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Abstract

In this paper, two new classes of convex functions as a generalization of
convexity which is called (h− s)1,2−convex functions are given.
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1 Introduction

The following definition is well known in the literature [8]: A function f : I →
R, ∅ 6= I ⊆ R, is said to be convex on the interval I if inequality

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y) (1)

holds for all x, y ∈ I and t ∈ [0, 1]. f is said to be concave if the inequality (1)
is reversed.

Let f : I ⊆ R → R be a convex function and a, b ∈ I with a < b. The
following double inequality:
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f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
(2)

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard
inequality) for convex functions. Keep in mind that some of the classical
inequalities for means can come from (2) for convenient particular selections
of the function f. If f is concave, this double inequality hold in the inversed
way.

Remark 1.1 [14] Note that the first inequality stronger than the second in-
equality in (2); i.e., the following inequality is valid for a convex function f :

1

b− a

∫ b

a

f (x) dx− f
(
a+ b

2

)
≤ f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx. (3)

Indeed (3) can be written as

2

b− a

∫ b

a

f (x) dx ≤ 1

2

[
f (a) + f (b) + 2f

(
a+ b

2

)]
, (4)

which is

2

b− a

∫ a+b
2

a

f (x) dx+
2

b− a

∫ b

a+b
2

f (x) dx

≤ 1

2

[
f (a) + f

(
a+ b

2

)]
+

1

2

[
f (b) + f

(
a+ b

2

)]
.

this immediately follows by applying the second inequality in (2) twice (on the
interval

[
a, a+b

2

]
and

[
a+b
2
, b
]
). By letting a = −1, b = 1, we obtain the result

due to Bullen (1978). Further on, we shall call (3) as Bullen’s inequality.

The inequalities (2) which have numerous uses in a variety of settings,
has been came a significant groundwork in mathematical analysis and opti-
mization. Many reports have provided new proof, extensions and considering
its refinements, generalizations, numerous interpolations and applications, for
example, in the theory of special means and information theory. For some re-
sults on generalizations, extensions and applications of the Hermite-Hadamard
inequalities and convexity, see [1]-[15].

Definition 1.2 [6] We say that f : I → R is Godunova-Levin function or
that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I and
t ∈ (0, 1) , we have

f (tx+ (1− t) y) ≤ f (x)

t
+
f (y)

1− t
. (5)
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Definition 1.3 [1] We say that f : I ⊆ R → R is a P−function or that f
belongs to the class P (I) if f is nonnegative and for all x, y ∈ I and t ∈ [0, 1] ,
we have

f (tx+ (1− t) y) ≤ f (x) + f (y) . (6)

Definition 1.4 [7] Let s ∈ (0, 1] . A function f : (0,∞]→ [0,∞] is said to be
s−convex in the second sense if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y) , (7)

for all x, y ∈ (0, b] and t ∈ [0, 1]. This class of s−convex functions is usually
denoted by K2

s .

In 1978, Breckner introduced s−convex functions as a generalization of
convex functions in [4]. Also, in that work Breckner proved the important fact
that the set valued map is s−convex only if the associated support function
is s−convex function in [5]. A number of properties and connections with
s-convex in the first sense are discussed in paper [7]. Of course, s−convexity
means just convexity when s = 1.

Definition 1.5 [9] Let h : J ⊆ R → R be a positive function, h 6≡ 0. We
say that f : I ⊆ R → R is h−convex function, or that f belongs to the class
SX (h, I), if f is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) . (8)

If inequality (8) is reversed, then f is said to be h−concave, i.e. f ∈
SV (h, I). Obviously, if h (t) = t, then all nonnegative convex functions be-
long to SX (h, I) and all nonnegative concave functions belong to SV (h, I); if
h (t) = 1

t
, then SX (h, I) = Q (I); if h (t) = 1, then SX (h, I) ⊇ P (I); and if

h (t) = ts, where s ∈ (0, 1), then SX (h, I) ⊇ K2
s .

In [1], Dragomir et al. proved two inequalities of Hadamard-type for
P−functions.

