0}^{r} b_i \beta_j^i \). Since \(|\beta_j| \leq \frac{1}{|\beta|} \), we have \(|f_j| < |\beta| \) and \(|g_j| < |\beta| \).

So

\[|f_j g_j| < |\beta|^2 \]

We assume that \(d_\beta(fg) = c_h \ldots c_0 c_{-1} \ldots c_{-m} \) where \(c_{-m} \neq 0 \), so we have

\[|f_j g_j| = |\sum_{i=0}^{h} c_i \beta_j^i| = |c_{-m} \beta_j^{-m}| \geq |\beta|^m. \]

Therefore \(m < 2 \). □

As application of the above theorem, we have treat some specific cases.
Corollary 3.3 Let \(\beta \) be a quadratic Pisot unit with \(\deg(\beta) \geq 2 \). Then \(L_\odot(\beta) = 1 \).

Proof.
In this case \(\beta \) verify \(\beta^2 + A_1 \beta + A_0 = 0 \) where \(A_0 \in \mathbb{F}_q^* \), so the unique conjugate of \(\beta \) is \(\beta_j \) such that \(|\beta_j| = \frac{1}{|\beta|} \).
By Theorem 3.2, we obtain \(L_\odot(\beta) \in \{0,1\} \). Let now \(A_1 = c_d x^d + \ldots + c_0 \) where \(d = \deg(\beta) \geq 2 \) and \(c_d \neq 0 \), we have \(x, c_d x^{d-1} \in (\mathbb{F}_q[x])_\beta \) and
\[
\beta_d x^d = -\beta - (c_{d-1} x^{d-1} + \ldots + c_0) - \frac{A_0}{\beta}.
\]
So, \(L_\odot(\beta) = 1 \). \(\square \)

Corollary 3.4 Let \(\beta \) be a cubic Salem unit with \(\deg(\beta) \geq 2 \). Then \(L_\odot(\beta) \in \{0,1\} \).

Proof.
In this case \(\beta \) verify \(\beta^3 + A_2 \beta^2 + A_1 \beta + A_0 = 0 \), where \(|A_1| = |A_2| = |\beta| \) and \(A_0 \in \mathbb{F}_q^* \).
So \(\beta \) have two conjugates \(\beta_2 \) and \(\beta_3 \) such that \(|\beta_2| = \frac{1}{|\beta|} \) et \(|\beta_3| = 1 \).
By Theorem 3.2, we obtain \(L_\odot(\beta) \in \{0,1\} \). \(\square \)

Corollary 3.5 Let \(\beta \) be a Salem unit with \(\deg(\beta) \geq 2 \) verifying:
\[
\beta^d + A_{d-1} \beta^{d-1} + \ldots + A_1 \beta + A_0 = 0, \quad (3.1)
\]
where \(A_0 \in \mathbb{F}_q^* \) and \(|A_1| = |A_{d-1}| \). Then \(L_\odot(\beta) \in \{0,1\} \).

Proof.
Let \(\beta = \beta_1 \) be a Salem unit verifying (3.1). Then
\[
|A_0| = \prod_{1 \leq i \leq d} |\beta_i| = 1 \text{ where } \beta_2, \ldots, \beta_d \text{ its conjugates}
\]
\[
|A_{d-1}| = \left| \sum_{i=1}^{d} \beta_i \right| = |A_1| = \left| \sum_{1 \leq i_1 < \ldots < i_{d-1} \leq d} \beta_{i_1} \ldots \beta_{i_{d-1}} \right|
\]
If there exist \(\beta_i \) and \(\beta_j \) (\(i \neq j \)) such that \(|\beta_i| < 1 \) and \(|\beta_j| < 1 \), then we obtain in this case \(|A_1| < |\beta| \) which contradicts the hypothesis that
\[
|\beta| = |A_{d-1}| = |A_1|.
\]
we conclude that \(\beta \) have a unique conjugate \(\beta_j \) such that \(|\beta_j| < 1 \) and the other conjugates of equal absolute value 1. So \(|\beta_j| = \frac{1}{|\beta|} \) and by Theorem 3.2, we obtain \(L_\odot(\beta) \in \{0,1\} \). \(\square \)
The following theorem, allows us to calculate \(L_\odot(\beta) \) for some Pisot series.

