Int. J. Open Problems Compt. Math., Vol. 6, No. 2, June 2013
ISSN 1998-6262; Copyright ©ICSRS Publication, 2013
WWW. 4-CSTS. 0Tq

States Graph Generation
from dynamic Priority Time Petri Nets
Walid Karamti, Adel Mahfoudhi

CES Laboratory, ENIS Soukra km 3,5, University of Sfax,
B.P.: 1173-3000 Sfax, Tunisia
e-mail: walid.karamti@ceslab.org
e-mail: adel.mahfoudhi@fss.rnu.tn

(Communicated by Nooémen Jarboui)

Abstract

dynamic Priority Time Petri Nets (APTPN) is a mathematical for-
malism dedicated to modeling Real-Time System (RTS) and checking
its schedulability. The present paper proposes a states graph generation
from a reduced dPTPN model in order to deal with the scheduling anal-
ysis. Based on hierarchical modeling, the present model presents only
the interaction between all RTS components and excluding their internal
behavior. According to this reduction, a new definition of state is given.
Hence, all reachable states and edges connecting between them are gen-
erated to show a prediction of the RTS scheduling. Thus, the resulting
graph gives birth to an open research area in the purpose of checking its
properties and deducing the schedulability.

Keywords: RTS, dPTPN, States Graph, Scheduling analysis.

1 Introduction

The system analysis at an early stage in the development cycle is always an
open problem for researchers in computer science. In fact, Real-Time Systems
(RTS) have been omnipresent in several domains over the past 30 years and
their analysis has grown over the last decade. Recently, a new generation of
architectures (i.e. Multiprocessor and Multicore) has emerged. Thus, new
methods and techniques are required for modeling and analysis.

86 Walid Karamti et al.

The scheduling analysis of RT'S running on multiprocessor architecture presents
an interesting research field. In this vein, formal methods, based on mathe-
matical principles and abstractions, are the cornerstone of analysis techniques.
The light is mainlt shed on model checking approaches, which attempt to
provide a push-button approach to verificate and integrate well into stan-
dard development processes. However, since using such technique can derive
a states-explosion problem, it is primordial to master the states generation
before checking the properties.

First of all, the system must be modeled in a formal description language such
as Time Petri Nets [14], timed automata. In order to deal with the states-
explosion problem, and based on Time Petri Nets model, Berthomieu in [2]
proposed a graph of class states. In fact, starting from graph composed with
infinite states, he suggests a technique for grouping states in a finite number
of classes. This technique is used in the PrTPNs (Priority Time Petri Nets)
[3] so as to analyze the schedulability. An improvement of this approach was
proposed in [16], in which the authors propose a new extension of Time Petri
Nets STPN (Scheduling Timed Petri Nets) and a reduced states graph com-
pared to [2].

Both of [2] and [16], produce a reduced states graph that is not so expressive to
check the schedulability on immediately. So, the authors use timed automata
as observers to check properties of the Petri Model and deduce the schedula-
bility.

PrTPNs and STPN are concerned with the static priority for scheduling analy-
sis. In multiprocessor systems, it is necessary to specify the scheduling analysis
through dynamic priority [5]. So, it is not efficient to use them in scheduling
analysis of multiprocessor system.

In [10], the authors have proposed the first Time Petri Nets extension dPTPN
(dynamic Priority Time Priority Time Petri Nets) dealing with dynamic pri-
ority via the introduction of a new component. Indeed, the priority is relative
to the model state. The scheduling analysis is shown through the support of
the scheduling policy LLF (Least Laxity First) [7] and a set of independent
periodic tasks running on a multiprocessor architecture. However, the LLF
is not frequently used in practice because the cost of preemption is so high
compared to the Earliest Deadline First (EDF) [12]. In the same vein, the
authors have proven the capacity of the dPTPN to deal with EDF as well as
with the dependent tasks in [9]. In this stage, the authors have proposed a
Petri model for the scheduling analysis. Hence, a detailed model for the pe-
riodic dependent tasks is presented. However, the size and the complexity of
the entire RTS system model has increased even though the considered RTS is
more complex. Hence, the determination of all reachable states corresponding
to the model and the checking of its properties is more difficult.

