On a New Weighted Erdős-Mordell Type Inequality

Wei-Dong Jiang

Department of Information Engineering, Weihai Vocational College
Weihai 264210, ShanDong province, P. R. China
e-mail: jackjwd@163.com

Abstract
In this short note, a new weighted Erdős-Mordell inequality Involving Interior Point of a triangle is established. By it’s application, some interesting geometric inequalities are derived.

Keywords: Erdős-Mordell inequality, Geometric inequality, Triangle, spread angle theorem.

2010 Mathematics Subject Classification: 26D15.

1 Introduction

Throughout the paper we assume $\triangle ABC$ be a Triangle, and denote by a, b, c its sides’ lengths, Δ be the area. Let P be an interior point, Extend AP, BP, CP respectively to meet the opposite sides at D, E and F. Let $PD = r'_1, PE = r'_2, PF = r'_3$, $\Delta_1, \Delta_2, \Delta_3$ denote the areas of $\triangle BPC, \triangle CPA, \triangle APB$. R_a, R_b, R_c the circumradii of the triangles BPC, CPA, APB, respectively. Let R_1, R_2, R_3 be the distances from P to A, B, C, and also let r_1, r_2, r_3 be the distances from P to the sides AB, BC, CA.

Then Erdős-Mordell inequality is true:

Theorem 1.1.

$$R_1 + R_2 + R_3 \geq 2 (r_1 + r_2 + r_3)$$

whereat equality holds if and only if the triangle is equilateral and the point P is its center. This inequality was conjectured by Erdős in 1935[1], and was first proved by Mordell in 1937[2].

In the paper[3], D. S. Mitrnović etc noted some generalizations of Erdős-Mordell inequality in 1989. Among their results are the following theorem for three-variable quadratic Erdős-Mordell type inequality:
Theorem 1.2. If \(x, y, z \) are three real numbers, then for any point \(P \) inside the triangle \(ABC \), we have
\[
x^2R_1 + y^2R_2 + z^2R_3 \geq 2(yzx_1 + zxy_2 + xzy_3)
\]
with equality holding if and only if \(x = y = z \) and \(P \) is the center of equilateral \(\triangle ABC \).

Recently, Jiang [6] presented a new weighted Erdős-Mordell type inequality. In this note, we give another new weighted Erdős-Mordell type inequality, as application, some interesting geometric inequalities are also established.

2 Main results

In order to prove Theorem 2.2 below, we need the following lemma.

Lemma 2.1. For any point \(P \) inside \(\triangle ABC \), \(x, y, z \in \mathbb{R} \), then we have
\[
x^2 \sin^2 A + y^2 \sin^2 B + z^2 \sin^2 C \leq \frac{1}{4} \left(\frac{yz}{x} + \frac{zx}{y} + \frac{xy}{z} \right)^2.
\]

Proof. We make use of Kooi’s inequality [4]:
For real numbers \(\lambda_1, \lambda_2, \lambda_3 \) with \(\lambda_1 + \lambda_2 + \lambda_3 \neq 0 \),
\[
(\lambda_1 + \lambda_2 + \lambda_3)^2R^2 \geq \lambda_2\lambda_3a^2 + \lambda_3\lambda_1b^2 + \lambda_1\lambda_2c^2; \tag{4}
\]

Where \(R \) be circumradius of triangle \(ABC \), equality holds if and only if the point with homogeneous barycentric coordinates \((\lambda_1 : \lambda_2 : \lambda_3) \) with reference to triangle \(ABC \) is the circumcenter of the triangle.

Now, Lemma 2.1 follows from (4) with \(\lambda_1 = \frac{yz}{x}, \lambda_2 = \frac{zx}{y}, \lambda_3 = \frac{xy}{z} \), and the law of sines: \(a = 2R \sin A, b = 2R \sin B, c = 2R \sin C \).

Now we are in a position to state and prove our main result.

