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Abstract

In this paper, two new classes of convexr functions as a generalization of
convexity which is called (h — s)1 92— convex functions are given.
Keywords: h—convex, s—convex, Bullen’s inequality.

1 Introduction

The following definition is well known in the literature [8]: A function f : [ —
R, # I C R, is said to be convex on the interval I if inequality

fle+ 1 —=t)y) <tf(zx)+ (1 —1)f(y) (1)

holds for all z,y € I and ¢ € [0,1]. f is said to be concave if the inequality (1)
is reversed.
Let f: I CR — R be a convex function and a,b € I with a < b. The

following double inequality:
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2

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard
inequality) for convex functions. Keep in mind that some of the classical
inequalities for means can come from (2) for convenient particular selections
of the function f. If f is concave, this double inequality hold in the inversed
way.

(55 <ot [ rar < HOEL0 ©)

Remark 1.1 [1/] Note that the first inequality stronger than the second in-
equality in (2); i.e., the following inequality is valid for a convex function f :

%a/abf(x)dx—f(a;b>§f();f b_a/f (3)

Indeed (3) can be written as

bfa/abf@)dxsg{f<a>+f<b>+2f(a‘gb)], 0

a+b

e LG daz+—/ f
< 5{f(a)+f(a;b)]+%{f(b)+f(“;b)}-

this immediately follows by applying the second inequality in (2) twice (on the
interval [a “+b} and [“TH’,Z)]) By letting a = —1, b = 1, we obtain the result
due to Bullen (1978). Further on, we shall call (3) as Bullen’s inequality.

which s

The inequalities (2) which have numerous uses in a variety of settings,
has been came a significant groundwork in mathematical analysis and opti-
mization. Many reports have provided new proof, extensions and considering
its refinements, generalizations, numerous interpolations and applications, for
example, in the theory of special means and information theory. For some re-
sults on generalizations, extensions and applications of the Hermite-Hadamard
inequalities and convexity, see [1]-[15].

Definition 1.2 [6/ We say that f : I — R is Godunova-Levin function or

that f belongs to the class Q (I) if f is non-negative and for all x,y € I and
€ (0,1), we have

fx) | fy)

ftr+(1—-t)y) <

~
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Definition 1.3 [1] We say that f : I C R — R is a P—function or that f
belongs to the class P (I) if f is nonnegative and for all x,y € I andt € [0, 1],
we have

fle+ A =t)y) < fx)+ (). (6)

Definition 1.4 [7] Let s € (0,1]. A function f : (0,00] — [0, 00] is said to be
s—convez in the second sense if

flla+ (A =t)y)<t°f(@x)+ (1 -1 f(y), (7)

for all x,y € (0,b] and t € [0,1]. This class of s—convex functions is usually
denoted by K?2.

In 1978, Breckner introduced s—convex functions as a generalization of
convex functions in [4]. Also, in that work Breckner proved the important fact
that the set valued map is s—convex only if the associated support function
is s—convex function in [5]. A number of properties and connections with
s-convex in the first sense are discussed in paper [7]. Of course, s—convexity
means just convexity when s = 1.

Definition 1.5 [9] Let h : J C R — R be a positive function, h #Z 0. We
say that f : I C R — R is h—convex function, or that f belongs to the class
SX (h,I), if f is nonnegative and for all x,y € I and t € [0, 1] we have

flz+ A =t)y) <h(t)f(z)+h(1-1)f(y). (8)

If inequality (8) is reversed, then f is said to be h—concave, i.e. f €
SV (h,I). Obviously, if h(t) = t, then all nonnegative convex functions be-
long to SX (h,I) and all nonnegative concave functions belong to SV (h, I); if
h(t) = ¢, then SX (h,I) = Q(I); if h(t) =1, then SX (h,I) 2 P (I); and if
h(t) = t*, where s € (0,1), then SX (h,I) 2 K2

In [1], Dragomir et al. proved two inequalities of Hadamard-type for
P—functions.

Theorem 1.6 [1] Let f € P(I), a,b € I, with a < b and f € Ly ([a,b]).
Then

() <% [ <2u @+ o). )

In [3], Pachpatte established the new following Hadamard-type inequality
for products of convex functions.
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Theorem 1.7 [3] Let f,g: [a,b] — [0,00) be convex functions on [a,b] C R,
a<b. Then

1 1
z)de < <M (a,b) + 2N (a,b) (10)

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).

In [2], Dragomir and Fitzpatrick proved a new variety of Hadamard’s in-
equality which holds for s—convex functions in the second sense.

Theorem 1.8 [2] Suppose that f : [0,00) — [0, 00) is an s—convex function in
the second sense, where s € (0,1), and let a,b € [0,00),a < b. If f € Ly (|a, b)),
then the following inequalities hold:

28-1f(a;b)gbia/abf(x)dng. (11)

s+1

Up until now, there are many reports on convexity and Hadamard-type
inequalities. The main purpose of the present paper is to give new classes of
convex functions which called (h — s), , —convex functions as a generalization
of ordinary convex functions and to prove new Hadamard-type inequalities for
these new classes of functions. Some applications to the special meansof real
numbers are given. Throughout this paper we will imply M (a,b) = f(a)g(a)+
F(b)g(b) and N(a.b) = f(a)g(b) + F(b)g(a).