Theorem 1.6 [1] Let f ∈ P (I), a, b ∈ I, with a < b and f ∈ L1 ([a, b]).
Then

f

(
a+ b

2

)
≤ 2

b− a

∫ b

a

f (x) dx ≤ 2 [f (a) + f (b)] . (9)

In [3], Pachpatte established the new following Hadamard-type inequality
for products of convex functions.
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Theorem 1.7 [3] Let f, g : [a, b]→ [0,∞) be convex functions on [a, b] ⊂ R,
a < b. Then

1

b− a

∫ b

a

f (x) g (x) dx ≤ 1

3
M (a, b) +

1

6
N (a, b) (10)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

In [2], Dragomir and Fitzpatrick proved a new variety of Hadamard’s in-
equality which holds for s−convex functions in the second sense.

Theorem 1.8 [2] Suppose that f : [0,∞)→ [0,∞) is an s−convex function in
the second sense, where s ∈ (0, 1), and let a, b ∈ [0,∞) , a < b. If f ∈ L1 ([a, b]),
then the following inequalities hold:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s+ 1
. (11)

Up until now, there are many reports on convexity and Hadamard-type
inequalities. The main purpose of the present paper is to give new classes of
convex functions which called (h− s)1,2−convex functions as a generalization
of ordinary convex functions and to prove new Hadamard-type inequalities for
these new classes of functions. Some applications to the special meansof real
numbers are given. Throughout this paper we will imply M(a, b) = f(a)g(a)+
f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

2 New Definitions and Results

Definition 2.1 Let h : J ⊂ R → R be a non-negative function, h 6≡ 0.We
say that f : R+ ∪ {0} → R is an (h− s)1−convex function in the first sense,
or that f belong to the class SX((h− s)1 , I), if f is non-negative and for all
x, y ∈ [0,∞) = I, s ∈ (0, 1] , t ∈ [0, 1] , we have

f(tx+ (1− t)y) ≤ hs(t)f(x) + (1− hs(t))f(y). (12)

If inequality (12) is reversed, then f is said to be (h− s)1−concav function in

the first sense, i.e., f ∈ SV ((h− s)1 , I).
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Definition 2.2 Let h : J ⊂ R → R be a non-negative function, h 6≡ 0. We
say that f : R+ ∪ {0} → R is an (h − s)2−convex function in the second
sense, or that f belong to the class SX((h− s)2 , I) , if f is non-negative and
for all u, v ∈ [0,∞) = I, s ∈ (0, 1] , t ∈ [0, 1] we have

f(tu+ (1− t)v) ≤ hs(t)f(u) + hs(1− t)f(v). (13)

If inequality (13) is reversed, then f is said to be (h− s)2−concav function in
the second sense, i.e., f ∈ SV ((h− s)2 , I).

Obviously, in (13), if h(t) = t, then all s−convex functions in the second
sense belongs to SX((h− s)2 , I) and all s−concav functions in the second
sense belongs to SV ((h− s)2 , I), and it can be easily seen that for h(t) = t,
s = 1, (h − s)2−convexity reduces to ordinary convexity defined on [0,∞) .
Similarly, in (12), if h(t) = t, then all s−convex functions in the first sense
belongs to SX((h− s)1 , I) and all s−concav functions in the first sense belongs
to SV ((h− s)1 , I), and it can be easily seen that for h(t) = t , s = 1, (h −
s)1−convexity reduces to ordinary convexity defined on [0,∞) .

The following theorem was obtained by using the (h− s)2-convex function
in the second sense.

Theorem 2.3 Let h : J ⊂ R→ R be a non-negative function, h 6≡ 0. f : I =
[0,∞)→ R is an (h−s)2−convex function in the second sense, or that f belong
to the class SX((h− s)2 , I), if f is non-negative and for all x, y ∈ [0,∞) = I,
s ∈ (0, 1] , t ∈ [0, 1] . If f ∈ L1 [a, b] , h ∈ L1 [0, 1], we have the following
inequality:

1

b− a

∫ b

a

f(x)dx ≤ [f (a) + f (b)]

∫ 1

0

hs (t) dt. (14)

Proof: By the definition of (h− s)2−convex mappings in the second sense,
for any s ∈ (0, 1] and t ∈ [0, 1] , we obtain the following inequality for u = a,
y = b

f(ta+ (1− t)b) ≤ hs(t)f(a) + hs(1− t)f(b). (15)

Integrating both side of (15) with respect to t on [0, 1], we have∫ 1

0

f(ta+ (1− t)b)dt ≤ f(a)

∫ 1

0

hs (t) dt+ f(b)

∫ 1

0

hs (1− t) dt.