In [8], the authors present a new modeling strategy to master the complexity

States Graph Generation from dPTPN 87

of the dPTPN model building on Object modeling, as well as a new dPTPN
model component and identified how it can be instanced to specify the schedul-
ing analysis model. Nevertheless, the exploitation of this abstraction of the
model in the construction of model states and the properties checking is not
detailed.

Contrary to states graph reduction techniques, the current paper presents a
technique of states graph generation based on a reduced Petri Nets Model. In
fact, to master the states-explosion problem, we start with a reduced model
and we produce a finite and oriented states graph where the schedulability can
be checked on it immediately (without observers automata). We apply the
proposed approach on a partitioned real-time multiprocessor system charac-
terized with dependent periodic tasks.

The present paper is organized as follows. Firstly, the definitions and exe-
cution semantics of the proposed dynamic Priority Petri Nets (dPTPN) are
overviewed in Section 2. Next, Section 3 presents the considered RT'S and how
it can be modeled with the hierarchical modeling strategy in order to provide
a reduced dPTPN RTS model. As for Section 4, it presents the generation of
the states graph. Starting with the developed model, a set of states connected
with edges are generated to describe a prediction of the RTS scheduling. Next,
an open problem is detailed in Section 5. Finally, the proposed approach is
briefly outlined.

2 dynamic Priority Time Petri Nets: dPTPN

The dynamic Priority time Petri Nets is a mathematical formalism used for
analyzing, specially, the Real-Time Systems behaviors. whose definition and
firing semantics of events are presented in this section.

2.1 Formal definition

A Petri Nets [15] can be defined a 4-tuplet :

PN=(P. T, B, F) (1)
, where:
) P = {p1, p2, ---, pn} is a finite set of n places;
) T = {ti, ta, ..., t,n} is a finite set of m transitions;

(1

(2

(3) B: (P xT)~ Nis the backward incidence function;

(4) F: (P xT)+ Nis the forward incidence function.

Each system state is represented by a marking M of the net and defined by :

M:P—N

88 Walid Karamti et al.

In the PN standard, the events (transitions) have the same grade of emergency.
Thus, when transitions conflict, there are no favorable transition to cross before
the other. Besides, the time is not specified in PN.

A new extension, dynamic Priority time Petri Nets (dPTPN), is proposed
to meet the time specification and solve the transitions conflict. In fact, two
transition types are proposed. First, the T transition is characterized by a date
of firing. Second, the T, is a transition with a preprocessing that precedes the
crossing to calculate its priority. Indeed, if two T, transitions are enabled and
share at least one place in entry, then the preprocessing is made to determine
the transition which will be fired, with a priority changing according to the
state of the network described by the marking M.

The dPTPN is defined by the 7-tuplet :

dPTPN = (PN, T, Ty, Br,,, Fr,,, coef, My) (2)
(1) PN: is a Petri Nets;
(2) Ty =A{Tepys Tepy, - -+ s Tep,)+ 18 & finite set of & compound transition;

(3) Ty : T — Q7 is the firing time of a transition.
Vt € T, tis a temporal transition <= T (t) # 0.
If T¢(t) = 0, then ¢ is an immediate transition. Each temporal transition
t is coupled with a local timer (Lt (t)), with Lt : T — Q™.

(4) Br,, : (PxT,)~ Nis the backward incidence function associated with
compound transition;

(5) Fr, : (P xT,)~ Nis the forward incidence function associated with
compound transition;

(6) coef : (P x Tg,) +— Z is the coeflicient function associated with com-
pound transition;

(7) My : is the initial marking;

2.2 The dPTPN Firing Machine

To deal with the problem of the state space explosion, it is worthwhile to
mention the contribution of the methods considered as partial order [1, 11, 4]
building on a relation of equivalence between various sequences of possible
firings, starting from the same state. In fact, when two sequences are found to
be equivalent, then only one of them is selected. This relation of equivalence
is based on the notion of independence of transitions. Two transitions are
independent if they are not in the same neighborhood (see eq. 9).

