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Abstract

Let 5 be a formal series with deg(8) > 2, the aim of this paper is
to prove that the maximal length of the finite B-fractional parts in the
B-expansion of product of two beta-polynomials (a formal series that
have not 5-fractional part), denoted L (53) is finite when [ is Pisot or
Salem series. Especially, we give its exact value if 3 have one conjugate

1
with absolute value smaller than m and if B is a Pisot series verifying
B+ Ag 1B+ -+ Ag = 0 such that deg(f) = m > 2 and deg(Ay) = s >

deg(A;) Y0<i<d-2.
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1 Introduction

The [-expansion of real numbers was introduced by A. Rényi [12]. Since its introduction
in 1975, its properties arithmetic, diophantine and ergodic have been extensively studied
by several authors.

Let 8 > 1 be a real number. The f-expansion of a real number x € [0,1) is defined
by the sequence (z;);>1 with values in {0, 1,...,[f]} produced by the S-transformation
Ts: v — Pz (mod 1) as follows :

X

Vi>1, x; =[BT, (x)], and thus z = —

i>1
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We write dg(x) = 0.212....
In [11], Parry showed that for any x € [0,1), dg(z) is the only transformation of z in
base 8 which satisfies the following condition called the Parry condition:

Vn € IN*, S"((7)ien+)) <tea d(1)

; dg(1) if dg(1) is infini
where S{(ahen)) = (sehen and ay(n) = { (1) FPO iy

Now let > 1 be a positive real number, so there exist & € IN* such that
x
Bt <w < B8 So g €0,1) and let dﬁ(@) = (z;);>1 finely we get

dﬁ(if) = ($¢+k+1)iz—k-

Let dg(x) = (2;)i>—n, S0 x = > x_;8"+ > x;#~". The part with non-negatives powers
i=0 i>0

of 3 is called the f-integer part of x, denoted by [z]s. The part with negatives powers of

[ is called the p-fractional part of =, denoted by {z}s = x — [z]s, this allows a natural

generalization of the definition of development of real number in base 10.

If there exists n € IN such that |z| = _ z;8%, where x,, - - -z is the S-expansion of |z|,

then x is called (-integer and the set (Z)foﬁ—integers is denoted by Zg.

The set Fin(3), introduced in [6], is defined by {37*Zs/k € IN}. It allows to generalize
the frame work of numeration to the case of a non-integer base (3.

We know that Zz and Fin(f) are not stable under usual operations like addition and
multiplication.

In order to study arithmetics on S-integers, we interested on the [-expansion of the
number obtained by addition or multiplication of two (-integers when the [-expansion
of the sum or the product is finite.

The following notation Lg(5) and L (/) are introduced in [8].

Definition 1.1
Lg(8) =min{n € N \ Vz,y € Zg such that z+y € Fin(B) = " (x+y) € Zs}

Lo(B) =min{n € N \ Vz,y € Zg such that zy € Fin(p) = (" (vy) € Zg}

Minimum of an empty set is defined to be +00.

We can see that Lg(8) and Lg () represent respectively the maximal possible finite
length of the (-fractional part which may appear when one adds or multiplies two (-
integers, otherwise they designate the maximal finite shift after the comma for the sum
or product of two [-integers.

The computation of these values gives an indication on the difficulty of performing arith-
metics on Zg.

Let us explain now why we are interested in the case where Lg(8) and Ly (/) are finite:
Indeed, if the sum or the product of two S-integers belongs to Fiin((), then the length
of the [-fractional part of this sum or product is bounded by a constant which only
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depends on f.

If the set of the length sums or products of two S-integers is unbounded, then performing
arithmetics in Zg will be very difficult if not impossible, since one can not compute in a
finite time any operation on S-integers.