Use of the changing variable ta+ (1− t)b = x, (b− a)dt = dx, we have

1

b− a

∫ b

a

f(x)dx ≤ f(a)

∫ 1

0

hs (t) dt+ f(b)

∫ 1

0

hs (1− t) dt (16)

and, by a change of variable u = 1− t in (16), which is the inequality in (14).
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Corollary 2.4 In the inequality (14); if we choose s = 1, we have the inequal-
ity;

1

b− a

∫ b

a

f(x)dx ≤ [f(a) + f(b)]

∫ 1

0

h (t) dt

Remark 2.5 If we choose h(t) = t, we have the inequality;

1

b− a

∫ b

a

f(x)dx ≤ f(a)

∫ 1

0

tsdt+ f(b)

∫ 1

0

(1− t)s dt

=
f(a) + f(b)

s+ 1

which is the right hand side of the inequality in (11). Besides if we choose
s = 1, we have the right hand side of the Hermite-Hadamard inequality in (2).

Theorem 2.6 Let h : J ⊂ R→ R be a non-negative function, h 6≡ 0. f : I =
[0,∞)→ R is an (h−s)2−convex function in the second sense, or that f belong
to the class SX((h− s)2 , I), if f is non-negative and for all x, y ∈ [0,∞) = I,
s ∈ (0, 1] , t ∈ [0, 1] . If f ∈ L1 [a, b] , h ∈ L1 [0, 1], we have the following
inequality:

1

2hs
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ [f(a) + f(b)]

∫ 1

0

hs (t) dt. (17)

Proof: By the (h− s)2−convexity of f, we have that

f

(
x+ y

2

)
≤ hs

(
1

2

)
f (x) + hs

(
1

2

)
f (y) .

If we choose x = ta+ (1− t)b, y = tb+ (1− t)a, we get

f

(
a+ b

2

)
≤ hs

(
1

2

)
f (ta+ (1− t)b) + hs

(
1

2

)
f (tb+ (1− t)a) (18)

for all t ∈ [0, 1]. Then, integrating both side of (18) with respect to t on [0, 1] ,
we have

f

(
a+ b

2

)
≤
∫ 1

0

(
hs
(

1

2

)
f (ta+ (1− t)b) + hs

(
1

2

)
f (tb+ (1− t)a)

)
dt.

Use of the changing of variable, we have

1

2hs
(
1
2

)f (a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx, (19)
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which is the first inequality in (17) .
To prove the second inequality in (17), we use the right side of (18) and

using (h− s)2−convexity of f , we have

hs
(

1

2

)
[f (ta+ (1− t)b) + f (tb+ (1− t)a)]

≤ hs
(

1

2

)
[hs (t) f (a) + hs (1− t) f (b) + hs (t) f (b) + hs (1− t) f (a)]

= hs
(

1

2

)
[hs (t) + hs (1− t)] [f (a) + f (b)]

Integrating the both side of the above inequality, we have

hs
(

1

2

)∫ 1

0

[f (ta+ (1− t)b) + f (tb+ (1− t)a)] dt

= hs
(

1

2

)
2

b− a

∫ b

a

f (x) dx

≤ hs
(

1

2

)
[f(a) + f(b)]

∫ 1

0

[hs (t) + hs (1− t)] dt. (20)

and, by a change of variable u = 1− t in (20), we obtain the inequality in (17).

Remark 2.7 In the inequality (17); if we choose h(t) = t, we have the in-
equality

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

s+ 1

which is the inequality (11).

Remark 2.8 If we choose h(t) = t and s = 1, we have the inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

which is the Hermite-Hadamard inequality.

Theorem 2.9 Let h : J ⊂ R → R be a non-negative function, h 6≡ 0. f, g :
I = [0,∞) → R are an (h − s)2−convex function in the second sense, if
f, g are non-negative and for all x, y ∈ [0,∞) = I, s ∈ (0, 1] , t ∈ [0, 1] . If
fg ∈ L1 [a, b] , h ∈ L1 [0, 1], we have the following inequality;

1

b− a

∫ b

a

f(x)g(x)dx ≤ f (a) g (a)

∫ 1

0

h2s (t) dt+ f (b) g (b)

∫ 1

0

h2s (1− t) dt

+ [f (a) g (b) + f (b) g (a)]

∫ 1

0

hs (t)hs (1− t) dt.(21)



58 M. Emin OZDEMIR, Mevlut TUNC, Ahmet Ocak AKDEMIR

Proof: Since f, g ∈ SX(h− s)2, we have

f (ta+ (1− t) b) ≤ hs (t) f (a) + hs (1− t) f (b)

g (ta+ (1− t)b) ≤ hs (t) g (a) + hs (1− t) g (b)

for all s ∈ (0, 1] , t ∈ [0, 1] . Since f and g are non-negative,

f (ta+ (1− t) b) g (ta+ (1− t)b)
≤ [hs (t) f (a) + hs (1− t) f (b)] [hs (t) g (a) + hs (1− t) g (b)]

= h2s (t) f (a) g (a) + hs (t)hs (1− t) f (a) g (b)

+hs (t)hs (1− t) f (b) g (a) + h2s (1− t) f (b) g (b) .