Based on the approach of partial order and the 7¢,, compound, dPTPN relies on

States Graph Generation from dPTPN 89

a well-defined strategy for the firing during a transitions conflict. The strategy
is based on the construction of a sequence of the highest priority and valid
transitions dF'Ts. For the firing of a marking M, dPTPN offers a machine of
firing called dPTPN Firing Machine dPFM. The entry of the machine dPFM
is a marking M of the dPTPN network. For each entry, the machine builds
the dF'T} set, consisting of two sub-sets F'T, and F TSTc,n which in turn present
the firing transitions of T" and those of T¢,, respectively. When it is about a
marking dead-end, the dF'T; set is empty (F'Ty is empty and F' Ty, is empty)
and the dPFM machine stops.

The dPFM distinguishes between the temporal and immediate events. To do
so, the machine supplies a chain of processing. Indeed, firstly, it determines
the valid temporal transitions set VT, from the FT; set, and secondly, the
VT, is analyzed. The machine fires any valid transition before passing to the
following stage and for each firing the dF'T is reconstructed (F7T and FTSTva
respectively). The last stage consists in solving the problem of conflict by
choosing among the compound transitions with the highest priority that will
be fired.

All immediate transitions must be crossed before the analysis of FT;, . In
fact, the immediate transitions are more urgent and their firing can give birth
to a marking that presents a new conflict of transitions.

2.2.1 Firability

dFT; presents the enabled transitions set. In fact, dF'T, is the union of the
enabled temporal transitions set F'Ts and the enabled compound transitions
set I'Ty, .

dFT, = FT,UFT,, . (3)

lett e T,t edFT, & t€ FI,Vte FT,,
) FTo={teT/B(..t) <M} (4)
Y FTL,, = {t€T/Bg, (..t) <M}

For each subset FT, and F'T,, ~Is associated with a function indicator xpr,
and XFT,,, -

XFT; * T — {O, 1}

. 1if x € FTj (5)
x 0 otherwise
xrr,. - T — {0,1}

E] Tcp

Tep

lif x e FT,
0 otherwise

90 Walid Karamti et al.

2.2.2 Validity

A transition is valid if it is enabled and respects its firing date. We should bear
in mind that 7, is an immediate transition. Therefore, we define the Valid
Transition Set (V'T}) as a subset of FTy (VT C FTy).

VT, ={te FT,/Lt(t) =Ty (t)} (7)
Xvr, is the function indicator of VT, with:
XVT; - FTS — {07 1} (8)

The main advantage of the utilization of the 7., component is to solve the
problem of transition conflict. The best way is to select the T, transition
having the highest priority.

2.2.3 Step Selection

V1, € T.p, Ty, is selected if and only if it is enabled and has the highest pri-
ority compared to its neighborhood. First of all, we present the neighborhood
of transition T,

Vs, Tepy € Tep, Tep, ©s a neighbor of Ty,
& 9)
Jp € P such that By, (p,T.p,) # 0 A Br,, (p, Tep,) # 0

We consider a matrix N, to indicate the neighborhood of all transitions 7T¢,
compared to each place P:

N.: T,xP — {0,1}

Lif Br, (p,te) > 0 (10)
(tepp) { 0 otherwise

Three steps are applied to select the transition that has the highest priority.
The first step is the calculation of the priority for each enabled transition T¢,.
In fact, the priority depends on the state of the dPTPN model and the matrix
coef. Each Ty, calculates its priority using the scalar product of coef matrix
with the marking vector M.

Prio: FTy, —— Z (11)
ty > (coef ()] M)

In the second step, we mark the corresponding priorities to each T, neighbor-
hood. More precisely, we define the following function:

Prod: FTy,, xP — Z

(tanp) > Prio(te) N, (to,p) (12)

States Graph Generation from dPTPN 91

the third step, the transition having the highest priority per palce is selected
from the vector Prod(., p;).