Theorem 3.6 let \(\beta \) be a Pisot series satisfying
\[
\beta^d + A_{d-1} \beta^{d-1} + \ldots + A_0 = 0
\]
where λ and μ are two increasing sequences defined by:

$$\mu(n) = -\text{ord}_\lambda(x^n) = (d-1)\left\lfloor \frac{n-s}{m-s} \right\rfloor$$

and $\text{deg}(a^{-\mu(n)}_n) = s + (n - s) = \sup_{0 \leq k \leq d-2} \text{deg}(a^{-\mu(n)+k}_n)$

where $(n - s)$ is the rest of the Euclidean division of $(n - s)$ by $(m - s)$. To prove the above theorem, we will need the following lemma:

Lemma 3.7 Let β be a Pisot series. Then $\text{ord}_\beta(x^{n+1}) \leq \text{ord}_\beta(x^n)$ for all $n \in \mathbb{N}^*$.

Proof.

Let $P(y) = y^d + A_{d-1}y^{d-1} + \cdots + A_0$ be the minimal polynomial of β and c be the dominant coefficient of A_{d-1}. Let $m = \text{deg}(\beta)$, for $n < m - 1$ we have $\text{ord}_\beta(x^{n+1}) = \text{ord}_\beta(x^n) = 0$.

Let now $n \geq m$ we suppose that

$$d_\beta(x^n) = a_n^{\lambda(n)} \cdots a_0^{\mu(n)}$$

with $a^{-\mu(n)}_n \neq 0$.

We will show by induction on n that $\mu(n+1) \geq \mu(n)$ and $\text{deg}(a^{-\mu(n+1)}_{n+1}) \geq s$, where $s = \text{deg}A_0$.

So we have

$$x^m = -c^{-1}\beta - c^{-1}(A_{d-1} - cx^m) - \cdots - c^{-1}A_0\beta^{-(d-1)}.$$

this implies

$$d_\beta(x^m) = a_n^{\lambda(m)}a_0^{\mu(m)}\cdots a^{-\mu(m)}_m$$

where

$$\begin{cases}
 a_n^{\lambda(m)} = -c^{-1} \\
 \vdots \\
 a^{-\mu(m)}_m = -c^{-1}A_0
\end{cases}$$

and $\lambda(m) = 1$, $\mu(m) = d - 1$

Let now

$$\mathcal{A}_n = \{0 \leq i \leq d - 1 \text{ such that } \text{deg}(a^{-\mu(n)+i}_n) = m - 1\}$$

If $\mathcal{A}_n = \emptyset$, then $a^{n+1}_{-\mu(n+1)} = xa^{-\mu(n)}_n$ and $\mu(n+1) = \mu(n)$ and $\text{deg}(a^{-\mu(n+1)}_{n+1}) = 1 + \text{deg}(a^{-\mu(n)}_n)$.

If $\mathcal{A}_n \neq \emptyset$, taking $k_n = \text{min}\mathcal{A}_n$ and γ be the dominant coefficient of $a^{-\mu(n)+k_n}_n$.

- If $k_n = d - 1$, then $a^{n+1}_{-\mu(n+1)} = -c^{-1}\gamma A_0 + xa^{-\mu(n)}_n$ and $\mu(n+1) = \mu(n)$.
- If $k_n < d - 1$, then $a^{n+1}_{-\mu(n+1)} = -c^{-1}\gamma A_0$ and $\mu(n+1) = \mu(n) + d - 1 - k_n$.

Lemma 3.8 Let β be a Pisot series, such that $m = \text{deg}(\beta) \geq 2$.

Then $L_\beta(x^m) = -\text{ord}_\beta(x^{2m-2})$.
Proof.
Let \(f = a_n \beta^n + a_{n-1} \beta^{n-1} + \cdots + a_0 \) and \(g = b_m \beta^m + b_{m-1} \beta^{m-1} + \cdots + b_0 \) in \(\mathbb{F}_q[x]_\beta \) such that \(f.g \in \text{Fin}(\beta) \), since
\[
 f.g = \sum_{k=0}^{n+m} \left(\sum_{p=0}^{k} b_p a_{k-p} \right) \beta^k.
\]
We have \(-\text{ord}_\beta(f.g) \leq \max\{-\text{ord}_\beta(b_p a_{k-p}); 0 \leq p \leq k \leq n + m\} \), using the above lemma we get \(L_\oplus(\beta) \leq -\text{ord}_\beta(x^{2m-2}) \). Or \(f = x^{m-1} \in \mathbb{F}_q[x]_\beta \) and \(-\text{ord}_\beta(f^2) = -\text{ord}_\beta(x^{2m-2}) \), so \(L_\oplus(\beta) = -\text{ord}_\beta(x^{2m-2}) \). □