Then if we integrate the both side of the above inequality with respect to t on
[0, 1] , we have the inequality in (21).

In the next corollary we will also make use of the Beta function of Euler
type, which is for x, y > 0 defined as

β (x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt =
Γ (x) Γ (y)

Γ (x+ y)
.

Corollary 2.10 In the inequality (21), if we choose h(t) = t and s ∈ (0, 1),
we have

1

b− a

∫ b

a

(fg) (x)dx ≤ f (a) g (a)

∫ 1

0

t2sdt+ f (b) g (b)

∫ 1

0

(1− t)2s dt

+ [f (a) g (b) + f (b) g (a)]

∫ 1

0

ts (1− t)s dt

=
M (a, b)

2s+ 1
+N (a, b) β (s+ 1, s+ 1)

=
M (a, b)

2s+ 1
+N (a, b)

Γ2 (s+ 1)

Γ (2s+ 2)
.

Remark 2.11 In the inequality (21), if we choose h(t) = t and s = 1, we
have

1

b− a

∫ b

a

(fg) (x)dx ≤ f (a) g (a)

∫ 1

0

t2dt+ f (b) g (b)

∫ 1

0

(1− t)2 dt

+ [f (a) g (b) + f (b) g (a)]

∫ 1

0

t (1− t) dt

=
M (a, b)

3
+
N (a, b)

6

which is the inequality in (10).
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Theorem 2.12 Let h : J ⊂ R → R be a non-negative function, h 6≡ 0.
f : I = [0,∞)→ R is an (h− s)2−convex function in the second sense, if f is
non-negative and for all x, y ∈ [0,∞) = I, s ∈ (0, 1] , t ∈ [0, 1] . If f ∈ L1 [a, b] ,
h ∈ L1 [0, 1], we have

1

b− a

∫ b

a

f(x)dx ≤
[
f (a) + f (b)

2
+ f

(
a+ b

2

)]∫ 1

0

hs (t) dt. (22)

Proof: By the (h− s)2−convexity of f , we have

f

(
ta+ (1− t) a+ b

2

)
≤ hs (t) f (a) + hs (1− t) f

(
a+ b

2

)
f

(
t
a+ b

2
+ (1− t) b

)
≤ hs (t) f

(
a+ b

2

)
+ hs (1− t) f (b)

If we integrate the both side of the above inequalities with respect to t on
[0, 1], and use of the changing of variable, we get

2

b− a

∫ a+b
2

a

f (x) dx ≤ f (a)

∫ 1

0

hs (t) dt+ f

(
a+ b

2

)∫ 1

0

hs (1− t) dt

and

2

b− a

∫ b

a+b
2

f (x) dx ≤ f

(
a+ b

2

)∫ 1

0

hs (t) dt+ f(b)

∫ 1

0

hs (1− t) dt.

By adding the above inequalities and taking into account the
∫ 1

0
hs (t) dt =∫ 1

0
hs (1− t) dt for s ∈ (0, 1] , we get

2

b− a

∫ b

a

f(x)dx ≤
[
f (a) + f (b) + 2f

(
a+ b

2

)]∫ 1

0

hs (t) dt

which completes the proof.

Corollary 2.13 If in (22), we choose h(t) = t, we have

1

b− a

∫ b

a

f(x)dx ≤ 1

s+ 1

[
f (a) + f (b)

2
+ f

(
a+ b

2

)]
.

Besides if we set s = 1, we have the inequality (4).

3 Open Problem

It is well known that if f is a convex function on the interval I ⊂ R, then
the Hadamard’s inequality holds for the convex functions. It has already been
proved a lot of this type inequalities for different kinds of convex functions.
So, there is one question as follows:

Under what conditions, the composition f ◦ g is (h− s)1,2−convex function
on I? Can we prove Hadamard type inequalities for composition f ◦ g.
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