Min: P — FIg,

1
p = iy (3)

with {Vt., # tep, Prod(te,p) < Prod(te,,p)}
Finally, the F'T. 57, must be updated to present only the selected transitions:
Vi, € Ty, Vp € P,

Prod(te,,p) # 0 Aty # Min(p) = XFTuy, (tep) =0 (14)

2.2.4 Firing

The firing of a given F'T vector is defined. In dPTPN, F'T can be a VT vector
or an FTg, = vector:

VFT € {VTS, FTST@} ,

FT — VTS
Firing (FT) =
FT =FT,,,

S M =M+, pr (Fr, (., t)— Br, (.,1))

2.2.5 Timers management

According to dPTPN, the timers management abides to some rules, which are:
Rulel(set): When a transition is enabled, for its first time, then its matching
timer is activated and initialized with zero.

Rule2(reset): After firing VT, the timers of valid transitions will reset.
Rule3(increment timer): The timer of a transition is incrementing if the tran-
sition is enabled, no valid transition exists and the F' Ts,,, is empty.
SetIncremetTimer() is activated <=

FT,#0NFT,, =0AVIT, =0 (16)

3 Real-Time Multiprocessor System

The dPTPN is dedicated for analyzing the schedulability of Real-Time Sys-
tem (RTS) running on multiprocessor architecture [10, 9]. Such systems are
characterized with dynamic priority-driven scheduling where the dPTPN has

proved its capacity to deal with it.
The present section defines the RTS and how it can be modeled with dPTPN.

92 Walid Karamti et al.

3.1 RTS definition

The considered RTS in the current manuscript is a periodic system. Besides, it
is partitioned over the processors via a partitioning tool. Our study highlights
the analysis of all the generated partitions based on the dPTPN.
) is the specification of the RTS and it is defined by the 4-uplet:

Q = (Task, Proc, Alloc, Prec) (17)
with:
(1) Task : is a finite set of real-time tasks with each T'ask; € T'ask determined
by
TCLS/{Zi = <RZ, P7;, Cz> (18)

e R;: the date of the first activation;
e P;: the period associated with the task;
e (;: the execution period of the task for the P; period.

(2) Proc : a finite set of processors.

(3) Alloc : Task — Proc, a function which allocates a task to a processor.
Alloc is a surjective function. In fact a processor is allocated to at least one
task. But a task must be assigned to only one processor.

Vt, € Task, VP, P, € Proc,

AllOC(t1> :Pl/\A”OC(t1> :P2 :>P1 :P2 (19)

(4) Prec : Task x Task — {0,1}, a function which initializes precedence
relations between tasks.

3.2 RTS Modeling

The Task presents the first main component of €2, that is why we are interested
on presenting its dPTPN specification and later we define a prediction of its
behavior according to its neighborhood.

In previous research work [10, 9], we modeled the internal behavior of a real-
time task with dPTPN. In scheduling analysis, although the external behavior
of task is an important key, it depends on analyzing the internal one. In order
to synchronize between those two behaviors, our proposal builds on hierarchical
modeling to present only the external events. In fact, the states issues from
internal events will be masked. Thus, a new dPTPN component for modeling
the real-time task is defined [§].

TaskC is characterized by two Interfaces that assure the communication with

States Graph Generation from dPTPN 93

its environment: Input and Output. Actually, each interface is a finite set of
places. The graphical definition of TaskC' is defined with the triplet:

TaskC = (dPTPN, II,01) (20)
with:
(1) dPTPN: is the task dPTPN model presented in ([8], Fig. 4);

(2) II = {Puncreated> PreceivedDatas PyetProc}: 1s the place that composes the
Input Interface;

(3) Ol = {PReady7 PRemainingPeriod7 PSendDataa PReleasing7 PDeadline}: is the place
that composes the Output Interface;

The dependency between tasks is specified in €2 with the function Prec. How-
ever, in dPTPN modeling, we distinguish between two dependency relations.
Concerning the first, it is the precedence relation between tasks as described
with Prec function.
As for the second, it is the precedence relation between the instances of the
same task that must be specified in the dPTPN model.
In order to model the exchange of information according the dependency rela-
tions, we propose a set of places, called Prqsiorask, defined in the following:
Let TaskCy,TaskCy € TaskC be two task models of T}, Ty € Task, respec-
tively.
[Pror, in Prosiorask;
TSendingy TReceivmg n T;
B (T; = Psendpatas TSending) = 1;
B (PTiQTiaTReceiving) = 17
F (PTZ'QTNTSending) = 17
\ F (E — PReceivedDatm TReceiving) = 17
Pryor, in Proskarask;
[f PT’@C (Tl,TQ) =1 Create : B (PT12T27TReceiv7jng) = 1,
F (PT12T2>TSending) =1;
The second most important RT'S component is the execution resource. In our
study, we shed the light on the processor resources in order to execute the
system tasks. Hence, the resource processor is a shared resource between the
various tasks of the same partition, and for a given moment, a single task
occupies it. With dPTPN, each processor P; € Proc is modeled with a simple
place and its marking describes the state of the resource.
Let P,es : the set of places modeling the processors Proc (€ 2),
with |P,es| = |Proc|.