Let us mention that to our knowledge no example is known of a [ such that Lg(3) and
L () are infinite, however it has been proven in [6] and [7] that Lg(5) and Lg(5) are
finite when [ is Pisot (a real algebraic integer greater than 1 with all conjugates strictly
inside the unit disk). The computation of these values is however not so easy, especially
for Lg(5). The case of quadratic Pisot numbers has been studied in [5] when 3 is a
unit. The authors gave exact values for Lg(f) and Lo (8), when § > 1 is a solution
either of equation 22 = maz — 1,m € IN,m > 3 or of equation x = mz +1,m € IN. In
the first case Lg(8) = Lo(B8) = 1, in the second case Lg(8) = Lo(f) = 2, and in [§]
otherwise. However, when f is of higher degree, it is a difficult problem to compute the
exact value of Lg(8) or Lo (8), and even to compute upper and lower bounds for these
two constants.

Several examples are Studied in [2], where a method is described in order to compute
upper bounds for Lg(f) and Ly (B) for Pisot numbers satisfying additional algebraic
properties, for example, in the Tribonacci case, that is, when f is the positive root, of
the polynomial 23 — 2% — z — 1, we have Lg () = 5, let’s note that until now, we don’t
know the value of L (/) in the case of the Tribonacci number, it is only proven in [2]
that 4 < Lg(8) <5.

The condition Pisot is not necessary to have Lg(/3) and Lg () are finite: L. S. Guimond,
Z. Masékové and E. Pelantovd in [8] prove that if 5 is an algebraic number such that at
least one among its conjugates with modulus smaller than 1, so Lg(8) and Ly (5) are
finite.

In this paper, we define a similar concepts over the field of formal series. We begin
in Section 1 by introducing the field of formal series and the [-expansion over this field.
In Section 2, we will show that the condition Pisot is not necessary to have Lg(3)
are finite. Especially, we give a sufficient condition for the conjugates of 3 to obtain
Lo(B) = L.

In Section 3, we prove the finiteness of L (/3) when (3 is Pisot or Salem formal power
series and we give its exact value in the case of Pisot with some additional conditions.

2 Preliminaries

Let IF, be a finite field of ¢ elements, IF [z] is the ring of polynomials with coefficient in
IF,, IF,(z) is the field of rational functions and IF,(z, /5) is the field of rational functions
in base 8. Let F,((z™')) be the field of formal power series of the form :

!
[ = Z fk$k7 i GIFQ

k=—0o0
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where
max{k: fr 0} if f #0;

l:degf:{ if f=0.

Define the absolute value by

_ [T i f £
|f|_{0 if f=0.

Since |.| is not archimedean, |.| fulfills the strict triangle inequality

|/ + gl <max ([f],]g]) and [f+g| =max (|f],]g]) if |f] # lgl

l
Let f € F,((z™")), define the integer (polynomial) part [f] = > frz" where the empty

k=0
sum, as usual, is defined to be zero. So [f] € IF,[z| and f — [f] = {f} € D(0,1) .
An element 3 € TF,((x7!)) is called algebraic integer of degree d if it verify 5% +
Ag 1T+ + A B+ Ag = 0 and is called unit series if Ay € IF} .
( is Pisot (resp Salem) element if it is an algebraic integer over IF [z], || > 1 and
|8;] < 1 for all Galois conjugates §; (resp |3;| < 1 and there exist at least one conjugate

By such that |G| = 1).
In [3], Bateman and Duquette had characterized the Pisot and Salem element in I, ((z™1)).

Theorem 2.1 [J] Let § € F,((xz™1)) be an algebraic integer over I [z] and
P<y) - yn - An—lyn_l - AQ, Az € ]Fq[l'],
be its minimal polynomual. Then
(i) B is a Pisot element if and only if |A,_1| > [ Jnax | Ayl
<j<n—

(ii) B is a Salem element if and only if |A,—1| = [ Jnax | Ay
<jsn—

Let 8 € F,((x')) with |3] > 1. A representation in base 3 (or S-representation) of
a formal series f € D(0,1) is an infinite sequence (z;);>1, x; € IF,[z], such that

=35

i>1

A particular S-representation of f is called the S-expansion of f in base 5, noted dg(f),
which is obtained by using the [-transformation 75 in the unit disk which is given
by Ts(f) = Bf — [Bf]. Then ds(f) = (a;)i>1 where a; = [ﬁTé_l(f)], for better charac-
terization of S-expansion, in [9], M.Hbaib and M.Mkaouar showed the following theorem.