2 New Definitions and Results

Definition 2.1 Let h : J C R — R be a non-negative function, h £ 0. We
say that f: RTYU{0} — R is an (h — s), —convex function in the first sense,
or that f belong to the class SX((h —s),,1), if f is non-negative and for all
z,y €[0,00)=1,s€(0,1], t €[0,1], we have

[tz + 1 =t)y) < k@) f(x) + (1= 1°(0)) f(y). (12)
If inequality (12) is reversed, then f is said to be (h — s), —concav function in

the first sense, i.e., f € SV((h—s),,1).
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Definition 2.2 Let h : J C R — R be a non-negative function, h Z 0. We
say that f : RTU{0} - R is an (h — s)a—convex function in the second
sense, or that f belong to the class SX((h —$),,1) , if f is non-negative and
for all u,v € [0,00) =1, s € (0,1], t € [0,1] we have

ftu+ (1 =t)v) <h°(8)f(u) + 2°(1 =) f(v). (13)

If inequality (13) is reversed, then f is said to be (h — s)y—concav function in

the second sense, i.e., f € SV((h—s),,1).

Obviously, in (13), if h(t) = ¢, then all s—convex functions in the second
sense belongs to SX((h —s),,I) and all s—concav functions in the second
sense belongs to SV((h —s),,1), and it can be easily seen that for h(t) = t,
s = 1, (h — s)y—convexity reduces to ordinary convexity defined on [0, 00) .
Similarly, in (12), if A(t) = t, then all s—convex functions in the first sense
belongs to SX((h — s), ,I) and all s—concav functions in the first sense belongs
to SV((h—s),,I), and it can be easily seen that for h(t) =t ,s =1, (h —
s);—convexity reduces to ordinary convexity defined on [0, c0) .

The following theorem was obtained by using the (h — s)s-convex function
in the second sense.

Theorem 2.3 Let h: J C R — R be a non-negative function, h Z0. f: [ =
[0,00) — R is an (h—s)2— convex function in the second sense, or that f belong
to the class SX((h — ), 1), if f is non-negative and for all x,y € [0,00) = I,
s € (0,1], t € [0,1). If f € Ly[a,b], h € L1]0,1], we have the following
iequality:

bia/a fz)de < [f (a)+f(b)}/D h* (t) dt. (14)

Proof: By the definition of (h — s)s—convex mappings in the second sense,

for any s € (0,1] and ¢ € [0,1], we obtain the following inequality for u = a,
y=>=

Flta -+ (1— 1) < B (@) f(a) + (1 — )] (b). (15)

Integrating both side of (15) with respect to ¢ on [0, 1], we have
1 1 1
/ flta+ (1 —t)b)dt < f(a)/ h® (t)dt + f(b)/ h® (1 —t) dt.
0 0 0

Use of the changing variable ta + (1 — t)b = z, (b — a)dt = dz, we have

b 1 1
bia/ f(x)dng(a)/o hs(t)dtJrf(b)/O he (1 —t)dt (16)

and, by a change of variable u = 1 — ¢ in (16), which is the inequality in (14).
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Corollary 2.4 In the inequality (14); if we choose s = 1, we have the inequal-
iwy;
1 b 1
i [ @ < (@) + 5 [ nar
a 0

Remark 2.5 If we choose h(t) = t, we have the inequality;

bia/abf(x)dx < f(a)/oltsdwrf(b)/ol(l—t)sdt

fla) + f(b)
s+1

which is the right hand side of the inequality in (11). Besides if we choose
s = 1, we have the right hand side of the Hermite-Hadamard inequality in (2).

Theorem 2.6 Let h: J C R — R be a non-negative function, h 0. f: 1 =
[0,00) — R is an (h—s)2— convex function in the second sense, or that f belong
to the class SX((h — s),,1), if f is non-negative and for all x,y € [0,00) = 1,
s € (0,1), t € [0,1]. If f € Lyla,b], h € L1][0,1], we have the following

imequality:

1 a_|_b 1 b " S
2hs(%)f( 5 )Sb—a/a f(a:)da:S[f(a)Jrf(b)]/o he(t)dt.  (17)

Proof: By the (h — s)s—convexity of f, we have that

f(x;y) <n (%)f(x)ws (%)f(y).

If we choose z =ta + (1 —t)b, y = tb+ (1 — t)a, we get

f (“;b) < h (%) fta+ (1—D)b)+ b (%) Fltb+(1—ta)  (18)

for all ¢t € [0,1]. Then, integrating both side of (18) with respect to ¢ on [0, 1],
we have

f (a;b) s/ol (hs (%) f(ta+(1—0)b) +h° (%) f(tb+(1—t)a)> dt.