Vp € Pres, M (p) = {

VT; € {TaskCy,TaskCy} Create :

1: the resource is free and ready to execute a task;
0: resource is occupied by a system task(2;

94 Walid Karamti et al.

The allocation of the processor depends on the used scheduling strategy. In the
current paper, we are interested in the strategy based on the Earliest Deadline
First (EDF) [12].
Q) offers the function Alloc in the aim to specify the different partitions Tasks/
Processors. The corresponding modeling with dPTPN is detailed as follows:
Let T}, Ty € Task and P, € Proc with Alloc (11) = Alloc (T3) = P
In dPTPN, the corresponding components are: TaskC', TaskCy € TaskC and
P € P, with:
(Eallocation in TCP;
ireleasing in T;
BTcp (Tz - PReady7 Tiazzomzmn)
BTcp (Ph Eallocation) =1
coef (ﬂ - PRemainingPeriod7 T’ia”ocation) - 17
FTcp (Tl — Pyetproc, Tiazzocation) =1
B (E — PReleasingyﬂ) =1
(P (PL T giny) = 1
After developing the RTS model with dPTPN, it is important to precise its
initial marking as described in previous research works [9, 8].
At this stage, the dPTPN RTS model is ready for execution to determine all
its reachable states. So, we propose, in the next section an algorithm for the
generation of its corresponding states graph.

VT; € {TaskCy,TaskCs} Create :

releasing

4 dPTPN States Graph

In order to present the reachable states of the dPTPN RTS model, we propose
a states graph G, which defines all the states and edges connecting between
them.

4.1 Graph definition
The dPTPN states graph is defined with the triplet:

G = (S.7,p) (21)
with:

o S ={S5y,51, - ,S,}: is a finite set of states with n > 0;
Each state S; € S is determined with :

Si = {I[7 Ola PTastTaslm Pres} X TCLSkC — N (22)

S; is presented as a matrix. The columns are the set of TaskC' and the
lines are the different places related to a TaskC. In fact, the input/output

States Graph Generation from dPTPN 95

interfaces (II and OI) and the communications places (Praskorask) are
included in the S; lines. Besides, the processor resources places (P.s)
are presented as matrix lines to describe the assignment of each task.

o 7={m, -+, T} is a finite set of edges connecting states with m > 0;

e p: is an incidence relation indicating the successor of a given state
through an edge and it is defined as follows:

p: Sxt — SUO
Sy, if S, is a successor of S;;
(Si,75) — { © if S; has no successor;

So is the initial state creating from the initial marking of the places (II, OI,
Praskorask, Pres) according to each component of TaskC. Next, we explain the
generation of all successor states and the edges allowing the reachability.

4.2 States Graph generation

We aim to generate an oriented states graph. Indeed, it is a prediction of all
states that RTS can reach them in scheduling. Thus, from an initial state,
with respect to temporal constraints, a successor is generated with the firing
of the set of dPTPN transitions constituting a graph edge.

To do so, firstly, we present the step of finding the successor state and, secondly,
the connection of all founded states with edges.

The procedure (Algo. 1) presents the arrangement of the dPFM activities.
The procedure header defines three parameters:

e dFT;: is an output parameter to present the fired transitions;

e M: is an input/output parameter to present the input and the updated
model marking;

e Lt: is an input/output parameter to specify the transitions timers.

4.2.1 Finding Successor

Finding a successor, respecting the dPTPN semantic, is the main objective of
the dPTPN firing machine. Thus, starting with a given marking, the dPFM
looks for the next marking with the firing of the valid and highest priority
transitions.