Theorem 2.2 [9] An infinite sequence (a;);>1 is the S-expansion of f € D(0,1) if and
only if |a;| < |B| for all i > 1.
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Now let f € F,((z™')) be an element with |f| > 1. Then there is a unique k£ € IN*
such that |8/*~! < |f| < |B]*, so ]%\ < 1 and we can represent f by shifting ds( / ) by

E
k digits to the left. Therefore, if ds(f) = 0.a1a2as... then dg(Sf) = a1.a2as3....
Let Fin(8) be the set of f in F,((z!)) which have a finite S-expansion, so the /-
expansion of every f € Fin(f) has this form:

ds(f) = agar—1 - - - arap.a_1a_2 - - - @y, where m € Z.

The part agap_1 - - - ayag is called the S-polynomial part of f and the part a_ja_o---a,,
is called the f-fractional part of f.

We define also degs(f) = k and ords(f) = m.

If ords(f) > 0 then f is called -polynomial and the set of S-polynomials is denoted by
(IF,[z])5, who is the analogue of Zg in the real case.

We can define by an analogy with the real case the quantity Le(8) and Lg(5) as
follows:

Le(B) = min{n € N\Vf, g € (Fy[z])s such that f+g € Fin(8) = 5"(f+g) € (Fy[z])s}

Le(B) = min{n € N\ Vf, g € (Fy[x])s such that fg € Fin(5) = 5"(fg) € (Fq[z])s}-
Minimum of an empty set is defined to be 4o0.
Remark 2.3 Let us note that in the case of formal series the quantity Lg(B) is not

interesting, because we know that in contrast to the real case, if f, g € F,((z71)), we
have dg(f+g) = ds(f)+ds(g), so the sum of two B-polynomials is always a 5-polynomial.

To calculate L () for the families of basis 3, we excluded the case when deg(f) = 1,
since in this trivial case, the product of two S-polynomials is a S-polynomial, so we have

Lo(B) = 0.
Let 8 € F,((x')) with |3] > 1 be an algebraic on IF,[z] and let fs,..., [, be the
conjugates of 3. We associate for every f = Y a;°, the j-th conjugate which is defined
i=0

n

by fj = Z aiﬁ]i"

=0
3 Main results

3.1 Sufficient conditions for finiteness of L. (5)

In the following theorem, we will prove that L () is finite when 3 is an algebraic integer.
This result does not have an analogue to the real case.

Theorem 3.1 Let f € F,((z™1)), with | B |> 1 be an algebraic integer on T, [x]. Then
Lo(B) is finite.
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Proof Let f = a,8% + a,_18° 1+ ...+ ap and g = b,,8™ + b1 8™ 1 + ... + by, where
| a; |<| B |foral 0 <i<sand]|b;|<|f|forall 0 <j<m,suchthat fg € Fin(5).
Therefore, we can write

fg = caB " cp 1B gt B e o BT ek B7F, with | ¢j |<| B | forall -k <j<n.

we denote by h; = 0716;1 + 0725;2 + ..+ c,kﬁj’k for all 1 < j < d, where f; = 3 and
Bj, 2 < j < d are the Galois conjugates of 5 and d is the algebraic degree of 3. Then

U

—1

hj = a;f;" where a; € Fyla] forall 0 <i <d—1.
We have | h |:’ hl |< 1, if | 5] |Z 1 then ’ h] |:| C_lﬁj_l +C_2/6j_2+ ‘I—C_kﬁj_k |§| B |,
and if | 8; |[< 1 then | hy |=| (0585 + as—185 " + ...+ a0)- (b B + b1 B + ...+ bo) —
(cnB7 + cn_lﬂ;‘_l +..+ca) || B

I
=)

>J >V

) hy
=M

ag—1 ha

This implies that | oy |< C(f), where C(8) is a constant depend only on (3, therefore
the number of elements (a;)o<i<4—1 is finite. So L (5) is finite. O

3.2 Computation of L. (f)

We propose the following quantitative study over this family of algebraic formal series

1
3, that have at least one of its conjugates, say 3;, in absolute value smaller than ——

A

Theorem 3.2 Let 3 € F,((z71)) be an algebraic on T [z] with deg(B) > 2, which have
1
a conjugate, say B verifying |B;| < ——. Then Le(B) € {0,1}.