Use of the changing of variable, we have

2h81(%)f (a;b> = bia/abf(x)dx, (19)
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which is the first inequality in (17).
To prove the second inequality in (17), we use the right side of (18) and
using (h — s)y—convexity of f, we have

B (%) F (ta+ (1 —B)b) + f (th+ (1 — t)a)]

< m(%)w%wfmwufa—wfwwwf@fwwwfu—wfmﬂ

= () @ -0l @+ 7 0)

Integrating the both side of the above inequality, we have

N EA Ty ~t)a
h <2)/0 [f (ta+ (1 —t)b) + f (tb+ (1 —t)a)] dt

. <%>£/abf(x)d:c
< w <%> [f(a) + f(b)] /01 (2% () + h* (1 = t)] dt. (20)

and, by a change of variable v = 1 —t in (20), we obtain the inequality in (17).

Remark 2.7 In the inequality (17); if we choose h(t) = t, we have the in-

equality ,
sapfatd 1 fla) + f(b)
2 1f< ; )Sb_a/Gf(x)dxﬁ P

which is the inequality (11).

Remark 2.8 If we choose h(t) =1t and s =1, we have the inequality

(5 <5t [ o s L2120

which 1s the Hermite-Hadamard inequality.

Theorem 2.9 Let h : J C R — R be a non-negative function, h £ 0. f, g :
I = [0,00) = R are an (h — s)a—convex function in the second sense, if
f,g are non-negative and for all x,y € [0,00) = I, s € (0,1], t € [0,1]. If
fg € L1 [a,b], h € Ly [0,1], we have the following inequality;

SMMM/WWW#MM@/WU4W

0 0

+1f(a) g (b) + f(b)g(a)]/o h* () h* (1 —t) di.(21)
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Proof: Since f,g € SX(h — )2, we have

Jlta+(1—0)b) < B (6) f(a)+h (1—1) f (b)
glta+ (1= < B (H)g(a)+h (1—1)g(b)

for all s € (0,1], t € [0,1]. Since f and g are non-negative,

Flta+ (1—1)b)g(ta+ (1—1t)b)

< [P fla) +h* (L —2) f (B[R () g(a) +h°(1—1)g(b)]
W% (t) f(a) g (a) +h* (£) h* (1 = t) f (a) g (D)
+h* ()R (1 —1) f(b) g (a) +h* (1 —1) f (D) g (b).

Then if we integrate the both side of the above inequality with respect to ¢ on
[0,1], we have the inequality in (21).

In the next corollary we will also make use of the Beta function of Euler
type, which is for x,y > 0 defined as

B (z,y) = /0 (! dt:—rr(é’zi(yy)).

Corollary 2.10 In the inequality (21), if we choose h(t) =t and s € (0,1),
we have

b 1 1
= | Ua@ir < ra) [ s [ o=

-Hﬂ@g@+fwwmﬂ4tﬂb%fﬁ

=M@Y | v s+ 1s+1)

2s+1
M (a,b) I2(s+1)
I'(2s+2)

_ N (a.b
syl V(D)

Remark 2.11 In the inequality (21), if we choose h(t) =t and s = 1, we
have

bia/a (fg) (x)dx < f(a)g(a)/0 t2dt+f(b)g(b)/0 (1—t)%dt
Hﬂ@9@+f@MMHAtﬂ—wﬁ

M (a,b) N (a,b)
3 + 6

which is the inequality in (10).
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Theorem 2.12 Let h : J C R — R be a non-negative function, h % 0.
f:1=[0,00) = R is an (h — s)s—convex function in the second sense, if f is
non-negative and for all x,y € [0,00) =1, s € (0,1],t € [0,1]. If f € Ly [a,b],
h € Ly [0,1], we have

/f \dz <{w+f<a;b>]/olh5(t)dt. (22)

Pmof By the (h — s)y—convexity of f, we have
f(ta+(1—t)a;rb) < hs(t)f(a)Jrhs(l—t)f(a;rb)
f(t“;b+(1—t)b) < hs(t)f(a;b)Jrhs(l—t)f(b)

If we integrate the both side of the above inequalities with respect to ¢t on
[0, 1], and use of the changing of variable, we get

b_a/mf d:c<f()/01 (f)dt+f(a;b)/01hs(1—t)dt
/f da:<f<a+b>/hs()dt+f(b)/olhs(1—t)dt.

By adding the above inequalities and taking into account the fol he (t)dt =
fol h® (1 —t)dt for s € (0,1], we get

bfa/abfmdxg [f<a>+f<b>+2f(“;b)]/Olhsu)dt

which completes the proof.

Corollary 2.13 Ifin (22), we choose h(t) = t, we have

o s s [HE e ()]

Besides if we set s = 1, we have the inequality (4).

and

3 Open Problem

It is well known that if f is a convex function on the interval I C R, then
the Hadamard’s inequality holds for the convex functions. It has already been
proved a lot of this type inequalities for different kinds of convex functions.
So, there is one question as follows:

Under what conditions, the composition fog is (h— s); 2—convex function
on I?7 Can we prove Hadamard type inequalities for composition f o g.
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