96 Walid Karamti et al.

Procedure 1 dPFM (var dF'T,, var M, var Lt)
dFTs =0
if M >Bor M > Br,, then
Firability (dF'Ts)
FTs + temporalTransition(dFTs)
F TSTCP + CompoundTransition(dFTs)
if F'Ts # © then
VT < Validity (FTs, Lt)
if VT, # © then
Firing(V'T,,M)
ResetTimer(Lt(VTs))
else if FT,, = © then
SetIncrement Timer(Lt(FT}))
end if
else if FT,, ~# © then
StepSelection(FT,,)
Firing(dFTs,M)
end if
end if

The dPFM accelerates the firing process with the firing of a set of transitions,
dFT;, simultaneously. This property is valid because the dPTPN deals with
the conflict of enabled transitions problem via a dynamic calculus of priorities
and only the transition with the highest value of priority is fired. Consequently,
the dF'T, contains only independent transitions [6, 13] that can all be crossed
together. The novel resulting marking is the combination of a collection of
sub-states that can be created if each enabled transition is fired apart. This
technique is known as partial order reduction technique. The present work,
we masks the marking of models into TaskCs and we are interested only to
show the marking presenting the RTS model state. However, we respect the
masked models implicitly in the firability, validity and selection steps. Hence,
in addition to the fired transitions of the RT'S model, the result parameter dF'T,
defines the fired transitions of the masked models into TaskC' components.

4.2.2 Algorithm of generation

The Algorithm (Algo .2) describes all the necessary steps to create the states
graph according the dPTPN RTS model.

Starting from dPTPN model, the function initializeMarking(M) allows the ini-
tialization of the marking vector M and the function SetTimer initializes the
local timers. Thus, the initial state is created via the function StateConstruc-
tion(M). From this state, a repetitive process is executed to define all reachable
successors states and each one is added to S set.

States Graph Generation from dPTPN 97

Algorithm 2 State graph generation
begin
initializeMarking (M)
SetTimer(Lt)
So < StateConstruction(M)
indexState < 0, indexEdge <+ 0
repeat
S+ Su {SindeacState}
Tindex Edge — ®a W« M
repeat
dPFM(dF'Ts,M,Lt)
TindexEdge = TindexEdge U {dFTs}
until W # M or TindezEdge = @
if W # M then
Succ < StateConstruction (M)
T TU {TindemEdge}
14 (Sindewstatea Tindea:Edge) <+ Succ
if CheckDeadline(Succ)= True then

FinalState < Succ
S < S U{FinalState}
end if
else
FinalState < SindezState
end if
indexState < indexState + 1
indexEdge < indexFEdge + 1
until Succ € S or FinalState # @
end

The dPFM respects the time constraints during the generation of states and
searches for a successor from each current state. These two properties of dPFM
give rise to an oriented states graph in which each state can exist only if their
precedents are generated.

The generation of the states and the relation of reachability are finished when
one of three situations is verified. First, the marking of a place of the type
Ppeadiine describes that its corresponding task is non-schedulable (the Boolean
function CheckDeadline(Succ) is used in the algorithm for checking the mark-
ing of the Ppeqaiine places). In fact, according to the dPTPN model of the
task, this marking is defined as a stop-Marking but according to the entire
RTS model it is not. Therefore, the algorithm is stopped at this stage and a
final state is announced. The second situation is when the current marking
M of all the existing places cannot enable any dPTPN-Transitions and then
the current state Sj,gersiate 1S considered as a final state. As for the third
situation, the generation is terminated when the updated marking M; gives
rise to a state existing in S and the corresponding edge TingesEdge cONnects the
current state with the existing one.

98 Walid Karamti et al.

5 Open Problem

After the generation of the states graph corresponding to the dPTPN model,
it is interesting to check the schedulability in this graph. In fact, based on
graph theory, many properties can be checked such as the vivacity of graph.
Nevertheless, the schedulability is not a graph property, so, it is primordial to
translate it into graph properties and then its checking is available.

The checking provides a confirmation of the schedulability or a counterexample
otherwise. Thus, this result can be an efficient feedback to the partitioning
tool in order to decrease the exploration complexity of the HW /SW space.