181
Proof. ) .
Let f=>a;8" and g = > b;3" where |a;| < |B] and |b;| < |3], such that fg € Fin(B).
i=0 i=0
Let f; = 3= aiff and g; = > bif]. Since [3] < ﬁ, we have | ;] < |8] and |g;| < |5].
So
fig;1 < 18

We assume that dg(fg) = cp...co.c_1...c_y, Where c_,,, # 0, so we have

h
figil =1 D Bl = le_mB; ™ = 8™

i=—m

Therefore m < 2. 0
As application of the above theorem, we have treat some specific cases.
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Corollary 3.3 Let 5 be a quadratic Pisot unit with deg(5) > 2. Then Ly () = 1.

Proof.

In this case 3 verify 82 + A3 + Ay = 0 where A € I}, so the unique conjugate of /3 is
1

f; such that |3;| =

pumn m.
By Theorem 3.2, we obtain Lo (3) € {0,1}. Let now A; = cqz? + ... + ¢o where d =

deg(B) > 2 and cq # 0, we have z, cg.2? ! € (IF,[z])s and
Cdl’d = —B — (Cd_ll’dil + ...+ Co) - %~ SO7 L@(/B) =1 U

Corollary 3.4 Let 8 be a cubic Salem unit with deg(8) > 2. Then Lo (B) € {0,1}.

Proof.
In this case 3 verify 5% + Ay5° + A1 + Ag = 0, where |A;| = |4y = [B] and A4, € F}.

1
So /8 have two conjugates (2 and f3 such that |5;] = m et |f3] = 1.
By Theorem 3.2, we obtain L () € {0,1}. O

Corollary 3.5 Let 8 be a Salem unit with deg(8) > 2 verifying:
B4+ Ag_ 1B+ .+ A+ Ay =0, (3.1)
where Ag € Iy and | Ay |=| Ag—1 |. Then Lo(B) € {0, 1}.

Proof.
Let 5 = (1 be a Salem unit verifying (3.1). Then

| Ao |=| H Bi |= 1 where f35, ..., By its conjugates

1<i<d

d
[Aar =1 8= A=l DD By B |
=1

1<i1<...<ig_1<d

If there exist f; and 5; (¢ # j) such that |5;| < 1 and |5;| < 1, then we obtain in this
case | Ay |<| B | which contradicts the hypothesis that

‘ B |:’ A \:’ Ay ’ .

we conclude that § have a unique conjugate 3; such that | 5; |< 1 and the other
conjugates of equal absolute value 1. So | f; |= —— and by Theorem 3.2, we obtain

1B
Lo(B) € {0,1}. O

The following theorem, allows us to calculate L (/3) for some Pisot series.

Theorem 3.6 let 5 be a Pisot series satisfying

B+ AT 4+ A =0
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such that deg(B) = m > 2 and deg(Ay) = s > deg(A;), for all 0 < i < d—2. Then for
any n > m the beta-expansion of x" is given by:

d(z") = ay(py - --ag-a’y - --al .

Where \ and p are two increasing sequences defined by:

n—s

p(n) = —ordg(a™) = (d—1)] | and deg(aﬁu(n)) =s+(n—s)= sup deg(aﬁu(n)%)

m—s 0<k<d—2

where (n — s) is the rest of the Euclidean division of (n — s) by (m — s).

To prove the above theorem, we will need the following lemma:

Lemma 3.7 Let 8 be a Pisot series. Then ordg(z" ™) < ordg(a™) for allm € N* .

Proof.