Theorem 2.2. For any point \(P \) inside triangle \(ABC \), Extend \(AP, BP, CP \) respectively to meet the opposite sides at \(D, E \) and \(F \). Let \(R_a, R_b, R_c \) the circumradiiuses of triangles \(\triangle BPC, \triangle CPA, \triangle APB \), and let \(PD = r'_1, PE = r'_2, PF = r'_3 \). \(x, y, z \) are positive real numbers, we have
\[
\frac{xr'_1}{\sqrt{R_aR_c}} + \frac{yr'_2}{\sqrt{R_cR_a}} + \frac{zr'_3}{\sqrt{R_aR_b}} \leq \frac{1}{2} \left(\frac{yz}{x} + \frac{zx}{y} + \frac{xy}{z} \right).
\]

with equality holding if and only if \(x = y = z \) and \(P \) is the center of equilateral \(\triangle ABC \).
Proof. Let $\angle BPC = \alpha, \angle CPA = \beta, \angle APB = \gamma$. It is obvious that $0 < \alpha, \beta, \gamma < \pi$ and $\alpha + \beta + \gamma = 2\pi$.

By using spread angle theorem, we have:

$$\frac{\sin \alpha}{r'_1} = \frac{\sin(\pi - \beta)}{R_2} + \frac{\sin(\pi - \gamma)}{R_3}$$

$$= \frac{\sin \beta + \sin \gamma}{R_2} + \frac{\sin \gamma}{R_3}$$

$$\geq 2\sqrt{\frac{\sin \beta \sin \gamma}{R_2R_3}},$$

Thus,

$$2r'_1 \leq \sqrt{R_2R_3 \csc \beta \csc \gamma \sin \alpha}.$$

Make use of $b = 2R_b \sin \beta, c = 2R_c \sin \gamma$, we get

$$\frac{r'_1}{\sqrt{R_bR_c}} \leq \sqrt{\frac{R_2R_3}{bc} \sin \alpha},$$

$$= \sqrt{\frac{\Delta_1}{\Delta}} \sin A \sin \alpha$$

Let

$$A' = \pi - \alpha, B' = \pi - \beta, C' = \pi - \gamma$$

Because

$$\sqrt{\sin A \sin \alpha} \leq \frac{1}{2} (\sin A + \sin \alpha) = \sin \frac{A + A'}{2} \cos \frac{A - A'}{2} \leq \sin \frac{A + A'}{2}$$

we have,

$$\frac{xy'_1}{\sqrt{R_bR_c}} \leq \sqrt{\frac{\Delta_1}{\Delta}} x \sin \frac{A + A'}{2},$$ \hspace{1cm} (6)

By the same way, one can get

$$\frac{y'_{r_2}}{\sqrt{R_cR_a}} \leq \sqrt{\frac{\Delta_2}{\Delta}} y \sin \frac{B + B'}{2},$$ \hspace{1cm} (7)

$$\frac{zr'_3}{\sqrt{R_aR_b}} \leq \sqrt{\frac{\Delta_3}{\Delta}} z \sin \frac{C + C'}{2},$$ \hspace{1cm} (8)
Combining expression (6), (7), (8) and By Cauchy’s inequality, we have
\[
\sum \frac{x_{r_1}}{\sqrt{R_b R_c}} \leq \sum \sqrt{\frac{A}{\Delta}} \sqrt{x \sin \frac{A + A'}{2}}
\]
\[
\leq \sqrt{\sum \frac{A}{\Delta} \sum x^2 \sin^2 \frac{A + A'}{2}},
\]
\[
= \sqrt{\sum x^2 \sin^2 \frac{A + A'}{2}}.
\]
Let
\[
\theta = \frac{A + A'}{2}, \phi = \frac{B + B'}{2}, \varphi = \frac{C + C'}{2}.
\]
Obviously, 0 < 0, 0, 0 < A, A, A and 0 + 0 = 0, so 0, 0, 0 can be angles of a triangle 0, 0, 0. Applying Lemma 2.1 for the triangle 0, 0, 0 we obtain
\[
x^2 \sin^2 \theta + y^2 \sin^2 \phi + z^2 \sin^2 \varphi \leq \frac{1}{4} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{z y}{z} \right)^2.
\]
This conclude that
\[
\frac{x_{r_1}}{\sqrt{R_b R_c}} + \frac{y_{r_2}}{\sqrt{R_c R_a}} + \frac{z_{r_3}}{\sqrt{R_a R_b}} \leq \frac{1}{2} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{z y}{z} \right).
\]
and with equality holding if and only if \(x = y = z \), and P is the center of equilateral \(\triangle ABC \). The proof of Theorem 2.2 is completed.

