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Abstract
In this short note, a new weighted Erdos-Mordell inequal-
ity Involving Interior Point of a triangle is established. By
it’s application, some interesting geometric inequalities are de-
rived.
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1 Introduction

Throughout the paper we assume AABC be a Triangle, and denote by a, b, ¢ its
sides’ lengths, A be the area. Let P be an interior point, Extend AP, BP,C'P
respectively to meet the opposite sides at D, E and F. Let PD = r|, PE =
rh, PF' = ri, Ay, Ay, Az denote the areas of ABPC, ACPA, ANAPB.
R, Ry, R, the circumradii of the triangles BPC,CPA, AP B, respectively. Let
R, Ry, R3 be the distances from P to A, B,C, and also let ri,ry, 73 be the
distances from P to the sides AB, BC,C A.
Then Erdos-Mordell inequality is true:

Theorem 1.1.
Ri+Ry+ R3>2(ry +ro+13) (1)

whereat equality holds if and only if the triangle is equailateral and the
point P is its center. This inequality was conjectured by Erdos in 1935[1], and
was first proved by Mordell in 1937[2].

In the paper[3], D. S. Mitrnovi¢ etc noted some generalizations of Erdos-
Mordell inequality in 1989. Among their results are the following theorem for
three-variable quadratic Erdos-Mordell type inequality :
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Theorem 1.2. If x,y, z are three real numbers, then for any point P inside
the triangle ABC', we have

PRy + PRy + 2Ry 2 2 (yzry + 2ary + ayrs) 2)

with equality holding if and only if vt = y = z and P is the center of equilateral
ANABC.

Recently, Jiang [6] presented a new weighted Erdés-Mordell type inequality.
In this note, we give another new weighted Erdos-Mordell type inequality, as
application, some interesting geometric inequalities are also established.

2 Main results

In order to prove Theorem 2.2 below, we need the following lemma.

Lemma 2.1. For any point P inside NABC, x,y,z € R, then we have

1 2
2?sin® A + y*sin® B + 2*sin’C < - (% + 22y ﬁ) : (3)
4\ z Y z
Proof. We make use of Kooi’s inequality [4]:
For real numbers A\, Ay, A3 with Ay + Ao + A3 # 0,

(A1 + Ao+ A3)2R2 > Aodga? + AgAib? + Mdac: (4)

Where R be circumradius of triangle ABC', equality holds if and only if the
point with homogeneous barycentric coordinates (A; : Ay : A\3) with reference
to triangle ABC' is the circumcenter of the triangle.

Now, Lemma 2.1 follows from (4) with A\; = £, Ay = A3 = “, and the

law of sines: a = 2Rsin A,b = 2Rsin B,c = 2RsinC. m
Now we are in a position to state and prove our main result.

Theorem 2.2. For any point P inside triangle ABC, Extend AP, BP,CP
respectively to meet the opposite sides at D, E and F'. Let R,, Ry, R. the cir-
cumradiuses of triangles ABPC, ACPA, ANAPB, and let PD = r|, PE =
ry, PF =1y, x,y, 2z are positive real numbers, we have

\/Rb Rc \/RcRa \/Ra Rb — 2

T Y z

xr r! zrt 1 z oz
1 Yra 3 < <y X +_?/> (5)

with equality holding if and only if x = y = z and P is the center of
equilateral ANABC.
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Proof. Let /BPC = «o,/CPA = B,ZAPB = ~. It is obvious that 0 <
a,B,y<mand a+ f + vy = 27.
By using spread angle theorem, we have.

sina sin(m — 3) N sin(m — )
7“/1 R2 R3
_ sinf  siny

_RQ+33

S 9 /smﬂsmfy’
- RyRs

2r" < \/RyRs csc 3 csc vy sin a.

Thus,

Make use of b = 2Ry sin 3, ¢ = 2R, sin~y, we get

rll < 1/ LELLE sin «
\ RbRc - be ’

A
= KlsinAsinoz

Let
A=r—aB =r-50=1—7
Because
1 A+A A-A A+ A
Vsin Asina < é(sinA + sina) = sin —; cos — <sin il
we have,
xr} Ay A+ A
<y /== 6
N x sin , (6)
By the same way, one can get
yry JAV) B+ B
<3/ == 7
VAt (7)
2rh As c+C
<y /== 8
7=\ a Zsin ——, (8)
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Combining expression (6), (7), (8) and By Cauchy’s inequality, we have

DRI JE TR =

b
PR W
= \/Zx2sin2A—gA/.

A+A’ B+B’ C+c’
O = o=

Obviously, 0 < 8, ¢, ¢ < 7 and 0 + qb + @ =m, so 8, ¢, can be angles of a
triangle A;B;1C4. Applying Lemma 2.1 for the triangle A; B;C; we obtain

Let

0=

1 2
22 sin® 6 4 y?sin? ¢ + 2?sin® p < = <%+ﬁ+ﬁ)
4\ x Y z

This conclude that

Yy z

+
VRR. VR, +E.[R, ~ 2

xr! ) 2t 1 (yz x
1 yry 3 o~ = <?J + _1__?/>

and with equality holding if and only if z = y = 2, and P is the center of
equilateral AABC'". The proof of Theorem 2.2 is completed. O

3 Some application

In this section we give some applications of Theorem 2.2.
Noticed r <1} etc, we have

xry YT 273 1 [yz xy
+ <= + — + — . 9
N s S G ®)

By using AM-GM inequality, we have Ry R;, < 1 5 (Ry + Ry), then from (5)

we have

xry yrh 2rh 1 yz xy
< = — 4+ = . 10
Rb+RC+RC+Ra+R + Ry, — 4 +y+z (10)

By the same way of (9), the following inequality holds.

rry Yro 2r3 1 /yz zx xy
< | =4+—=+—=). 11
Rb+RC+RC+Ra+Ra+Rb_4(x+y+z) (11)
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let t =y =2=11in (11), we have

™ T T3 3
+ + <.
R,+R. R.+R, R,+R, 4

In fact, (12) was conjectured by Liu in [5] and here we obtained a proof.

(12)

Corollary 3.1. If z,y,z > 0, then
T* Ry + y? Ry + 22 Re > 2 (yar| + zarhy + wyry) (13)

Proof. alter x — '/ RyR.,y — y'\/R.Ra, z — 2'/RoRy(x,y,z > 0) in (5), we
obtain

1 /(yz 2 2y
'rl +y'r < = R, R R.). 14
xr1+yr2+zr3_2<x/ + J b+ 7 (14)

and then, let L2 = 22 220 — 42 2 _ -2 iy (14), then (13) is obtained. [

$l

(13) is similar to (2), that was conjectured by Liu in [5].
Obviously.

T*Ry +y* Ry + 2° R, > 2 (yzry + zary + 2yrs) . (15)
Let z =y =2z = 11n (13)and (15), then we have.
Ro+ Ry + R. > 2(r] + 15+ 1}) (16)

and
R,+Ry+R.>2(ri+mra+13). (17)
Note that (17) is similar to (1).
let x =y =2=1in (5) and by AM-GM inequality, we have
R, RyR. > 8ryryrs. (18)

and
R,RyR. > 8rirars. (19)

4 Open problem

At the end, we pose an open problem.

Open problem: For an interior point P and positive real numbers x, y, z,
Let AD = wj, BE = w),CF = w}, R and r denote the circumradius and
inradius of triangle ABC' respectively, then

Tw) ywl 2w r (yz zr xy)
+ + < 25+ = +2) 0 (20
\/RbRc \/RcRa \/RaRb N 2R z Y z ( )
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