6 Conclusion

The dynamic Priority Time Petri Nets (APTPN) is considered as the first Petri
Nets extension dedicated for Real-Time System (RTS) scheduling analysis
with dynamic priority. Its mathematical presentation is able to specify the
time constrains and a dynamic calculation of priorities in order to deal with
transitions conflict problem. Besides, its semantics, presented by the dynamic
Firing Machine (dPFM), accelerates the firing process of transitions via the
firing of independent transitions set detected with order partial techniques.
In the aim to showing all reachable states of a dPTPN RTS model, we have
proposed in the present manuscript, a generation method of states graph.
Compared to the existing techniques of graph generation, we can benefit from
a reduced dPTPN model and we generate its corresponding graph. In fact,
the existing research works are interesting to generate a simple initial graph
and then they apply reduction techniques. However, such methods require the
validation of the resulting graph relating to conserving the properties compared
to the initial one. In our case, we started from a reduced model, based on
hierarchical modeling [8], conserving the main properties of the initial model,
and we propose its corresponding graph.

The generated graph is a prediction of the RTS scheduling, and analyzing its
properties is an efficient solution to derive the schedulabilty of the system.

References

[1] V. Antti. Stubborn sets for reduced state space generation. In Applications
and Theory of Petri Nets, pages 491-515, 1989.

[2] B. Berthomieu and M. Diaz. Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Softw. Eng., 17(3):259-273,
1991.

States Graph Generation from dPTPN 99

3]

[12]

B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between
timed automata and bounded time petri nets. In FORMATS, pages 82—
97, 2006.

U. Buy and R.H. Sloan. Analysis of real-time programs with simple time
petri nets. In ISSTA ’9j: Proceedings of the 1994 ACM SIGSOFT in-
ternational symposium on Software testing and analysis, pages 228-239,
New York, NY, USA, 1994. ACM.

J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

Y. Hadj Kacem, W. Karamti, A. Mahfoudhi, and M. Abid. A petri net
extension for schedulability analysis of real time embedded systems. In
PDPTA, pages 304-314, 2010.

J. Goossens and P. Richard. Overview of real-time scheduling problems.
In Euro Workshop on Project Management and Scheduling, 2004.

W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Hierarchical modeling
with dynamic priority time petri nets for multiprocessor scheduling anal-
ysis. In ESA, The 2012 International Conference on Embedded Systems
and Applications, pages 114-121, 2012.

W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Using dynamic priority
time petri nets for scheduling analysis via earliest deadline first policy. In
ISPA, pages 332-339, Madrid, Spain, 2012.

W. Karamti, A. Mahfoudhi, Y. Hadj Kacem, and M. Abid. A formal
method for scheduling analysis of a partitioned multiprocessor system:
dynamic priority time petri nets. In PECCS, pages 317-326, 2012.

V. Kimmo. On combining the stubborn set method with the sleep set
method. In Robert Valette, editor, Application and Theory of Petri Nets
199/: 15th International Conference, Zaragoza, Spain, June 20-24, 199/,
Proceedings, volume 815 of Lecture Notes in Computer Science, pages
548-567. Springer-Verlag, Berlin, Germany, 1994. Springer-Verlag Berlin
Heidelberg 1994.

C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20:46-61, January
1973.

100

[13]

[14]

[15]

[16]

Walid Karamti et al.

A. Mahfoudhi, Y. Hadj Kacem, W. Karamti, and M. Abid. Compositional
specification of real time embedded systems by priority time petri nets.
The Journal of Supercomputing, 59(3):1478-1503, 2012.

P. M. Merlin. A Study of the Recoverability of Computing Systems. Irvine:
Univ. California, PhD Thesis, 1974. available from Ann Arbor: Univ
Microfilms, No. 75-11026.

C. A. Petri. Fundamentals of a theory of asynchronous information flow.
In IFIP Congress, pages 386-390, 1962.

O. H. Roux and A. M. Déplanche. A t-time Petri net extension for real
time-task scheduling modeling. Furopean Journal of Automation (JESA),
36(7):973-987, 2002.