3 Some application

In this section we give some applications of Theorem 2.2.

Noticed \(r_1 \leq r_1' \) etc, we have
\[
\frac{x_{r_1}}{\sqrt{R_b R_c}} + \frac{y_{r_2}}{\sqrt{R_c R_a}} + \frac{z_{r_3}}{\sqrt{R_a R_b}} \leq \frac{1}{2} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{z y}{z} \right). \tag{9}
\]
By using AM-GM inequality, we have \(\sqrt{R_b R_c} \leq \frac{1}{2} (R_b + R_c) \), then from (5) we have
\[
\frac{x_{r_1}}{R_b + R_c} + \frac{y_{r_2}}{R_c + R_a} + \frac{z_{r_3}}{R_a + R_b} \leq \frac{1}{4} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{z y}{z} \right). \tag{10}
\]
By the same way of (9), the following inequality holds.
\[
\frac{x_{r_1}}{R_b + R_c} + \frac{y_{r_2}}{R_c + R_a} + \frac{z_{r_3}}{R_a + R_b} \leq \frac{1}{4} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{z y}{z} \right). \tag{11}
\]
let $x = y = z = 1$ in (11), we have

$$\frac{r_1}{R_b + R_c} + \frac{r_2}{R_c + R_a} + \frac{r_3}{R_a + R_b} \leq \frac{3}{4}.$$ \tag{12}

In fact, (12) was conjectured by Liu in [5] and here we obtained a proof.

Corollary 3.1. If $x,y,z > 0$, then

$$x^2 R_a + y^2 R_b + z^2 R_c \geq 2 (y z r_1' + z x r_2' + x y r_3').$$ \tag{13}

Proof. alter $x \to x' \sqrt{R_b R_c}, y \to y' \sqrt{R_c R_a}, z \to z' \sqrt{R_a R_b}(x, y, z > 0)$ in (5), we obtain

$$x' r_1' + y' r_2' + z r_3' \leq \frac{1}{2} \left(\frac{y' x'}{x'} R_a + \frac{z' x'}{y'} R_b + \frac{x' y'}{z'} R_c \right).$$ \tag{14}

and then, let $\frac{x'}{x^2} = x^2, \frac{y'}{y^2} = y^2, \frac{z'}{z^2} = z^2$ in (14), then (13) is obtained. \quad \Box

(13) is similar to (2), that was conjectured by Liu in [5].

Obviously,

$$x^2 R_a + y^2 R_b + z^2 R_c \geq 2 (y z r_1 + z x r_2 + x y r_3).$$ \tag{15}

Let $x = y = z = 1$ in (13) and (15), then we have.

$$R_a + R_b + R_c \geq 2 (r_1' + r_2' + r_3').$$ \tag{16}

and

$$R_a + R_b + R_c \geq 2 (r_1 + r_2 + r_3).$$ \tag{17}

Note that (17) is similar to (1).

let $x = y = z = 1$ in (5) and by AM-GM inequality, we have

$$R_a R_b R_c \geq 8 r_1' r_2' r_3'.$$ \tag{18}

and

$$R_a R_b R_c \geq 8 r_1 r_2 r_3.$$ \tag{19}

4 Open problem

At the end, we pose an open problem.

Open problem: For an interior point P and positive real numbers $x, y, z,$

Let $AD = w_1', BE = w_2', CF = w_3', R$ and r denote the circumradius and inradius of triangle ABC respectively, then

$$\frac{x w_1'}{\sqrt{R_b R_c}} + \frac{y w_2'}{\sqrt{R_c R_a}} + \frac{z w_3'}{\sqrt{R_a R_b}} \leq \sqrt{2 + \frac{r}{2R} \left(\frac{y z}{x} + \frac{z x}{y} + \frac{x y}{z} \right)}. \quad \tag{20}$$
ACKNOWLEDGEMENTS. This work is supported, in part, by the Project of Shandong Province Higher Educational Science and Technology Program under grant No. J11LA57.

References