Proof of Theorem 3.6.
We will show the result by induction on \(n \geq m \).
For \(n = m \), we have
\[
x^n = -c^{-1} \beta - (A_{d-1} - c x^n) - \cdots - c^{-1} A_0 \beta^{-(d-1)}
\]
where \(c \) is the dominant coefficient of \(A_{d-1} \), so
\[
 -\text{ord}_\beta(x^m) = d - 1 = \mu(m) \quad \text{and} \quad \text{deg}(a_{\mu(m)}) = \text{deg}(-c^{-1} A_0) = s + (m-s).
\]
So the result is true for \(n = m \).
Assume that \(\mu(n) = -\text{ord}_\beta(x^n) = (d - 1)[\frac{n-s}{m-s}] \) and \(\text{deg}(a_{\mu(n)}) = s + (n-s) \). We have
\[
x^n = a_{\lambda(n)}^n \beta^{\lambda(n)} + \cdots + a_0^n + a_{-1} \beta^{-1} + \cdots + a_{-\mu(n)} \beta^{\mu(n)}.
\]
Therefore
\[
x^{n+1} = x a_{\lambda(n)}^n \beta^{\lambda(n)} + \cdots + x a_0^n + x a_{-1} \beta^{-1} + \cdots + x a_{-\mu(n)} \beta^{\mu(n)}.
\]
We distinguish two cases:
Case 1: \(\text{deg}(a_{\mu(n)}) = m - 1 \), in this case we have \((n-s) = m-s-1 \), so \((n-s) = [\frac{n-s}{m-s}] (m-s) + m-s-1 \), this implies \((n+1-s) = ([\frac{n-s}{m-s}] + 1)(m-s) \), hence \([\frac{n+1-s}{m-s}] = [\frac{n-s}{m-s}] + 1 \) and \((n+1-s) = 0 \). Also we have
\[
\begin{align*}
\mu(n+1) &= -\text{ord}_\beta(x^{n+1}) = -\text{ord}_\beta(x^n) + d - 1 \\
&= (d - 1)[\frac{n-s}{m-s}] + (d - 1) \\
&= (d - 1)((\frac{n-s}{m-s}) + 1) \\
&= (d - 1)[\frac{n+1-s}{m-s}]
\end{align*}
\]
and \(a_{-\mu(n+1)} = -c^{-1}.\gamma A_0 \) where \(\gamma \) is the dominant coefficient of \(a_{-\mu(n)} \), so \(\text{deg}(a_{-\mu(n+1)}) = s + (n+1-s) \).
Case 2: \(\text{deg}(a_{\mu(n)}) < m - 1 \), in this case we have
\[
\begin{align*}
\mu(n+1) &= -\text{ord}_\beta(x^{n+1}) = -\text{ord}_\beta(x^n) = \mu(n)
\end{align*}
\]
and

\[
a_{n+1} - \mu(n+1) = \begin{cases}
 xa_n - \mu(n) & \text{if } \deg(a_n^{\mu(n)} + d - 1) < m - 1, \\
 -e^{-1} \delta A_0 + xa_n - \mu(n) & \text{if } \deg(a_n^{\mu(n)} + d - 1) = m - 1.
\end{cases}
\]

where \(\delta \) is the dominant coefficient of \(a_{n\mu(n)} + d - 1 \).

Therefore \(\deg(a_{n\mu(n)+1}) = 1 + \deg(a_{n\mu(n)}) = 1 + s + (n - s) = s + (n + 1 - s) \). □

Corollary 3.9 let \(\beta \) be a Pisot series satisfying

\[
\beta^d + A_{d-1}\beta^{d-1} + \cdots + A_0 = 0
\]

such that \(\deg(\beta) = m \geq 2 \) and \(\deg(A_i) = s \geq \deg(A_i) \quad \forall 0 \leq i \leq d - 2 \). Then \(L_\otimes(\beta) = (d - 1)(\frac{m - 2}{m - s} + 1) \).

Corollary 3.10 Let \(\beta \) be a Pisot series verifying \(\beta^2 + A_1\beta + A_0 = 0 \) such that \(\deg(\beta) = m \) and \(\deg(A_0) = s \). Then

\[
L_\otimes(\beta) = \left[\frac{m - 2}{m - s} \right] + 1
\]

4 Open Problem

Study other finiteness conditions and explicitly calculate \(L_\otimes(\beta) \) for other families of algebraic formal power series.

Is it possible to find conditions on \(\beta \) in order that \(L_\otimes(\beta) = 0 \), meaning the set \(\langle I \ F_q[x] \rangle_\beta \) is stable under multiplication?

References