Let P(y) = y*+ A4 194 1+ - -+ Ap be the minimal polynomial of 3 and ¢ be the dominant
coefficient of Ay_1, Let m =deg(3), for n < m — 1 we have ordg(z"*!) = ordg(z") = 0.
Let now n > m we suppose that

d/g(l’n) = O/K(n) ce a/g.aﬁl e aﬁu(n) Wlth aﬁu(n) 7£ 0
We will show by induction on n that u(n + 1) > p(n) and deg(a” ) = s, where
s =degAy.
So we have
e = —c B — Y Agoy — ca™) — - — ¢ TTA BT,

this implies

—p(m)
By = =€
where ¢ and A\(m) =1, p(m)=d—1
m _ —1
@y = = Ao
Let now
A, ={0<i<d-1 such that deg(a” ;) =m — 1}
If A, = 0, then a’iﬁnﬂ) = za” ., and p(n+1) = p(n) and deg(a” ,,, ,,)) = 1+deg(a” ).
If A, # 0, taking k,, = minA, and v be the dominant coefficient of a™ (m) e
o If k£, =d—1, then aﬁﬁnﬂ) = —c 1. Ay + z.a” .,y and p(n+1) = p(n).
e If k, < d—1, then a’izznﬂ) = —c'"yAgand p(n+1) = p(n) +d—1— k.

Lemma 3.8 Let 8 be a Pisot series, such that m =deg(5) > 2.
Then Lo (B) = —ordg(z*™2).
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Proof.
Let f =a,8"+an_1" '+ +agand g = by, ™ + by 187+ -+ b in IF,[x]5 such
that f.g € Fin(8), since

n+m

f9= Z(Z bpax—p) B

k=0 p=0
We have —ords(f.g) < max{—ords(byar—p);0 < p < k < n + m}, using the above
lemma we get L (8) < —ordg(z*™2). Or f=a™1€F [m]ﬁ
and —ordg(f?) = —ordg(z*™?), so Lo(B) = —ordsg(x*™~2). O
Proof of Theorem 3.6.
We will show the result by induction on n > m.
For n = m, we have

2™ = —c1B — (Aglg —ca™) — - — LAY

where ¢ is the dominant coefficient of A4_1, so

—ordg(2™) =d—1=p(m) and deg(a”,,) = deg(—c Ay =s=s5+(m—s).

So the result is true for n = m.
Assume that p(n) = —ordg(z") = (d — 1)[;:=] and deg(a” ,,)) = s + (n —s). We have

=SB+ al +a BT a8
Therefore
2" = zay,, 5 c+xag +xa B4+ wal 8.

We distinguish two cases:
Case 1: deg(a” ) =m — 1, in this case we have (n —s) =m —s — 1,
so (n —s) = [2=2](m — 5) +m — s — 1, this implies (n +1 - s) = ([Z=X] + 1)(m — s),

hence [2H=2] = [2=2] 4+ ] and (n+ 1 — s) = 0. Also we have
pn+1) = —ordsg(x™) = —ords(a™) +d — 1
= [@-D—]+d-1)
n—s
- @
n+1l-—s

= (-
and a”*%n ) = —c ™1y Ag where 7 is the dominant coefficient of a” ,,,,
so deg(a ﬁ;%nﬂ)) =s=s+(n+1—2s)

Case 2: deg(a” ) <m —1, in this case we have

uln+1) = —ords(a™) = —ords(a") = p(n)
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and .
! — TaZ () if deg(aﬁu(an_l) <m-—1,
—p(n+1) —c 16040+ za” ., if deg(a” g 1) =m—1.

where ¢ is the dominant coefficient of a™ ()1

Therefore deg(aﬁﬁnﬂ)) =1+ deg(a”,,)) =1+s+(n—s)=s+(n+1-s).0

Corollary 3.9 let 5 be a Pisot series satisfying
B+ AT 4+ A =0

such that deg(f) = m > 2 and deg(Ag) = s > deg(A;)) V0 < i < d— 2. Then
Lo(B) = (d = D([F=]+ ).

Corollary 3.10 Let 3 be a Pisot series verifying 32+ A1 8+Ao = 0 such that deg(S) = m
and deg(Ag) = s. Then

4 Open Problem

Study other finiteness conditions and explicitly calculate L (8) for other families of
algebraic formal power series.

Is it possible to find conditions on f in order that L (8) = 0, meaning the set (IF,[z])s
is stable under multiplication?
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